用户名: 密码: 验证码:
棉铃虫江浦和安阳种群对Cry1Ac和Cry2Ab抗性基因频率及抗性遗传方式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表达苏云金杆菌杀虫晶体蛋白的转基因Bt作物在全球范围推广种植,有效控制了重要作物上靶标害虫的为害,同时减少了化学杀虫剂的使用。Bt棉花自1997年开始在我国种植,目前Bt棉花种植面积已经占我国棉花总种植面积70%左右,Bt棉花的大范围推广,有效地抑制了棉花及其他寄主作物上棉铃虫的种群密度。鉴于在其他国家已经有田间害虫对Bt作物产生抗性进化的先例及在我国北方棉区部分田间种群对CrylAc敏感性下降的报道,棉铃虫对Bt棉花的抗性进化一直是Bt棉花持续应用的最大威胁。
     目前,主要依据对害虫室内Bt抗性品系的研究结果来制定相应的抗性检测方法和治理措施,高剂量/庇护所和基因叠加是现行的两种主要抗性治理策略。靶标害虫自然种群Bt抗性的进化过程比室内筛选品系复杂,因此,基于对田间种群抗性基因的检测鉴定及其抗性遗传方式的研究对建立更加合理的抗性监测和治理策略具有重要意义。为此,通过F1检测技术对来自长江流域和黄河流域的两个棉铃虫田间种群进行了抗性基因检测,鉴定到大量与室内抗性品系不同的抗性基因,发现了田间种群钙粘蛋白抗性等位基因的多样性。通过建立不同的田间抗性等位基因纯合品系进行抗性遗传互补研究,发现田间种群至少存在2种不同的抗性机制。Cry2Ab是基因叠加转基因棉花的一种重要候选基因,通过对河南安阳棉铃虫田间种群室内筛选获得了Cry2Ab抗性品系,并对其抗性风险进行了评估。本文的研究结果对于我国棉铃虫对Bt棉花抗性的监测和治理具有重要指导意义。
     1.棉铃虫江苏江浦种群钙粘蛋白基因突变的多样性
     通过F1检测对2008年江苏江浦棉铃虫田间种群进行了与CrylAc抗性相关的钙粘蛋白突变基因频率估算及鉴定。在本试验中,成功检测了123个采集自江苏江浦的田间棉铃虫与室内抗性品系SCD-rl(r1纯合子)杂交单对系的F1后代。在六个候选单对系中,共鉴定到5种不同的钙粘蛋白(Ha_BtR)突变等位基因(r4-r8)。在5个抗性基因中,由于在基因组DNA中发生碱基替换或插入突变而导致基因发生突变。在另外两个候选单对系中,检测到完整的钙粘蛋白等位基因,推测在两个单对系的田间亲本个体上,可能携带由于氨基酸点突变而导致钙粘蛋白受体功能丧失的抗性基因,或者携带其它位点的抗性基因。通过计算,2008年江苏江浦种群钙粘蛋白突变基因频率为0.024(0.010-0.055)。结合之前在棉铃虫中已经发现3个钙粘蛋白突变等位基因(r1、r2和r3)与Cry1Ac抗性相关,目前已经在我国3个棉铃虫田间种群中发现8个不同的钙粘蛋白突变基因,田间突变基因的多样性将严重影响DNA分子检测技术的有效性,F1检测技术用于棉铃虫田间种群的抗性基因检测将更加切实有效。
     2.棉铃虫河南安阳种群抗性基因频率检测及钙粘蛋白基因突变鉴定
     通过Fl检测对2009年河南安阳棉铃虫田间种群进行了与Cry1Ac抗性相关基因的频率估算及鉴定。在成功检测到的215个单对系中,发现34个候选单对的田间个体可能携带抗性基因,该地区田间棉铃虫种群对Cry1Ac的抗性基因频率为0.091(0.066-0.123)。在候选的阳性单对中,鉴定到胞内区缺失突变与可变剪接两种新型的钙粘蛋白突变基因,进一步丰富了田间钙粘蛋白基因突变的多样性。同时检测到大量正常翻译的钙粘蛋白等位基因,这些基因可能存在氨基酸替换引起的抗性突变。
     通过检测阳性单对系F1存活幼虫与室内敏感品系杂交后代,进行田间抗性基因显隐性鉴定,发现86%的田间个体携带隐性抗性基因,其余14%的个体携带非隐性抗性基因。尽管在田间种群中检测到大量个体携带隐性抗性基因,但通过间接和直接法预测田间存活个体的基因型,发现至少携带一个非隐性抗性基因的个体分别占80%和49%。在田间种群的抗性进化中,非隐性抗性基因在决定田间抗性个体频率中的贡献高于隐性抗性基因,因此研究和开发针对非隐性抗性基因的监测技术和抗性治理策略将更加重要和迫切。
     3.F1筛选获取的棉铃虫CrylAc抗性等位基因的遗传方式及遗传互补
     建立了5个不同的田间抗性等位基因纯合品系Jp14, An1, An29, An357, An156并进行了抗性分析。生物测定显示,与敏感品系SCD相比,5个抗性品系对Cry1Ac活化毒素分别具有128,215,41,881,121倍的抗性,对Cry2Ab毒素无交互抗性。通过与敏感品系的正反交和回交分析表明,Jp14为不完全隐性抗性,An1, An29, An357, An156为不完全显性抗性,5个品系均为常染色体,单基因遗传。通过与室内抗性生品系SCD-rl杂交进行遗传互补分析发现,Jp14, Anl, An29, An357品系中的抗性基因和SCD-r1品系的抗性基因均存在遗传互补作用,进一步验证了F1检测技术的有效性。An156品系可能为其它位点导致的不完全显性抗性。本研究表明:(1)F1筛选可以同时检测到隐性抗性等位基因和非隐性抗性等位基因;(2)棉铃虫钙粘蛋白抗性基因突变的多样性可以导致抗性水平和抗性遗传方式的多样性;(3)在选用抗性监测方法和设计抗性治理策略时,应充分考虑到棉铃虫田间种群中存在的非隐性抗性等位基因。
     4.棉铃虫Cry2Ab抗性品系的交互抗性及抗性遗传方式
     通过对2009年采自河南安阳的棉铃虫田间种群在室内用Cry2Ab4毒素进行连续筛选,获得了对Cry2Ab4具有高水平抗性的An2Ab品系。An2Ab抗性品系在筛选至第11代时与起始种群An相比,对Cry2Ab4具有262倍的抗性,同时对Cry1Ac活化毒素具有37倍的交互抗性。抗性遗传研究发现,在第11代时,An2Ab品系对Cry2Ab和Cry1Ac毒素同为不完全显性、常染色体遗传,对两种毒素的抗性都为多基因控制。继续用Cry2Ab4筛选的An2Ab品系在第20代时对Cry2Ab抗性升至636倍,同时对Cry1Ac活化毒素具有60倍的交互抗性。这是首次在棉铃虫中发现Cry2Ab抗性品系具有对Cry1Ac的交互抗性。尽管该品系是否可以在表达Cry1Ac和Cry2Ab的双价Bt棉花上存活需要进一步研究,我国棉铃虫具有同时对Cry1Ac和Cry2Ab产生抗性的潜力提示我们在选择应用表达Cry2Ab毒素转基因Bt棉花时应持谨慎态度。
