用户名: 密码: 验证码:
毛细管电泳—电化学发光用于含胺类药物的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致化学发光(Electrochemiluminescence,简称ECL),是在化学发光基础上发展起来的一种新的分析方法,它将电化学与化学发光结合起来,使该方法具有灵敏、原位、线性范围宽、稳定性好和选择性强等特点。毛细管电泳(Capillary electrophoresis,简称CE)是二十世纪八十年代兴起的液相分离分析技术,具有分离效率高、分析速度快、样品用量少、装置简单等优点。将毛细管电泳(CE)分离-联吡啶钌[Ru(bpy)32+]-电致化学发光(ECL)检测联用(CE-ECL)是最近几年兴起的分离分析技术,它兼有CE的微量、高效、快速及ECL的灵敏、原位、高选择性和高重现性等优点。该方法在药物特别是含胺类药物的分析方面已经显示出了强大的优势,已成功应用于药物、氨基酸、毒品和环境等方面的检测。CE-ECL联吡啶钌联用技术作为一种分析测试手段在医学、环境科学及生命科学等方面有着广阔的应用前景。
     本论文中,主要应用毛细管电泳-电化学发光对含胺类药物进行检测。各项研究工作简述如下:
     1.基于甲磺酸培氟沙星(Pefloxacin Mesylate,简称PM)对联吡啶钌在铂电极上的电致化学发光信号有增敏作用,与毛细管电泳结合,建立了一种研究PM药代动力学的新方法。在最佳条件下,该药物在0.05~10 mg/L范围内峰高与PM浓度呈良好的线性关系,该方法检出限为0.006 mg/L,峰高相对标准偏差为2.4%(n=6),尿样回收率在92.9~112%之间。该方法用于人尿中PM的排泄速率测定,1.5~2 h内平均排泄速率最大,48 h内原型药物排泄率为13.5%。
     2.基于盐酸丁咯地尔(Buflomedil Hydrochloride,简称BUF)和盐酸维拉帕米(Verapamil hydrochloride,简称,VER)在铂电极上对联吡啶钌电化学发光强烈的增敏作用,与毛细管电泳联用,同时测定人血浆中的BUF和VER。为了提高灵敏度,采用0.1 mmol/L醋酸作为溶剂。在最佳条件下,BUF的线性范围为0.001~3 mg/L,检出限为0.0007 mg/L,VER的线性范围为0.01~12 mg/L,检出限为0.0047 mg/L。BUF和VER的回收率分别为85~92%和85~93%。该方法应用于人血浆中BUF和VER的测定,血浆中杂质与样品能够完全分离。
     3.首次应用CE-ECL对盐酸麻黄碱(Ephedrine Hydrochloride,简称EP)进行检测,为提高灵敏度,用乙醛对其进行衍生,在最佳条件下,衍生后光强增强了近50倍。该药物的线性范围为0.078~11.7 mg/L,检出限为0.002 mg/L,回收率在93~108%之间,RSD低于5.9%。将此法应用于被盐酸麻黄碱稀释过的人血浆中测定,血浆中杂质与样品能够完全分离。
Electrochemiluminescence (ECL), which combines the characteristics of electrochemistry and chemiluminescence, is proved to be a powerful analytical tool with advantages of sensitivity, in situ, wide linear range, and good selectivity etc. Capillary electrophoresis (CE) has been greatly evolved since 1980s, now it has been proved to be an effective technique for separation with short analysis time, high resolution and small sample volume. The combination of capillary electrophoresis with tris (2, 2’-bipyridyl) ruthenium (II)-based electrochemiluminescence detection (CE-ECL) shows many advantages, for instance, high selectivity, good efficiency, fast analysis speed, and easy operation, etc. Now, the method has been widely used for the detection of nitrogen-containing compounds, and it has been successfully applyzed to pharmaceuticals, amino acids, narcotics, and environmental samples etc. As a method of analysis, CE-ECL will be more widely use in medical science, environmental science, and life science.
     This thesis is concentrated on the application of CE-ECL for the analyses of amine-containing pharmaceuticals. Its contents were intruduced as follows:
     1. A novel and simple pharmacokinetics of Pefloxacin mesylate (PM) in the urine of a healthy adult was developed. The proposed methodology was based on the ECL intensity of ruthenium (II) tris (bipyridine) at a platinum electrode was greatly enhanced by PM. Under the optimal conditions, the calibration curve was linear over the range from 0.05 to 10 mg/L with a detection limit of 0.006 mg/L (σ=3). The relative standard deviation of the peak height was 2.4% (n=6). The recovery in human urine was between 92.9% and 112%. The highest excretion rate was observed during 1.5 h to 2 h after oral administration. The urinary excretion ratio of PM was 13.5% within 48 h.
     2. Based on electrochemiluminescence (ECL) intensity of ruthenium(II) tris (bipyridine) at a platinum electrode was greatly enhanced by Buflomedil hydrochloride (BUF) and Verapamil hydrochloride (VER), the simultaneous determination of BUF and VER in human plasma has been developed using capillary electrophoresis with ECL. In order to increase the sensitivity, 0.1 mmol/L acetic acid was selected as sample solvent. Under the optimal conditions,the linear ranges were 0.001~3 mg/L for BUF and 0.01~12 mg/L for VER. The detection limits (3σ) for BUF and VER were 0.0007 and 0.0047 mg/L, respectively. The recoveries of the two drugs at different concentrations were between 85% and 92% for BUF and 85% to 93% for VER. Plasma constituents did not interfer with the determination of BUF and VER.
     3. A novel method for the determination of ephedrine hydrochloride (EP) was proposed. In order to improve the sensitivity, the precolumn derivatization of EP with acetaldehyde was proposed. Under the optimal conditions, the ECL intensity obtained about 50-fold improvement, compared to that wasn’t derived. The calibration curve was linear over the range from 0.078 to 11.7 mg/L with a detection limit of 0.002 mg/L (σ=3). All of the values of RSD were lower than 5.9% (n=6), and the recovery was between 93% and 108%. The mothod was applied to the detection of EP extracted from human plasma. The impurities in the plasma didn't interfer with the determination of EP.
引文
[1] K.A. Fahnrich, M. Pravda, G.G. Guilbault. Recent applications of electrogenerated chemiluminescence in chemical analysis [J]. Talanta, 2001, 54: 531-559.
    [2] M.M. Richter. Electrochemiluminescence (ECL) [J]. Chem. Rev., 2004, 104: 3003-3036.
