用户名: 密码: 验证码:
地铁牵引电传动系统关键控制技术及性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牵引电传动系统是地铁车辆装备的核心与难点。本文着重针对异步电机矢量控制技术、车辆防滑/防空转控制技术以及地铁牵引电传动系统稳定性控制技术分别展开研究,并通过大量的模型仿真及地面、现场实验对研究成果进行了验证。
     面向地铁牵引变流器低开关频率约束条件,根据异步电机复矢量模型极点分布规律以及基于Frobenius矩阵范数的离散化误差函数,指出了常规离散全阶转子磁链观测器的问题和局限性;提出了一种基于状态空间拆分重组的改进型离散全阶转子磁链观测器,其在有限迭代计算频率下,电机运行全速度范围内观测结果稳定收敛、离散化误差较小且计算简单;同时,设计了反馈增益矩阵对观测器进行极点优化配置,提高了观测结果的收敛速度并改善了观测器的电机参数敏感性;通过基于q轴磁链误差补偿的磁场定向实时校正策略,保证了异步电机转子磁场的准确定向。
     归纳总结了异步电机内在耦合因素,指出了现有电流环数字控制时延对异步电机解耦控制的影响;利用系统耦合度函数,分析了传统电流控制器的解耦性能,通过研究耦合效应与电流环极点分布规律之间的关系,提出了一种基于零极点对消原理的改进型电流控制器,同时引入双线性离散化方法完成其数字化实现,使电流环系统在有限的控制频率下,不仅具有良好的动态响应,而且消除了定子电流励磁分量与转矩分量之间的耦合效应。
     根据地铁车辆轮轨黏着分析,将架控双轴模型等效为单轴模型完成了车体动力学模型的建立;引入了一阶扰动观测器以获取当前路面黏着系数及其导数值信息,通过研究黏着特性曲线峰值点特征,结合车辆逻辑控制,提出了一种以PI调节器为核心、转矩微调函数C(t)辅助的基于最优黏着利用的地铁车辆防滑/防空转控制策略,从而有效防止车辆空转/打滑现象的发生,并实现恶劣轮轨接触条件下的最优黏着利用。
     针对地铁牵引电传动系统主电路进行了详细分析,建立了系统综合线性化模型;利用基于级联电气系统环路增益的稳定性分析方法,深入研究了直流侧滤波器参数设计与异步电机矢量控制对系统稳定性的影响;提出了一种基于阻抗匹配的稳定性控制策略,通过实时调整牵引变流器-异步电机系统输入阻抗模型,实现了牵引电传动系统在全速度范围内、任何工况下的稳定运行。
Electric traction drive system is the coral and difficult part of metro vehicle. The vector control technology for induction motor, anti-skid/anti-slip control technology for vehicle and stability control technology for electric traction drive system are researched in this paper, then amounts of simulations, ground tests and field trails are carried out to verify the theoretical research results.
     Under low switching frequency of metro traction converter constraint condition, according to the pole map of induction motor based on complex model and the discretization error function based on matrix frobenbius-norm, the problems and application limitations of conventional discrete full-order rotor flux observer are pointed out; a novel discrete full-order rotor flux observer based on re-organization of state space is proposed, which has stable and convergent observed result, minimal discretization error and small computation with limited frequency calculation in full speed range; meanwhile, in order to optimal assigning the poles, the feedback gain matrix are designed, which not only increases the rate of convergence, but also improves motor parameter sensitivity; using observed result to propose an accurate rotor flux orientation correction strategy based on error compensation to flux q axis component, which insures the veracity of rotor flux orientation for induction motor.
     Internal coupling factors of induction motor are concluded and summarized, then the effects of digital control delay are pointed out based on existing timing of digital controlled closed-loop current; by making use of system coupling function, this paper analyzes the decoupling performance of conventional current controller, an inproved current controller based on pole zero cancellation is proposed by researching the relation between coupling effect and pole distribution of current loop system, at the same time, Tustin is introduced so as to complete the digitalization of the inproved current controller, which not only has good dynamic response, but also realizes the decoupling control of stator current excitation and torque variable.
     According to adhesive analysis for metro vehicle, this paper finishes the establishment of vehicle dynamics model by converting the model from double axle to single axis; the first order disturbance observer is introduced in order to obtain the current road's adhesion coefficient and its derivative value, an anti-skid/anti-slip control technology for metro vehicle based on PI regulator and torque adjustment function is proposed by means of researching the characteristic of peaks of adhesive characteristic curve and combining with logic control for metro vehicle, which not only prevents skid/slip phenomenon, but also realizes optimized adhesion utilization under the condition of dirty road.