Transgenic crops producing insecticidal protein toxins from Bacillus thuringiensis (Bt) have been adopted worldwide. Planting of Bt crops have provided effective control of target pests, and also reduced the use of chemical insecticides. Bt cotton expressing Cry1Ac protein has been adopted in China since1997, now it accounts for nearly70%of all cotton. The large-scale planting of Bt cotton has been very successful so far not only in controlling Helicoverpa armigera on Bt cotton designed to resist this pest but also in reducing its population density on other host crops. Some pest populations have evolved resistance to Bt crops in the field, and decreased susceptibilty to Cry1Ac in field populations of H. armigera from northern China was associated with intensive Bt cotton planting. The evolution of resistance in field populations of H. armigera to Bt cotton is a major threat to the continued efficacy of Bt cotton in China.
     "High dose/refuge" and "pyramiding" are two major resistance management strategies designed for delaying insect resistance development to Bt crops. These two strategies are mainly based on knowledge of Bt resistance from the laboratory-selected strains with resistance to Bt. However, resistance evolution to Bt crops is much more complex in field populations than in laboratory-selected strains. It will be rational to develop resistance detection tactics and resistance management strategies according to resistance nature of field-derived resistant populations. In order to gain a timely understanding of the evolution of resistance of H. armigera to Cry1Ac after continuous cultivation of Bt cotton, we detected resistance alleles to Cry1Ac in two field populations of H. armigera collected respectively from Yellow River Region and Yangtze River Region by using a single pair mating technique (or F1screen). Diverse cadherin alleles conferring Cry1Ac resistance were identified from these two field populations. Two different resistance alleles were detected from five Cry1Ac-resistant strains isolated from field populations. Cry2Ab is an important candidate Bt toxin gene pyramided with CrylAc in the second generation Bt cotton. A Cry2Ab-resistant strain of H. armigera was selected in the laboratory, and cross resistance pattern and inheritance mode of this resistant strain was evaluated. The results from the present study will have a great significance in designing resistance monitoring and management tactics for Bt cotton in China.