    [3] 李云辉. 毛细管电泳电化学发光检测技术及在环境中的应用 [D]. 吉林: 吉林大学, 2006.
    [4] J.W. Jorgenson, K.D.Lukacs. Zone electrophoresis in open-tubular glass capillaries [J]. Anal. Chem., 1981, 53:1298-1302.
    [5] N.J. Havery. Luminescence during Electrolysis [J]. Phys. Chem., 1929, 33:1456-1459.
    [6] T. Kuwana, B. Epstein, E.T. Seo. Electrochemical generation of solution luminescence [J] J. Phys. Chem., 1963, 67: 2243-2244.
    [7] T. Kuwana. Electro-oxidation followed by light emmission [J]. J. Electroanal. Chem., 1963, 6: 164-167.
    [8] B. Epstein, T. Kuwana. Luminol and phthalhydrazide [J]. Photochem. Photobiol., 1965, 4: 1157-1173.
    [9] L.R. Faulkner, A.J. Bard. Electroanalytical Chemistry [M]. New York, Marcel Dekker, 1977, 10: 1-95.
    [10] J.T. Maloy, K.B. Prater, A.J. Bard. Electrogenerated chemiluminescence. II. The rotating ring-disk electrode and the pyrene-N, N, N', N'-tetramethyl-p-phenylenediamine system [J]. J. Phys. Chem., 1968, 72 (12): 4348-4350.
    [11] J.T. Maloy, K.B. Prater, A.J. Bard. Electrogenerated chemiluminescence. V. Rotating-ring-disk electrode. Digital simulation and experimental evaluation [J]. J. Am. Chem. Soc., 1971, 93 (23): 5959-5968.
    [12] K.S. Chen, T. Takeshita, K. Nakamura, N. Hirota. Electron Paramagnetic Resonance Studies of the Kinetics of the Intramolecular Cation Migration Process in Alkali Metal Anthraquinone [J]. J. Phys. Chem., 1973, 77 (5): 708-713.
    [13] A.W. Knight. A review of recent trends in analytical applications of electrogenerated chemiluminescence [J]. Trac-trend. Anal. Chem., 1999, 18(1): 47-62.
    [14] X.B. Yin, S.J. Dong, E.K. Wang. Analytical applications of the electrochemiluminescence of tris (2,2′-bipyridyl) ruthenium and its derivatives [J]. Trac-trend. Anal. Chem., 2004, 23 (6): 432-441.
    [15] I. Rubinstein, A.J. Bard. Polymer films on electrodes. 5. Electrochemistry and chemiluminescence at Nafion-coated electrodes [J]. J. Am. Chem. Soc., 1981, 103: 5007-5013.
    [16] 徐杨. 中性介质鲁米诺电化学发光体系测定生物活性物质的研究 [D]. 苏州: 苏州大学, 2003.
    [17] 章竹君. 电化学发光分析的新进展 [J]. 陕西师范大学学报, 2000, 28 (3): 79-83.
    [18] 张成孝, 漆红兰. 电化学发光分析研究进展 [J]. 世界科技研究与发展, 2004, 26: 7-13.
    [19] G.N. Chen, R.E. Lin, Z.F. Zhao, J.P. Duan, L. Zhang. Electrogenerated chemiluminescence for determination of indole and tryptophan [J]. Anal. Chim. Acta, 1997, 341: 251-256.
    [20] G.N. Chen, L. Zhang, R.E. Lin, Z.C. Yang, J.P. Duan, H.Q. Chen, D.B. Hibbert. The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemilumi-nescence of lucigenin [J]. Talanta, 2000, 50: 1275-1281.
    [21] J.M. Lin, M. Yamada. Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay [J]. Microchem. J., 1998, 58: 105-116.
    [22] 陈曦, 陈薇, 王小如. 流动体系中维生素 B1 的电致化学发光研究 [J]. 化学学报, 2000, 58: 563-566.
    [23] C.X. Zhang, G.J. Zhou, Z.J. Zhang, M. Aizawa. Highly sensitive electrochemical luminescence determination of thiamine [J]. Anal. Chim. Acta, 1999, 394: 165-170.
    [24] 何品刚, 刘祥萍, 余慧, 方禹之. 电致化学发光法测定药剂中盐酸表阿霉素的含量 [J]. 分析化学, 2000, 28 (9): 1062-1065.
    [25] A.J. Bard, L.R. Faulkner. Electrochemical Methods-Fundamentals and Applications [M]. Wiley, New York, 1980:621-629.
    [26] T.C. Richard, A.J. Bard. Evaluation of use of tris (2,2’=bipyridyl) ruthenium (Ill) as a chemiluminescent reagent for quantitation in flowing streams [J]. Anal. Chem., 1995, 67: 3140-3147.
    [27] S. Sakura. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode [J]. Anal. Chim. Acta, 1992, 262: 49-57.
    [28] S. Kulmala, T. Ala-Kleme, A. Kulmala, D. Papkovsky, K. Loikas. Cathodic electrogenerated chemiluminescence of luminol at dispos-able oxide-covered aluminum electrodes [J], Anal. Chem., 1998, 70 (6): 1112-1118.
    [29] 安镜如, 陈曦. 碱性水溶液中 ABEI 的电致化学发光的研究 [J]. 高等学校化学学报, 1989, 11: 1110-1113.
    [30] K. Arai, K. Takahashi, F. Kusu. An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(aminobutyl)-N-ethylisoluminol [J]. Anal. Chem., 1999, 71 (11): 2237-2240.
    [31] 郑行望, 章竹君, 王琦, 丁红春. 基于电还原鲁米诺电化学发光分析法测定水样中钼Ⅵ [J]. 分析化学, 2003, 9: 1076-1078.
    [32] 王鹏, 张文艳, 周鸿, 朱果逸. 免疫电化学发光[J]. 分析化学, 1998, 26 (7): 898-903.
    [33] D. Bruce, M.M. Richter, K.J. Brewer. Electrochemiluminescence from Os (phen) 2 (dppene)2+ (phen=1,10-phenanthroline and dppene=bis (diphenylphosphino) ethene). Anal. Chem., 2002, 74: 3157-3159.
    [34] Muegge B. D., M.M. Richter. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging [J]. Anal. Chem., 2004, 76: 73-77.
    [35] G.F. Blackburn, H.P. Shah, J.H. Kenten, J. Leland, R.A. Kamin, J. Link, J. Peterman, M.J. Powell, A. Shah, D.B. Talley, S.K. Tyagi, E. Wilkins, T.G. Wu, R.J. Massey. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clin. Chem. 1991, 37 (9): 1534-1539.