     Based on analysis of main circuit of electric traction drive system for metro vehicle, comprehensive linear model of system is established; the influence of DC input filter parameters and vector control technology for induction motor on system stability is studied using the analyze method based on loop gain of cascade electrical system; in order to insure the stability of electric traction drive system of metro vehicle in full speed range and any operating condition, an improved stability control strategy based on impedance matching is proposed, which can timely adjust the input impedance model of traction converter-induction motor system.
引文
[1]孔令洋.城市轨道交通系统型式选择研究[D].北京交通大学,2009.
    [2]方鑫,苏继会.交通立体化视角下的城市地下空间开发[J].工程与建设,2011,25(3):311-313.
    [3]刘义泉,韩广明,李春勇.我国城市交通迎来地铁时代[J].地理教育,2012(11):23-24.
    [4]天鸿宾,孙兆荃.世界城市地铁发展综述[J].土木工程学报,1 995,28(1):73-78.
    [5]雷风行.中国地铁建设的概况及发展思路[J].世界隧道,1996(1):1-6.
    [6]俞展猷.我国城市轨道交通车辆的发展和实施车辆国产化的历程[J].机车电传动,2007(6):1-5
    [7]2013-2017年中国城市轨道交通与设备行业发展分析及投资前景预测报告[R].行业报告网,2012.
    [8]李丽敏,顾天鸿,陈进杰.关于降低我国地铁造价的探论[J].国防交通工程与技术,2005(4):6-8.
    [9]陈文光,丁荣军.国产化北京地铁列车牵引电传动系统设计[J].机车电传动,2006(4):3 1-36.
    [10]申永勇,陈文红,金庆华,韩文涛.上海国产化A型地铁列车牵引电传动系统设计[J].现代城市轨道交通,2010(1):10-14.
    [11]翁星方.北京地铁国产化列车IGBT牵引逆变器[J].机车电传动,2008(4):45-47.
    [12]王丹.广州地铁列车国产化牵引变流器[J].都市快轨交通,2008,21(5):89-93.
    [13]林文立.地铁动车牵引传动系统分析、建模及优化[D].北京交通大学,2010.
    [14]孙大南,林文立,刘志刚,等.地铁牵引变流器直流侧振荡抑制策略研究[J].铁道学报,2011,33(8):52-57.
    [15]冯江华.多模式电压空间矢量脉宽调制的理论分析及微机实现[J].机车电传动,1996(4):8-12.
    [16]谭新元.牵引逆变器SHEPWM控制技术的研究[J].中国电机工程学报,2001,21(9):47-52.
    [17]王从刚,何凤有,邓庆伟.电流谐波最优PWM开关角计算及数字实现[J].电测与仪表,2012,49(8):14-17.
    [18]周明磊,游小杰,王琛琛.低开关频率下PWM调制方法研究[J].北京交通大学学报,2010,34(5):53-58.
    [19]马志文.电力牵引交流传动互馈试验系统的研究[D].北京交通大学,2007.
    [20]李威,车向中,郝荣泰.交—直—交电力机车PwM调制方法研究[J].铁道学报,2000,22(6):26-31.
    [21]G Narayanan, V T Ranganathan. Extension of operation of space vector PWM strategies with low switching frequencies using different overmodulation algorithms[J]. IEEE.Trans.on Power Electronics,2002,17(5):788-798.
    [22]Couto C M, Martin J S. Multi-mode microcontroller based PWM modulator suitable for fast vector control[C]. Proceedings of the IEEE International Symposium on,1995(2):660-667.
    [23]P E. New current control scheme for PWM inverters[J]. IEE Proc.B,1988,135(4):172-179.
    [24]Holtz J. Fast dyamic control of medium voltage drive operating at very low switching frequency—— An overview[J]. Industrial Electronics, IEEE Transactions on,2008,55(3):1005-1013.
    [25]赵明花,赵雷廷,董侃,等.大功率逆变器混合脉宽调制策略研究[J].北京交通大学学报,2012,36(2):125-129.
    [26]孙大南.地铁车辆牵引电传动系统关键技术研究[D].北京交通大学,2012.