     1. Diverse cadherin mutations conferring resistance to CrylAc in a field population of H. armigera from Jiangpu of Jiangsu Province
     Previous results revealed3null alleles (r1-r3) of a cadherin gene (Ha_BtR) conferring CrylAc resistance in H. armigera. An F1screen of123single pair families was conducted between a Cry1Ac-resistant strain (the SCD-rl strain, homozygous for the r1allele of Ha_BtR) and field-derived insects from Jiangpu population (Jiangsu province, China) in2008. Five new null alleles of Ha_BtR (r4-r8) were identified in six candidate single-pair families. These null alleles were created through either an insertion or a point mutation. Interestingly, intact alleles of Ha_BtR were found in two field-derived insects from another two candidate single-pair families. It suggests that these two field-derived insects may carry novel resistance alleles of Ha_BtR, with missense mutations resulting in a non-functional cadherin protein, or a major dominant mutation at a locus other than cadherin. The resistance allele frequency of Ha_BtR was detected at an appreciable level (0.024) in the Jiangpu population of H. armigera in2008. Together with previous findings, a total of eight different resistance alleles of Ha_BtR were identified from three Chinese strains ofH. armigera. Mutational diversity of Ha_BtR could impair DNA screening for Bt resistance allele frequency in the field, and an F1screen should be used routinely for monitoring cadherin-based resistance allele frequencies in H. armigera.
     2. Detection of resistance allele frequency and identification of cadherin mutations in a field population of H. armigera from Anyang of Henan Province
     Using an F1screen method, we detected the frequency of alleles conferring resistance to the CrylAc in Anyang population of H. armigera in2009. The field parents of34single-pair families may carry resistance alleles in the215single-pair families tested, and the resistance allele frequency was estimated to be0.091. Two new types of mutational modes of cadherin were detected, namely deletion at the cytoplasmic domain and mis-splicing of cadherin. However, intact alleles of cadherin were present in field-derived insects from most of the candidate single-pair families. It suggests that cadherin can confer resistance to Cry1Ac through amino acid substitutions in cadherin of H. armigera.
     Among the29lines generated by crossing survivors from the F1screen with the susceptible SCD strain, bioassay results at the diagnostic concentration of CrylAc showed that for Anyang population,86%of the resistance alleles were recessive cadherin alleles and14%were non-recessive alleles at any locus. Using two methods to estimate genotype frequencies,49to80%of resistant individuals had at least one non-recessive resistance allele. The results here suggest that non-recessive alleles make much more contribution to the resistant individual frequency in Anyang population than the recessive cadherin alleles. Adaptive resistance management strategies are urgently needed to cope with non-recessive resistance alleles in field-selected populations of H. armigera.
     3. Inheritance modes and complementation tests with cadherin locus of CrylAc-resistant alleles of H. armigera derived from Fi screens
     Five Cryl Ac-resistant strains of H. armigera were established from part of positive single-families of F1screens. The resistance strains Jp14, Anl, An29, An357and An156had128-,215-,41-,881-and121-fold resistance to CrylAc compared respectively to the susceptible SCD strain. All the five strains showed no cross-resistance to Cry2Ab. Through reciprocal crosses between resistant strains and SCD, we found that CrylAc resistance in all five strains was autosomal and controlled by a single locus. CrylAc resistance in Anl, An29, An357and An156was non-recessive, but CrylAc resistance in Jp14was recessive. Genetic complementation tests showed that CrylAc resistance in Jpl4, Anl, An29and An357was cadherin-based, and CrylAc resistance in An156was not cadherin-based. From these results, we concluded:(1) F1screen can detect both recessive resistance alleles and non-recessive resistance alleles in H. armigera;(2) Diverse mutations of cadherin may confer different levels of magnitude and dominance of CrylAc resistance;(3) More efforts are recommended to detect, characterize and design strategies to counter non-recessive resistance alleles of H. armigrea to Bt cotton.
     4. Cross resistance and genetics of Cry2Ab resistance in a laboratory-selected strain of H. armigera
     Laboratory selection with Cry2Ab against a field population from Anyang produced high levels of resistance to Cry2Ab in An2Ab strain of H. armigera. When An2Ab was selected at the11th generation (G11), it developed262-fold resistance to Cry2Ab and37-fold cross-resistance to Cry1Ac compared to the susceptible progenitor strain (An). Reciprocal crosses between the An and An2Ab at G11showed that resistance to Cry1Ac and Cry2Ab in the An2Ab strain was partially dominant. Backcrossing between the F1progeny and An showed that resistance to Cry2Ab and Cry1Ac in the An2Ab strain was controlled by more than one genes. Resistance to Cry2Ab increased to636-fold at the20th generation (G20) of selection, and cross resistance to Cry1Ac also elevated to60-fold compared to An. This is the first report that Cry2Ab-resistant strain of H. armigera has cross-resistance to Cry1Ac. Although we have not determined if An2Ab strain can survive on the Bt cotton expressing both CrylAc and Cry2Ab toxins, cross resistance potential between Cry2Ab and CrylAc reminds us we should use dual-Bt cotton (Cry2Ab+CrylAc) cautiously as a resistance management tactic in China.