    [36] G.B. Xu, S.J. Dong. Effect of metal ions on Ru(bpy)32+electrochemiluminescence [J]. Analyst, 1999, 124: 1085-1087.
    [37] B.D. Muegge, M.M. Richter. Electrochemiluminescent detection of metal cations using a ruthenium (II) bipyridyl complex containing a crown ether moiety [J], Anal. Chem., 2002, 74: 547-550.
    [38] R.Y. Lai, M. Chiba, N. Kitamura, A.J. Bard. Electrogenerated chemiluminescence. 68. Detection of sodium ion with a ruthenium (II) complex with crown ether moiety at the 3,3’-positions on the 2,2’-Bipyridine Ligand [J], Anal. Chem., 2002, 74: 551-553.
    [39] F. Jameison, R.I. Sanchez, L.W. Dong, J.K. Leland, D. Yost, M.T. Martin. Electrochemiluminescence-based quantitation of classical clinical chemistry analytes [J]. Anal. Chem., 1996, 68: 1298-1302.
    [40] M.N. Zhang, C.X. Zhang, H.L. Qi. Energy transfer electrogenerated chemiluminescence for the determination of sulfite [J]. Microchimica Acta, 2004, 144 (1-3): 155-160.
    [41] D.M. Hercules, F.E. Lytle. Chemiluminescence from reduction reactions [J]. J. Am. Chem. Soc., 1966, 88: 4745-4746.
    [42] N.E. Tokel, A.J. Bard. Bard.Electrogenerated chemiluminescence.Ⅸ.Electrochemistry and emission from systems containing tris (2, 2’-bipyridine) ruthenium (Ⅱ) dichloride [J]. J. Am. Chem. Soc., 1972, 94 (8): 2862-2863.
    [43] K. Uchikura, M. Kirisawa. Chemiluminescence of Tryptophan with Electrogenerated Tris (2,2’-bipyridine) ruthenium(III) [J]. Anal. Sci., 1991, 7: 803-804.
    [44] I. Rubinstein, C.R. Martin, A.J. Bard. Electrogeneratecl Chemiluminescent Determination of Oxalate [J]. Anal. Chem., 1983, 55: 1580-1582.
    [45] D. Ege, W.G. Becker, A.J. Bard. Electrogenerated Chemiluminescent Determination of Ru(bpy)32+ at Low Levels [J]. Anal. Chem., 1984, 56: 2413-2417.
    [46] J.B. Noffsinger, N.D. Danielson. Generation of Chemiluminescence upon Reaction of Aliphatic Amines with Tris (2,2’-bipyridine) ruthenium ( I I I) [J]. Anal. Chem., 1987, 59: 865-868.
    [47] J.K. Leland, M.J. Powell. Electrogenerated Chemiluminescence: An Oxidative-Reduction Type ECL Reaction Sequence Using Tripropyl Amine [J]. J. Electrochem Soc., 1990, 137: 3127-3131.
    [48] S. Hjertén. Free zone electrophoresis [J]. Chromatogr. Rev. 1967, 9 (2): 122-129.
    [49] J.W. Jorgenson, K.D.Lukacs. High-resolution separations based on electrophoresis and electroosmosis [J]. J. chromatogr., 1981, 218: 209-216.
    [50] S. Terabe, K. Otsuka, K. Ichlkawa, A. Tsuchiya, T. Ando. Electrokinetic separations with micellar solutions and open-tubular capillaries [J]. Anal. Chem. 1984, 56: 111-113.
    [51] S. Hjertén, J. Liao, K. Yao. Theoretical and experimental study of high-performance electrophoretic mobilization of isoelectrically focused protein zones [J]. J. Chromatogr. A, 1987, 387: 127-138.
    [52] S. Hjertén, K. Elenbring, F. Kilár, J. Liao, A.J.C. Chen, C.J. Siebert, M.D. Zhu. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus [J]. J. Chromatogr. A, 1987, 403: 47-61.
    [53] A.S. Cohen, B.L. Karger. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins [J]. J. Chromatogr. A, 1987, 397: 409-417.
    [54] 吴鸿伟. 毛细管电泳在药物分析和食品安全检测中的应用 [D]. 西安: 陕西师范大学, 2007.
    [55] 刘志松, 方肇伦. 高效毛细管电泳在药物分析中的应用 [J]. 色谱, 1996, 14 (5): 364-368.
    [56] N. Anastos, N.W. Barnett, W. Simon. Capillary electrophoresis for forensic drug analysis: A review [J]. Talanta, 2005, 67 (2): 269-279.
    [57] N.T. Nguyen, R.W. Siegler. Capillary electrophoresis of cardiovascular drugs [J]. J. Chromatogr. A. 1996, 735 (1-2): 123-150.
    [58] J.R. Petersen, A.O. Okorodudu, A. Mohammad, A.P. Deborah. Capillary electrophoresis and its application in the clinical laboratory [J]. Clin. Chim. Acta, 2003, 330 (1-2): 1-30.
    [59] 丁永生, 薛俊, 林炳承. 毛细管电泳在环境分析中的应用 [J]. 色谱, 1998, 16 (3): 215-219.
    [60] 袁倬斌, 尚小玉, 张君. 毛细管电泳及其在环境分析中的应用进展 [J]. 岩矿测试, 2003, 22 (2): 144-150.
    [61] 王辉, 林炳承. 芯片毛细管电泳及其在生命科学中的应用 [J]. 分析化学, 2002, 30 (3): 107-112.
    [62] N.H.H. Heegaard, R.T. Kennedy. Antigen-antibody interactions in capillary electrophoresis [J]. J. Chromatogr. B. 2002, 768 (1): 93-103.
    [63] Y. Tanaka, S. Terabe. Estimation of binding constants by capillary electrophoresis [J]. J. Chromatogr. B. 2002, 768 (1):81-92.
    [64] 汪尔康, 刘继锋, 曹卫东, 严吉林, 杨秀荣.毛细管电泳电化学发光检测技术及其在生命科学中的应用 [EB]. 中科院长春应化所/西安瑞迈电子科技有限公司, 2004-6-29.
    [65] X.B. Yin, E.K. Wang. Capillary electrophoresis coupling with electrochemiluminescence detection: a review [J]. Anal. Chim. Acta, 2005, 533: 113-120.