    [27]韦克康.轨道牵引逆变器数字控制研究[D].北京交通大学,2012.
    [28]马志文,殷振环,蒋威.大功率两电平逆变器多模式SVPWM算法研究[J].机车电传动,2010(4):17-24.
    [29]郑伟,季筱隆,苏彦民.一种新颖的异步电机标量控制方案[J].中小型电机,2005,32(6):43-47.
    [30]周明磊.电力机车牵引电机在全速度范围的控制策略研究[D].北京交通大学,2013.
    [31]谢运祥,薛峰.交流电机传动的发展现状与趋势[J].微电机,30(1):28-31.
    [32]Le-Huy H. Comparison of field-oriented control and direct torque control for induction motor drives[C]. Thirty-Foutth IAS Annual Meeting,1999(2):1245-1252.
    [33]Spichartz M, Heising C, Staudt V, et al. Indirect Stator-Quantities Control as benchmark for highly dynamic induction machine control in the full operating range[C]. Power Electronics and Motion Control Conference,2010 14th International,2010:T3-13-T4-19.
    [34]王坚,桂卫华,年晓红,等.牵引电机无速度传感器间接定子量控制系统研究[J].铁道学报,2010,32(6):17-21
    [35]张彦林,刘觉民,付振宇.异步牵引电动机低速区控制方法的比较[J].电力机车与城轨车辆,2006,29(3):24-26
    [36]Jung J, Nam K. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. IEEE. Trans. On IE,1999,46(1):100-110.
    [37]Kitanaka H. Vector controller for induction motor[P]. Jul.12.2007.
    [38]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进[J].中国电机工程学报,2008,28(18):61-65.
    [39]孙大南,林文立,刁利军.改进型感应电机电压模型磁链观测器设计[J].北京交通大学学报,2011,35(2):94-98.
    [40]林飞,孙湖,胡广艳,等.带有转子电阻补偿的异步电机电流型磁链观测器[J].电气传动,2006,36(10):7-9.
    [41]West N T, Lorenz R D. Digital implementation of stator and rotor flux-linkage observers and a stator-current observer for deadbeat direct torque control of induction machines[J]. Industry Applications on,2009,45(2):729-736.
    [42]王斯然.异步电机高性能变频器若干关键技术的研究[D],浙江大学,2011.
    [43]Henneberger G, Brunsbach B J. Field-oriented control of synchronous and asynchronous drives without mechanical sensors using a Kalman filter[C]. EPE,1992(3):664-664
    [44]Young-Real Kim, Seung-Ki Sul, Min-Ho Park. Speed sensorless vector control of induction motor using extended Kalman filter[J]. IEEE Trans, on Industry Applications,1994,30(5):1225-1233.
    [45]Derdiyok A. Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer[J]. Industrial Electronics, IEEE Transactions on,2005,52(4): 1170-1176.
    [46]Inanc N. A robust sliding mode flux and speed observer for speed sensorless control of an indirect field oriented induction motor drives[J]. Electric Power Systems Research,2007,77(12): 1681-1688.
    [47]Cheng B, Yao W, Wang k, et al. Comparative analysis of feedback gains for adaptive full-order observers in sensorless induction motor drives[C]. Energy Conversion Congress and Exposition, 2013 IEEE,2013:3481-3487.
    [48]李文锋,黄钦,李祥飞.基于全阶磁链观测器的间接定子量控制系统[J].湖南工业大学学报,2012,26(4):42-45.
    [49]李浩,谭国俊,方静欢,等.基于全阶闭环转子磁链观测器矢量控制系统[J].电力电子技术,2008,42(11):30-31.
    [50]张继勇,袁如明,蒋步军.基于全阶闭环磁链观测器的感应电动机直接转矩控制[J].电气传动和自动控制,2007,29(4):14-17.
    [51]Hisao Kubota, Kouki Matsuse, Takayoshi Nakano. DSP-based speed adaptive flux observer of induction motor[J]. Industry Applications, IEEE Transactions on,1993,29(2):344-348.
    [52]Briz F, Degner M W, Lorenz R D. Analysis and design of current regulators using complex vectors[J]. Industry Applications, IEEE Transactions on,2000,36(3):817-825.
    [53]Rowan T M, Kerkman R J. A new synchronous current regulator and an analysis of current-regulated PWM inverters[J]. IEEE Transactions on Industry Applications,1986,22(4):678-690.