    [66] G.A. Forbes, T.A. Nieman, J.V. Sweedler. On-line electrogenerated Ru(bpy)33+ chemiluminescent detection of β-blockers separated with capillary electrophoresis [J]. Anal. Chim. Acta, 1997, 347: 289-293.
    [67] J.A. Dickson, M.M. Ferris, R.E. Milofsky. Tris (2,2’-bipyridyl) ruthenium (III) as a chemiluminescent reagent for detection in capillary electrophoresis [J]. J. High. Resol. Chromatogr., 1997, 20: 643-646.
    [68] X.H. Sun, W.D. Cao, X.X. Bai, X.R. Yang, E.K. Wang. Determination of allopurinol and its active metabolite oxypurinol by capillary electrophoresis with end-column amperometric detection [J]. Anal. Chim. Acta, 2001, 442: 121-128.
    [69] X.H. Sun, C.L. Gao, W.D. Cao, X.X. Bai, Yang X.R., E.K. Wang. Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction [J].J. Chromatogr. A, 2002, 962: 117-125.
    [70] X.H. Sun, X.R. Yang, E.K. Wang. Evaluation of a sol–gel derived carbon composite electrode as an amperometric detector for capillary electrophoresis [J]. J. Chromatogr. A, 2003, 991: 109-116.
    [71] X.H. Sun, X.R. Yang, E.K. Wang. Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection [J]. J. Chromatogr. A, 2003, 1005: 189-195.
    [72] X.H. Sun, J.F. Liu, W.D. Cao, X.R. Yang, E.K. Wang, Y.S. Fung. Capillary electrophoresis with electrochemiluminescence detection of procyclidine in human urine pretreated by ion-exchange cartridge [J]. Anal. Chim. Acta, 2002, 470: 137-145.
    [73] J.F. Liu, W.D. Cao, X.R. Yang, E.K. Wang. Determination of diphenhydramine by capillary electrophoresis with tris (2,2′-bipyridyl) ruthenium (II) electrochemiluminescence detection [J]. Talanta, 2003, 59: 453-459.
    [74] J.L. Yan, J.F. Liu, W.D. Cao, X.H. Sun, X.R. Yang, E.K. Wang. Determination of benzhexol hydrochloride by capillary zone electrophoresis with an end-column electrochemiluminescence detection [J]. Microchim. J., 2004, 76: 11-16.
    [75] J.F. Liu, W.D. Cao, H.B. Qiu, X.R. Yang, E.K. Wang. Determination of sulpiride by capillary electrophoresis with end-column electrogenerated chemiluminescence detection [J].Clin. Chem., 2002, 48: 1049-1058.
    [76] X.C. Zhao, T.Y. You, J.F. Liu, X.H. Sun, J.L. Yan, X.R. Yang, E.K. Wang. Drug-human serum albumin binding studied by capillary electrophoresis with electrochemiluminescence detection [J]. Electrophoresis, 2004, 25: 3422-3426.
    [77] W.D. Cao, J.F. Liu, H.B. Qiu, X.R. Yang, E.K. Wang. New technique for capillary electrophoresis directly coupled with end-column electrochemiluminescence detection [J]. Electrophoresis, 2002, 23: 3683-3691.
    [78] X.B. Yin, H.B. Qiu, X.H. Sun, J.L. Yan, J.F. Liu, E.K. Wang. Capillary Electrophoresis Coupled with Electrochemiluminescence Detection Using Porous Etched Joint [J]. Anal. Chem., 2004, 76: 3846-3850.
    [79] X.B. Yin, J.Z. Kang, L.Y. Fang, X.R. Yang, E.K. Wang. Short-capillary Electrophoresis with electrochemiluminescence detection using porous etched joint for fast analysis of lidocaine and ofloxacin [J]. J. Chromatogr. A, 2004, 1055: 223-228.
    [80] X.J. Huang, S.L. Wang, Z.L. Fang. Combination of flow injection with capillary electrophoresis: 8. Miniaturized capillary electrophoresis system with flow injection sample introduction and electrogenerated chemiluminescence detection [J]. Anal. Chim. Acta, 2002, 456: 167-175.
    [81] W.D. Cao, J.B. Jia, X.R. Yang, S.J. Dong, E.K. Wang. Capillary electrophoresis with solid-state electrochemiluminescence detector [J]. Electrophoresis, 2002, 23: 3692-3698.
    [82] X. Wang, D.R. Bobbitt. In situ cell for electrochemically generated Ru(bpy)33+-based chemiluminescence detection in capillary electroph oresis [J]. Anal. Chim. Acta, 1999, 383 (3): 213-220.
    [83] H.Y. Wang, G.B. Xu, S.J. Dong. Electrochemiluminescence sensor using tris (2,2’-bipyridyl) ruthenium (II) immobilized in Eastman-AQ55D–silica composite thin-filmsAnal [J]. Chim. Acta, 2003, 480 (2): 285-290.
    [84] N. Egashira, H. Kumasako, T. Uda, K. Ohga. Fabrication of a Trimethylamine Gas Sensor Based on Electrochemiluminescence of Ru(bpy)32+ /Nafion Gel and Its Application to a Freshness Sensor for Seafood [J]. Electroanalysis, 2002, 14 (12): 871-873.
    [85] 刘继锋(J.F. Liu), 汪尔康(E.K. Wang). 毛细管电泳柱端电化学发光检测池 [P]. 中国发明专利 (CN01133351.0), 2002-04-03。
    [86] W.D. Cao, J.F. Liu, H.B. Qiu, X.R. Yang, E.K. Wang. Simultaneous determination of tramadol and lidocaine in urine by end-column capillary electrophoresis with electrochemiluminescence detection [J]. Electroanal., 2002, 14: 1571-1576.
    [87] M.T. Chiang, C.W. Whang. Tris (2,2’-bipyridyl) ruthenium (III)- based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis [J]. J. Chromatogr. A, 2001, 934 (1-2): 59-66.
    [88] M.T. Chiang, M.C. Lu, C.W. Whang. A simple and low-cost electrochemiluminescence detector for capillary electrophoresis [J]. Electrophoresis, 2003, 24: 3033-3039.
    [89] T.J. O'Shea, R.D. Greenhagen, S.M. Lunte, C.E. Lunte. Capillary electrophoresis with electrochemical detection employing an on-column Nafion joint [J]. J. Chromatogr. A, 1992, 593: 305-312.
    [90] X. Wang, D.R. Bobbitt. Electrochemically generated Ru(bpy)33+-based chemiluminescence detection in micellar electrokinetic chromatography [J]. Talanta, 2000, 53 (2): 337–345.
    [91] S. Hu, Z.L. Wang, P.B. Li, J.K. Cheng. Amperometric Detection in Capillary electrophoresis with an Etched Joint [J]. Anal. Chem., 1997, 69 (2):264-267.
    [92] S.F.Y. Li. Capillary electrophoresis, Principle Practice and Application [M]. Elsevier, Amsterdam, 1992, 33.
    [93] X.J. Huang, Z.L. Fang. Chemiluminescence detection in capillary electrophoresis [J]. Anal. Chim. Acta, 2000, 414 (1-2): 1-14.
    [94] J.F. Liu, X.R. Yang, E.K. Wang. Direct tris (2,2'-bipyridyl) ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis [J]. Electrophoresis, 2003, 24 (18): 3131-3138.
    [95] G.N. Chen, Y.W. Chi, X.P. Wu, J.P. Duan, N.B. Li. Chemical Oxidation of p-Hydroxyphenylpyruvic Acid in Aqueous Solution by Capillary electrophoresis with an Electrochemiluminescence Detection System[J]. Anal. Chem., 2003, 75 (23): 6602-6607.
    [96] W.D. Cao, X.Y. Chen, X.R. Yang, E.K. Wang. Discrete wavelets transform for signal denoising in capillaryelectrophoresis with electrochemiluminescence detection [J]. Electrophoresis, 2003, 24 (18): 3124-3130.
    [97] 冯芳. 药物分析 [M]. 北京: 化学工业出版社, 2003: 1.
    [98] 曾苏, 程翼宇. 药物分析学研究进展 [J]. 浙江大学学报(医学版), 2004, 33(1): 4-9.
    [99] 王芬. 电化学发光及其在药物分析中的应用 [D]. 陕西: 陕西师范大学, 2006.
    [100] S.D. Gilman, C.E. Silverman, A.E. Ewing. Electrogenerated chemiluminescence detection for capillary electrophoresis [J]. J. Microcolumn. Sep. 1994, 6 (2): 97-106.
    [101] J.F. Liu, J.L. Yan, X.R. Yang, E.K. Wang. Miniaturized Tris (2,2'-bipyridyl) ruthenium (II) Electrochemiluminescence Detection Cell for Capillary Electrophoresis and Flow Injection Analysis [J]. Anal. Chem., 2003, 75 (14): 3637-3642.
    [102] H.B. Qiu, J.L. Yan, X.H. Sun, J.F. Liu, W.D. Cao, X.R. Yang, E.K. Wang. Microchip Capillary Electrophoresis with an Integrated Indium Tin Oxide Electrode-Based Electrochemiluminescence Detector [J]. Anal. Chem., 2003, 75 (20): 5435-5440.
    [103] 薛静, 梁恒, 李甜, 武亚艳. 毛细管电泳-电致化学发光法测定人尿中脯氨酸和羟脯氨酸 [J]. 分析化学, 2005, 33 (6): 785-7880.
    [104] T. Li, J.P. Yuan, J.Y. Yin , Z.W. Zhang, E.K. Wang. Capillary electrophoresis with electrochemiluminescence detection for measurement of aspartate aminotransferase and alanine aminotransferase activities in biofluids [J]. J. Chromatogr. A, 2006, 1134 (1-2): 311-316.
    [105] J.G. Li, Q.Y. Yan, Y.L. Gao, H.X. Ju. Electrogenerated Chemiluminescence Detection of Amino Acids Based on Precolumn Derivatization Coupled with Capillary Electrophoresis Separation [J]. Anal. Chem., 2006, 78 (8): 2694-2699.
    [106] A. Arora, J.C.T. Eijkel, W.E. Morf, A. Manz. A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device [J]. Anal. Chem., 2001, 73 (14): 3282-3288.
    [107] K.T. Sukagoshi, N. Okuzon, R. Nakajima. Separation and determination of emetine dithiocarbamate metal complexes by capillary electrophoresis with chemiluminescence detection of the tris (2,2′-bipyridine)–ruthenium (II) complex [J]. J. Choromatogr. A, 2002, 958 (12): 283-289.
    [108] W.D. Cao, X.R. Yang, E.K. Wang. Determination of Reserpine in Urine by Capillary Electrophoresis with Electrochemiluminescence Detection [J]. Electroanal., 2004, 16: 169-174.
    [109] L.Y. Fang, X.B. Yin, X.H. Sun, E.K. Wang. Determination of disopyramide in human urine by capillary electrooresis with electrochemiluminescence detection of tris (2,2′-bipyridyl) ruthenium (II) [J]. Anal. Chim. Acta, 2005, 537: 25-30.
    [110] Y. Gao, Y.L. Tian, E.K. Wang. Simultaneous determination of two active ingredients in Flos daturae by capillary electrophoresis with electrochemiluminescence detection [J]. Anal. Chim. Acta, 2005, 545 (2): 137-141.
    [111] Y.H. Li, C.Y. Wang, J.Y. Sun, Y.C. Zhou, T.Y. You, E.K. Wang, Y.S. Fung. Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemiluminescence detection [J]. Anal. Chim. Acta, 2005, 550 (1-2): 40-46.
    [112] S.C. Liu, Y.J. Liu, J. Li, M.L. Guo, W. Pan, S.Z. Yao. Determination of mefenacet by capillary electrophoresis with electrochemiluminescence detection [J]. Talanta, 2006, 69 (1): 154-159.
    [113] S.N. Ding, J.J. Xu, W.J. Zhang, H.Y. Chen. Tris (2,2’-bipyridyl) ruthenium (Ⅱ)-Zirconia-Nafion composite modifiedelectrode applied as solid-stae electrochemiluminescence detector on electrophoretic microchip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin [J]. Talanta, 2006, 70: 572-577.
    [114] J.G. Li, F.J. Zhao, H.X. Ju. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection [J]. Anal.Chim.Acta, 2006, 575 (1): 57-61.
    [115] Y.H. Xu, Y. Gao, H. Wei, Y. Du, E.K. Wang. Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes [J]. J. Chromatogr. A, 2006, 1115 (1-2): 260-266.
    [116] Y.C. Hsieh, C.W. Whang. Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection [J]. J. Chromatogr. A, 2006, 1122 (1-2): 279-282.