    [54]Holtz J, Juntao Q, Jorge P, et al. Design of fast and robust current regulators for high-power drives based on complex state variables[J]. IEEE Transactions on Industry Applications,2004,40(5): 1388-1397.
    [55]沈滢,郝荣泰.异步牵引电机磁场定向控制解耦算法的研究[J].铁道学报,2003,25(1):26-29.
    [56]Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. IEEE Transactions on Industrial Electronics,1999,46(1):100-110.
    [57]Harnefors L, Nee H P. Model-based current control of AC machines using the internal model control method[J]. IEEE Transactions on Industrial Electronics,1998,34(1):133-141.
    [58]周志刚.异步电动机转子磁场定向偏差解耦控制系统的研究[J].电工技术学报,2003,18(3):19-23.
    [59]韦克康,周明磊,郑琼林,等.基于复矢量的异步电机电流环数字控制[J].电工技术学报,2011,26(6):88-94.
    [60]伍小杰,袁庆庆,符晓,等.基于复矢量调节器的低开关频率同步电机控制[J].中国电机工程学报,2012,32(3):124-129.
    [61]Mukherjee S, Poddar G. Fast control of filter for sensorless vector control SQIM drive with sinusoidal motor voltage[J]. Industrial Electronics, IEEE Transactions on,2007,54(5):2435-2442.
    [62]Parkhi V, Shilaskar S, Tirmare M, et al. FPGA implementation of PWM control technique for three phase induction motor drive[C]. First International Conference on Emerging Trends in Engineering and Technology,2008:996-1001.
    [63]Bonnet F, Vidal P E, Pietrzak David M. Dual direct torque control of doubly fed induction machine[J]. Industrial Electronics, IEEE Transactions on,2007,54(5):2482-2490.
    [64]刁利军,董侃,赵雷廷,等.基于双DSP-FPGA架构的城轨列车电力牵引控制系统[J]电工技术学报,2014,29(1):174-180.
    [65]赵雷廷,刁利军,董侃,等.基于状态空间拆分重组的牵引异步电机闭环离散全阶转子磁链观测器[J].电工技术学报,2014,28(10):103-112.
    [66]赵雷廷,刁利军,张哲,等.低开关频率下异步电机电流环的数字控制[J].中国电机工程学报,2014.
    [67]胡斯登,赵争鸣,袁立强,等.高性能变频调速系统的离散控制问题研究[J].中国电工程学报,2010,30(30):1-6.
    [68]Bae B H, Sul S K. A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives[J]. Induction Applications, IEEE Transactions on,2003,39(3): 802-810.
    [69]Rodriguez J, Pontt J, Silva C A. Predictive current control of a voltage source inverter[J]. IEEE Trans on IE,2007,54(1):495-503.
    [70]孙大南,刁利军,刘志刚.交流传动矢量控制系统延时补偿[J].电工技术学报,2011,26(5):138-144.
    [71]顾伍楼.地铁车辆计算粘着系数和牵引电动机功率选用问题简析[J].铁道机车车辆,2003,23(6):42-45.
    [72]李培曙.地铁车辆的防滑控制[J].铁道车辆,2001,39(7):9-12.
    [73]李云锋.基于最优蠕滑率的粘着控制方法研究[D].西南交通大学,2008.
    [74]陈军华,胡铁君,陈希隽.广州地铁1号线车辆防空转/防滑系统[J].机车电传动,2002(1):38-42.
    [75]张文,候春军.浅谈地铁车辆制动系统国产化[J].机械与自动化,2013(6):124-124.
    [76]刘瑞阔.基于电机矢量控制的黏着方法研究与仿真DD].西南交通大学,2009.
    [77]张兴宝.西安地铁2号线车辆防空转/滑行系统[J].电力机车与城轨车辆,2012,35(5):71-74.
    [78]李江红,马健,彭辉水.机车粘着控制的基本原理和方法[J].机车电传动,2002(6):4-8.
    [79]Sun-Ku Kwon, Ul-Youl Huh, Hak-11 Kim, et al. Re-adhesion control with estimated adhesion force coefficient for wheeled robot using fuzzy logic[C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, Korea,2004.
    [80]王秀红.机车防滑控制关键技术的研究[D].北京交通大学,2010.
    [81]Kiyoshi Ohishi, Yasuaki Ogawa, Ichiro Miyashita, et al. Adhesion control of electric motor coach based on force control using disturbance observer[C]. Advanced Motion Control,2000. Proceedings 6th International Workshop on. IEEE,2000:323-328.
    [82]Kiyoshi Ohishi, Yasuaki Ogawa, Ichiro Miyashita, et al. Anti-slip Re-adhesion control of electric motor coach based on force control using disturbance observer[C]. Industry Applications Conference,2000(2):1001-1007.
    [83]李红梅,李忠杰,刘良成.逆变器供电下异步电机低频振荡现象的研究[J].电工技术学报,2000,15(3):16-19.
    [84]王庆义,尹泉,赵金,等.一种改善VWF变频调速系统稳定性的方法[J].电机与控制学报,2007,11(2):138-142.
    [85]陈伟,杨荣峰,于泳,等.新型感应电机V/F控制系统稳定性方法[J].电机与控制学报,2009,13(1):11-14.
    [86]徐德丰,韩中林,洪雷.PWM控制方式下死区对变频器性能的影响分析[J].低压电器,2004(12):53-57.
    [87]沈安文,张侨.基于补偿策略的通用变频器高性能控制方法研究[J].电气传动,2007,37(1):16-18.
    [88]刘可安,高首聪,刘晨,等.地铁车辆交流传动系统主电路振荡抑制研究.机车电传动,2006(3):48-53.
    [89]孙大南,刘志刚,林文立,等.地铁牵引变流器直流侧振荡抑制策略研究[J].铁道学报,2011,33(8):52-57.
    [90]林文立,刘志刚,孙大南,等.地铁牵引系统的稳定性提升控制[J].电机与控制学报,2012,16(2):56-61.
    [91]赵雷廷,刁利军,董侃,等.地铁牵引变流器-电机系统稳定性控制[J].电工技术学报,2013,28(6):101-107.
    [92]Mosskull H. Robust Control of an Induction Motor Drive[D]. Royal Institute of technology,2006.
    [93]Mosskull H, Galic J, Wahlberg B. Stabilization of induction motor drives with poorly damped input filters[J]. IEEE. Trans, on IE,2007,54(5):2724-2734.
    [94]Mosskull H. Stabilization of an induction motor drive with resnonant input filter[C].2005 European Conference on Power Electronics and Applications,2005:1-10.
    [95]Middlebrook R D. Input filter considerations in design and application of switching regulators[C]. IAS'76 Annual,1976:366-382.
    [96]Astrom K J, Wittenmark B. Computer controlled systems[M]. Engewood Cliffs, NJ:prentice Hall, 1984.
    [97]罗慧.感应电机全阶磁链观测器和转速估算方法研究[D].华中科技大学,2009.
    [98]未文祥,周杰,尹赟.感应电机转速白适应全阶磁链观测器的离散化[J].上海大学学报,2012,18(6):582-588.
    [99]凌光,王斯然,陈斌,等.感应电机全阶观测器的一种新型离散方法[J].电力电子技术,2012,46(4):78-81.
    [100]Holtz J. On the spatial propagation of transient magnetic fields in AC machines[J]. Industry Applications, IEEE Transactions on,1996,32(4):927-937.
    [101]Ogata K. Discrete-time control systems[M]. Englewood Cliffs, NJ:Prentice-Hall,1987.
    [102]郑大钟.线性系统理论[M].北京:清华大学出版社,2002.
    [103]史荣昌,魏丰.矩阵分析[M].北京:北京理工大学出版社,2010.
    [104]胡寿松.自动控制原理[M].北京:科学出版社,2007.
    [105]刘豹,唐万生.现代控制理论[M].北京:机械工业出版社,2006.
    [106]马艳洁.基于区域极点配置理论的定子磁链全阶观测器[J].微特电机,2012,40(4):16-18.
    [107]Ben-Brahim L, Kawamura A. Digital current regulation of field-oriented controlled induction motor based on predictive flux observer[J]. IEEE Transactions on,1991,27(5):956-961.
    [108]宋文祥,姚钢,周文生,等.异步电机全阶状态观测器极点配置方法[J].电机与控制应用,2008,35(9):6-10.
    [109]Robyns B, Berthereau F, Cossart G, et al. A methodology to determine gains of induction motor flux observer based on a theoretical parameter sensitivity analysis[J]. Power Electronics, IEEE Trans on, 2000,15(6):983-995.