    [117] W. Pan, Y.J. Liu, Y. Huang, S.Z. Yao. Determination of difenidol hydrochloride by capillary electrophoresis with electrochemiluminescence detection [J]. J.Chromatogr.B, 2006, 831 (1-2): 17-23.
    [118] Y. Gao, Y.L. Tian, X.H. Sun, X.B. Yin, X.B. Yin, Q. Xiang, G. Ma, E.K. Wang. Determination of ranitidine in urine by capillary electrophoresis-electrochemiluminescent detection [J]. J. Chromatogr. B, 2006, 832 (2): 236-240.
    [119] J.G. Li, F.J. Zhao, H.X. Ju. Simultaneous electrochemiluminescence determination of sulpiride and tiapride by capillary electrophoresis with cyclodextrin additives [J]. J. Chromatogr. B, 2006, 835 (1-2): 84-89.
    [120] J.P. Yuan, T. Li, X.B. Yin, L. Guo, X.Z. Jiang, W.R. Jin, X.R. Yang, E.K. Wang. Characterization of Prolidase Activity Using Capillary Electrophoresis with Tris (2,2'-bipyridyl) ruthenium (II) Electrochemiluminescence Detection and Application To Evaluate Collagen Degradation in Diabetes Mellitus [J]. Anal. Chem., 2006, 78 (9): 2934-2938.
    [121] B.Y. Deng, C.N. Su, Y.H. Kang. Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection [J]. Anal.Bioanal. Chem., 2006, 385 (7): 1336-1341.
    [122] M. Zhou, Y.J. Ma, X.N. Ren, X.Y. Zhou, L. Li, H. Chen. Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection [J]. Anal. Chim. Acta, 2007, 587 (1): 104-109.
    [123] J.P. Yuan, J.Y. Yin, E.K. Wang. Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection [J]. J. Chromatogr. A, 2007, 1154: 368-372.
    [124] Y. Huang, W. Pan, M.L. Guo, S.Z. Yao. Capillary electrophoresis with end-column electrochemiluminescence for the analysis of chloroquine phosphate and the study on its interaction with human serum albumin [J]. J. Chromatogr. A, 2007, 1154: 373-378.
    [125] 周兴旺, 吕鉴泉, 曾昭睿. 毛细管电泳-电致化学发光法测定阿替洛尔 [J]. 分析科学学报, 2007, 23 (1): 30-32.
    [126] J.W. Wang, Z.B. Peng, J. Yang, X.X. Wang, N.J. Yang. Detection of clindamycin by capillary electrophoresis with an end-column electrochemiluminescence of tris (2,2′-bypyridine)ruthenium(II) [J]. Talanta, 2008, doi:10.1016/j.talanta.2007.12.019.
    [127] Y.T. Chen, Z.Y. Lin, J.H. Chen, J.J. Sun, L. Zhang, G.N. Chen. New capillary electrophoresis–electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)32+/multi-wall-carbon-nanotube paste electrode [J]. J. Chromatogr. A, 2007, 1172: 84-91.
    [128] B.Y. Deng, Y.H. Kang, X.F. Li, Q.M. Xu. Determination of josamycin in rat plasma by capillary electrophoresis coupled with post-column electrochemiluminescence detection [J]. J. Chromatogr. B, 2007, 859: 125-130.
    [129] B.Y. Deng, Y.H. Kang, X.F. Li, Q.M. Xu. Determination of erythromycin in rat plasma with capillary electrophoresis–electrochemiluminescence detection of tris (2,2’-bipyridyl) ruthenium (II) [J]. J. Chromatogr. B, 2007, 857: 136-141.
    [130] J.S. Huang, J.Y. Sun, X.G. Zhou, T.Y. You. Determination of Atenolol and Metoprolol by Capillary Electrophoresis with Tris (2,2′-bipyridyl) ruthenium (II) Electrochemiluminescence Detection [J]. Anal. Sci., 2007, 23: 183-188.
    [131] L. Ming, H.L. Sang, Analysis of Monosaccharides by Capillary Electrophoresis with Electrochemiluminescence Detection [J]. Anal. Sci., 2007, 23: 1347-1349.
    [132] L.Y. Fang, X.B. Yin, E.K. Wang. Investigation of Induced Peak Phenomenon in Capillary Electrophoresis with Electrochemiluminescence Detection [J]. Anal. Lett., 2007, 40: 3457–3471.
    [133] J.G. Li, Y. Chun, H.X. Ju, Simultaneous Electrochemiluminescence Detection of Anisodamine, Atropine, and Scopolamine in Flos daturae by Capillary Electrophoresis Using β-Cyclodextrin as Additive [J]. Electroanal., 2007, 19 (15): 1569-1574.
    [134] M. Li, S.H. Lee, Determination of trimethylamine in fish by capillary electrophoresis with electrogenerated tris (2,2‘-bipyridyl)ruthenium(II) chemiluminescence detection [J]. Luminescence, 2007, 22 (6): 588-593.
    [135] J.Y. Yin, Y.H. Xu, J.Li, E.K. Wang. Analysis of quinolizidine alkaloids in Sophora flavescens Ait. by capillary electrophoresis with tris(2,2’-bipyridyl) ruthenium (II)-based electrochemiluminescence detection [J]. Talanta, 2008, 75: 38-42.
    [136] B.Y. Han, Y. Du., E.K. Wang. Simultaneous determination of pethidine and methadone by capillary electrophoresis with electrochemiluminescence detection of tris (2,2’-bipyridyl) ruthenium (II) [J]. Microchem. J., 2008, doi:10.1016/j.microc.2008.01.007.
    [137] X.M. Zhou, D. Xing, D.B. Zhu, Y.B. Tang, L. Jia. Development and application of a capillary electrophoresis–electrochemiluminescent method for the analysis of enrofloxacin and its metabolite ciprofloxacin in milk [J]. Talanta, 2008, doi:10.1016/j.talanta.2008.01.040.
    [138] H.Y. Chiu, Z.Y. Lin, H.L. Tu, C.W. Whang. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection [J]. J. Chromatogr. A, 2008, 117: 195-198.
    [139] 彭志兵, 杨佳, 张小军, 杨志明, 汪敬武. 盐酸去氯羟嗪和盐酸氯丙那林的毛细管电泳-电致化学发光法同时测定 [J]. 分析测试学报, 2008, 27: 34-37.
    [140] H.W. Sun, L.Q. Li, M. Su. Simultaneous Determination of Lidocaine, Proline and Lomefloxacin in Human Urine by CE with Electrochemiluminescence Detection [J]. Chromatographia, 2008, 67: 399–405.
    [1] J.W. Jorgenson, K.D.Lukacs. Zone electrophoresis in open-tubular glass capillaries [J]. Anal. Chem., 1981, 53: 1298-1302.
    [2] 储海虹, 吴莹, 狄俊伟, 屠一锋. 电化学发光淬灭法测定 SOD [J]. 分析测试学报, 2006, 25 (1): 125-126.
    [3] 马红燕, 郑行望, 章竹君. 流动注射电化学发光分析法测定左旋多巴的研究 [J]. 分析测试学报[J], 2005, 24 (4): 58-60.
    [4] 尹学博, 杨秀荣, 汪尔康. 毛细管电泳-电化学/电化学发光及其微芯片技术 [J]. 化学进展, 2005, 17 (2): 181-185.
    [5] B.Y.Deng, C.N. Su, Y.H. Kang. Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection [J]. Anal. Bioanal. Chem., 2006, 385: 1336- 1341.
    [6] 苏彩娜, 康艳辉, 邓必阳. 毛细管电泳-电致化学发光测定诺氟沙星的研究 [J]. 分析化学, 2006, 34: 135-137.
    [7] Y.H. Xu, Y. Gao, H.Wei, Y. Du, E.K. Wang. Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes [J]. J. Chromatogr. A, 2006, 1115: 260-266.
    [8] 王文玲, 陆红, 王彤, 侯芳, 李家泰. 甲磺酸培氟沙星 (Pefolxacin) 正常人药代动力学研究 [J]. 中国临床药理学杂志, 1990, 6 (4): 235-241.
    [9] J.M. Webberley, J.M. Andrews, J.P. Ashby, A. McLeod, R. Wise. Pharmacokinetics and tissue penetration of orally administered pefloxacin [J]. Eur. J. Clin. Microbiol., 1987, 6 (5): 521-524.
    [10] H. Hofbauer, K.G. Naber, M. Kinzig-schippers, F. S?rgel, C. Rustige-Wiedemann, B. Wiedemann, A. Reiz, M. Kresken. Urine bactericidal activity of pefloxacin versus norfloxacin in healthy female volunteers after a single 800-mg oral dose [J]. Infection, 1997, 25 (2): 121-126.
    [11] J.K. Malik, S. Rao, S. Ramesh, S. Muruganandan, H.C. Tripathi, D.C. Shukla. Pharmacokinetics of Pefloxacin in Goats after Intravenous or Oral Administration [J]. Vet. Res. Commun, 2002, 26: 141-149.
    [12] 李建晴, 冯小花, 双少敏, 晋卫军, 董川. 纸基质室温燐光法研究氧氟沙星体内药代动力学 [J]. 分析化学, 2001, 29 (8): 930-932.
    [1] 沈建平, 张银娣, 严汉英, 戴德哉, 陈小祥, 蒲军, 郑玉红, 陆伟, 杨平. 盐酸丁咯地尔的药效学研究 [J]. 中国微循环, 2000, 4 (4): 224-227.
    [2] P.T.T. Ha, I. Sluyts, S.V. Dyck, J. Zhang, R.A.H.J. Gilissen, J. Hoogmartens, A.V. Schepdael. Chiral capillary electrophoretic analysis of verapamil metabolism by cytochrome P450 3A4 [J]. J. Chromatogr. A, 2006, 1120: 94-101.
    [3] N.D. Giovanni, N. Fucci. Gas chromatographic-mass spectrometric analysis of buflomedil hydrochloride in biological samples after acute intoxication [J]. Forensic Sci. Int., 1991, 51: 125-129.
    [4] A. Marzo, C. Lucarelli. Gas chromatographic evaluation of buflomedil in biological samples employing the thermoionic specific detector [J]. J. Chromatogr., 1988, 427: 345-350.
    [5] I. Forfar-Bares, F. Pehourcq, C. Jarry. Rapid HPLC measurement of buflomedil in plasma in poisoning cases [J]. Biomed. Chromatogr., 2002, 16: 482-485.
    [6] R.J. Eastwood, R.K. Bhamra, D.W. Holt. High-performance liquid chromatographic method for the measurement of buflomedil in plasma and serum [J]. J. Chromatogr., 1990, 532: 187-192.
    [7] H.S. Shin, Y.S. Oh-Shin, H.J. Kim, Y.K. Kang. Sensitive assay for verapamil in plasma using gas-liquid chromatography with nitrogen-phosphorus detection [J]. J. Chromatogr. B, 1996, 677: 369-373.
    [8] N.C.C. Borges, G.D. Mendes, R.E. Barrientos-Astigarraga, P. Galvinas, C.H. Oliveira, G.D. Nucci. Verapamil quantification in human plasma by liquid chromatography coupled to tandem mass spectrometry: An application for bioequivalence study [J]. J. Chromatogr. B, 2005, 827: 165-172.
    [9] M. Hedeland, E. Fredriksson, H. Lennern?s, U. Bondesson. Simultaneous quantification of the enantiomers of verapamil and its N-demethylated metabolite in human plasma using liquid chromatography–tandem mass spectrometry [J]. J. Chromatogr. B, 2004, 804: 303-311.
    [10] D.P. Xu, S.P. Liu, Z.F. Liu, X.L. Hu. Determination of verapamil hydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering method coupled to flow injection system [J]. Anal. Chim. Acta, 2007, 588: 10-15.
    [11] J. Zhang, P.T.T. Ha, Y.J. Lou, J. Hoogmartens, A.V. Schepdael. Kinetic study of CYP3A4 activity on verapamil by capillary electrophoresis [J]. J. Pharmaceut. Biomed., 2005, 39: 612-617.
    [12] N.A.L. Mohamed, Y. Kuroda, A. Shibukawa, T. Nakagawa, S.E. Gizawy , H.F. Askal, M.E.E. Kommos. Enantioselective binding analysis of verapamil to plasma lipoproteins by capillary electrophoresis–frontal analysis [J]. J. Chromatogr. A, 2000, 875: 447-453.
    [13] Y. Kuroda, Y. Watanabe, A. Shibukawa, T. Nakagawa. Role of phospholipids in drug–LDL bindings as studied by high-performance frontal analysis/capillary electrophoresis [J]. J. Pharmaceut. Biomed., 2003, 30: 1869-1877.
    [14] J. Haginaka, N. Kanasugi. Separation of basic drug enantiomers by capillary zone electrophoresis using ovoglycoprotein as a chiral selector [J]. J. Chromatogr. A, 1997, 782: 281-288.