    [110]Jansen P L, Lorenz R D. A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drivesfJ]. Industry Applications, IEEE Trans on, 1994,30(1):101-110.
    [111]Bauer F, Schierling H. Method and apparatus for current regulating in a voltage-injecting converter[P]. Nov.14.1995.
    [112]马志文.电力牵引交流传动互馈试验系统的研究[D].北京交通大学,2007.
    [113]刁利军,刘志刚,沈茂盛,等.交流传动试验系统方案综述[J].电气传动,2007,37(9):3-7.
    [114]Huh K K, Lorenz R D. Discrete-time domain modeling and design for AC machine current regulation[C]. Industry Applications Conference,2007.42nd IAS Annual Meeting. Conference Record of the 2007 IEEE. IEEE,2007:2066-2073.
    [115]Blasko V, Kaura V, Niewiadomski W. Sampling of discontinuous voltage and current signals in electrical drives:a system approach[J]. Industry Applications, IEEE Transaction on,1998,34(5): 1123-1130.
    [116]Holtz J, Quan J, Schmittt G, et al. Design of fast and robust current regulators for high power drives based on complex state variables[C]. Industry Applications Conference,2003.38th IAS Annual Meeting. Conference Record of the 2003 IEEE, IEEE,2003(3):1997-2004.
    [117]Rodriguez F J, Bueno E, Aredes M, et al. Discrete-time implementation of second order generalized integrators for grid converters[C]. Industrial Electronics,2008. IECON 2008.34th Annual Conference of IEEE, IEEE,2008:176-181.
    [118]王颖超.高速动车组粘着控制算法研究[D].北京交通大学,2009.
    [119]Park D Y, Kim M S, Hwang D H, et al. Hybrid re-adhesion control method for traction system of high-speed railway[C]. Electrical Machines and Systems,2001. ICEMS 2001. Proceedings of the Fifth International Conference on. IEEE,2001,2:739-742.
    [120]王秀红.机车防滑控制关键技术的研究[D].北京交通大学,2010.
    [121]李云锋.基于最优蠕滑率的粘着控制方法研究[D].西南交通大学,2011.
    [122]Ohishi K, Nakano K, Miyashita I, et al. Anti-slip control of electric motor coach based on disturbance observer[C]. Advanced Motion Control,1998. AMC'98-Coimbra,1998 5th International Workshop on. IEEE,1998:580-585.
    [123]Kadowaki S, Ohishi K, Miyashita I, et al. Re-adhesion control of electric motor coach based on disturbance observer and sensor-less vector control[C]. Power Conversion Conference,2002. PCC Osaka 2002. Proceedings of the. IEEE,2002,3:1020-1025.
    [124]Byun Y S, Kim M S, Mok J K, et al. Slip and slide simulator using induction motors[C]. Control, Automation and Systems,2007. ICCAS'07, International Conferece on. IEEE,2007:1605-1608.
    [125]Yamazaki H, Nagai M, Kamada T. A study of adhesion force model for wheel slip prevention control[J]. JSME International Journal Series C,2004,47(2):496-501.
    [126]Bae B H, Cho B H, Sul S K. Damping control strategy for vector controlled traction drive[C]. Proc. 9th Eur. Conf. Power Electron. And Appl.2001.
    [127]袁登科,朱小娟,周俊龙.地铁车辆电气牵引系统直流侧电流谐波分析[J].同济大学学报,2012,40(1):122-126.
    [128]陈文光,丁荣军.国产化北京地铁列车牵引电传动系统设计[J].机车电传动,2006(4):31-36.
    [129]Pietilainen K, Hamefors L, Petersson A, et al. DC-link stabilization and voltage sag ride-through of inverter drives[J]. Industrial Electronics, IEEE Transaction on,2006,53(4):1261-1268.
    [130]Barenthin M, Mosskull H, Hjalmarsson H, et al. Validation of stability for an induction machine drive using power iterations[C]. Proc.16th IFAC World Congr.2005.
    [131]赵雷廷,陈杰,林文立,等.基于纯电量计算的新型异步电动机转矩计算方法[J].北京交通大学学报,2012,36(2):95-104.
    [132]Liutanakul P, Awan A B, Pierfederici S, et al. Linear stabilization of a dc bus supplying a constant power load:A general design approach[J]. Power Electronics, IEEE Transaction on,2010,25(2): 475-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700