    [15] J.W. Jorgenson, K.D. Lukacs. Zone electrophoresis in open-tubular glass capillaries [J]. Anal. Chem., 1981, 53: 1298-1302.
    [16] B.Y. Deng, C.N. Su, Y.H. Kang. Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection [J]. Anal. Bioanal. Chem., 2006, 385: 1336-1341.
    [1] L. Zhang, R. Wang, Y.Q. Yu, Y.R. Zhang. Capillary Electrophoresis with laser-induced fluorescence and pre-column derivatization for the analysis of illicit drugs [J]. J. Chromatogr B, 2007, 857: 130–135.
    [2] F. Wei, M. Zhang, Y.Q. Feng. Combining poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction and on-line pre-concentration-capillary electrophoresis for analysis of ephedrine and pseudoephedrine in human plasma and urine [J]. J. Chromatogr. B, 2007, 850: 38–44.
    [3] G. Frison, L. Tedeschi, D. Favretto, A. Reheman, S.D. Ferrara. Gas chromatography/mass spectrometry determination of amphetamine-related drugs and ephedrines in plasma, urine and hair samples after derivatization with 2,2,2-trichloroethyl chloroformate [J]. Rapid Commun. Mass Spectrom., 2005; 19: 919–927.
    [4] 贺丰, 罗佳波, 陈飞龙, 余林中. 麻黄汤中麻黄碱、伪麻黄碱在人体药代动力学研究 [J]. 中药药理与临床, 2005, 21 (1): 1-3.
    [5] C. Csajka, C.A. Haller, N.L. Benowitz, D. Verotta. Mechanistic pharmacokinetic modelling of ephedrine, norephedrine and caffeine in healthy subjects [J]. Br. J. Clin. Pharmacol, 2005, 59 (3): 335–345.
    [6] D.C. Yaworsky, A.H.B. Wu, D.W. Hill. The use of plasma metanephrine to normetanephrine ratio to determine epinephrine poisoning [J]. Clin. Chim. Acta, 2005, 353: 31–44.
    [7] M.C. Roman. Determination of ephedra alkaloids in urine and plasma by HPLC-UV: collaborative study [J]. J. AOAC Int., 2004, 87 (1):15-24.
    [8] W.D. Cao, J.F. Liu, X.R. Yang, E.K. Wang. New technique for capillary electrophoresis directly coupledwith end-column electrochemiluminescence detection[J]. Electrophoresis, 2002, 23: 3683–3691.
    [9] Y.T. Chen, Z.Y. Lin, J.H. Chen, J.J. Sun, L. Zhang, G.N. Chen. New capillary electrophoresis–electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)32+/multi-wall-carbon-nanotube paste electrode [J]. J. Chromatogr. A, 2007, 1172: 84–91.
    [10] B.Y. Deng. C.N. Su, Y.H. Kang. Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection [J]. Anal. Bioanal. Chem., 2006, 385: 1336–1341.
    [11] Y.C. Hsieh, C.W. Whang. Short communication Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection [J]. J. Chromatogr. A, 2006, 1122: 279–282.
    [12] P.L. Chang, K.H Lee, C.C. Hu, H.T. Chang. CE with sequential light-emitting diodeinduced fluorescence and electrochemiluminescence detections for the determination of amino acids and alkaloids [J]. Electrophoresis, 2007, 28: 1092–1099.
    [13] Y.H. Xu, Y. Gao, H.Wei, Y. Du, E.K. Wang. Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes [J]. J. Chromatogr. A, 2006, 1115: 260–266.
    [14] J.B. Noffsinger, N.D. Danielson. Generation of Chemiluminescence upon Reaction of Aliphatic Amines with Tris (2,2’-bipyridine)ruthenium( I I I) [J]. Anal. Chem., 1987, 59: 865-868.
    [15] McMurry. J. Organic Chemistry, 5th ed [M]. Brooks/Cole: Pacific Grove, CA, 2000: Chapter 19: 753-774.
    [16] J.G. Li, Q.Y. Yan, Y.L. Gao, H.X. Ju. Electrogenerated Chemiluminescence Detection ofAmino Acids Based on Precolumn Derivatization Coupled with Capillary Electrophoresis Separation [J]. Anal. Chem., 2006, 78: 2694-2699.
    [17] F.E.O. Suliman, M.M. Al-Hinai, S.M.Z. Al-Kindy, S.B. Salama. Enhancement of the chemiluminescence of penicillamine and ephedrine after derivatization with aldehydes using tris (bipyridyl) ruthenium (II) peroxydisulfate system and its analytical application [J]. Talanta, 2008, 74: 1256–1264.
    [18] 曾昭琼. 有机化学(第三版, 下册) [M]. 北京: 高等教育出版社, 1993: 451.
    [19] H.F. Fang, M.M. Liu, Z.R. Zeng. Solid-phase microextraction coupled with capillary electrophoresis to determine ephedrine derivatives in water and urine using a sol–gel derived butyl methacrylate/silicone fiber [J]. Talanta, 2006, 68: 979–986.
    [20] K. Kudo, T. Ishida, K. Hara, S. Kashimura, A. Tsuji, N. Ikeda. Simultaneous determination of 13 amphetamine related drugs in human whole blood using an enhanced polymer column and gas chromatography–mass spectrometry [J]. J. Chromatogr. B, 2007, 855: 115–120.
    [21] F. Wei, M. Zhang, Y.Q. Feng. Combining poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction and on-line pre-concentration-capillary electrophoresis for analysis of ephedrine and pseudoephedrine in human plasma and urine [J]. J. Chromatogr. B, 2007, 850: 38-44.
    [22] M.R.S. Fuh, K.T. Lu. Determination of methylamphetamine and related compounds in human urine by high performance liquid chromatography: electrospray: mass spectrometry [J]. Talanta, 1999, 48: 415–423.
    [23] 柳仁民, 何风云. 电堆集富集非水毛细管电泳法测定麻黄碱 [J]. 分析实验室, 2003, 22: 38-40.
    [24] L. Zhou, X.M. Zhou, Z. Luo, W.P. Wang, N. Yan, Z.D. Hu, Incapillary derivatization and analysis of ephedrine and pseudoephedrine by micellar electrokinetic chromatography with laser-induced fluorescence detection [J], J. Chromatogr. A, 2008, doi:10.1016/j.chroma.2008.03.024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700