引文
[1]郭予元.棉铃虫的研究[M].北京:中国农业出版社,1998
    [2]沈晋良,吴益东.棉铃虫抗药性及其治理[M].北京:中国农业出版社,1995
    [3]孙耘芹.害虫的抗药性Ⅱ侦测棉铃虫抗药性的方法[J].昆虫知识,1982,19(2):46-47
    [4]谭维嘉等.寄主植物对棉铃虫生理代谢的影响[J].植物保护学报,1993,(20):147-154
    [5]吴孔明.我国棉铃虫迁飞研究进展[J].植物保护研究进展,1995,408-413
    [6]喻子牛.苏云金杆菌[M].北京:科学出版社,1990
    [7]张孝羲.棉铃虫种群猖獗的剖析[J].昆虫知识,1996,(3):121-124
    [8]Abdul-Rauf M, Ellar DJ. Mutations of loop 2 and loop 3 residues in domain Ⅱ of Bacillus thuringiensis CrylC delta-endotoxin affect insecticidal specificity and initial binding to Spodoptera littoralis and Aedes aegypti midgut membranes[J]. Current Microbiology,1999,39(2): 94-98.
    [9]Abelson PH. A third technological revolution[J]. Science,1998,279(5359):2019.
    [10]Akhurst RJ, James W, Bird LJ, et al. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae)[J]. Journal of Economic Entomology,2003,96(4):1290-1299.
    [11]Alocock B, Twine, PH. The cost of Heliothis in Queensland crops[C]. The Workshop on Biological Control of Heliothis.Queensland,1980:23-25.
    [12]Alstad DN, Andow DA. Managing the evolution of insect resistance to transgenic plants[J]. Science,1995,268(5219):1894-1896.
    [13]Andow DA, Alstad DN. F(2) screen for rare resistance alleles[J]. Journal of Economic Entomology,1998,91(3):572-578.
    [14]Angst BD, Marcozzi C, Magee AI. The cadherin superfamily:diversity in form and function[J]. Journal of Cell Science,2001,114(Pt 4):629-641.
    [15]Arenas I, Bravo A, Soberon M, et al. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis CrylAb toxin[J]. The Journal of Biological Chemistry,2010,285(17):12497-12503.
    [16]Bai C,Yi S-X, Degheele D. Determination of protease activity in regurgitated gut juice from larvae of Pieris brassicae, Mamestra brassicae, Spodoptera littoralis [C]. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 1990 Vol.55 No.2b pp.519-525
    [17]Bates SL, Zhao JZ, Roush RT, et al. Insect resistance management in GM crops:past, present and future[J]. Nature Biotechnology,2005,23(1):57-62.
    [18]Baxter SW, Badenes-Perez FR, Morrison A, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera[J]. Genetics,2011,189(2):675-679.
    [19]Boonserm P, Davis P, Ellar DJ, et al. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications[J]. Journal of Molecular Biology,2005,348(2):363-382.
    [20]Bravo A, Likitvivatanavong S, Gill SS, et al. Bacillus thuringiensis:A story of a successful bioinsecticide[J]? Insect Biochemistry and Molecular Biology,2011,41(7):423-431.
    [21]Bravo A, Soberon M. How to cope with insect resistance to Bt toxins?[J]. Trends in Biotechnology,2008,26(10):573-579.
    [22]Burd AD, Gould F, Bradley JR, et al. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera:Noctuidae) in eastern North Carolina[J]. Journal of Economic Entomology,2003,96(1):137-142.
    [23]Carriere Y, Crowder DW, Tabashnik BE. Evolutionary ecology of insect adaptation to Bt crops[J]. Evolutionary Applications,2010,3(5-6):561-573.
    [24]Carroll J, Li J, Ellar DJ. Proteolytic processing of a coleopteran-specific delta-endotoxin produced by Bacillus thuringiensis var. tenebrionis[J]. Biochemical Journal,1989,261(1):99-105.
    [25]Chen J, Hua G, Jurat-Fuentes JL, et al. Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(35):13901-13906.
    [26]Crava CM, Bel Y, Lee SF, et al. Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hubner) and Bombyx mori (L.):sequences, mapping and expression[J]. Insect Biochemistry and Molecular Biology,2010,40(7):506-515.
    [27]Crickmore N, Zeigler D R, Schnepf E,et al. Bacillus thuringiensis toxin nomenclature.2010. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/
    [28]Crickmore N, Zeigler DR, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews,1998,62(3):807-813.
    [29]de Maagd RA, Bakker PL, Masson L, et al. Domain Ⅲ of the Bacillus thuringiensis delta-endotoxin CrylAc is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N[J]. Molecular Microbiology,1999,31(2):463-471.
    [30]de Maagd RA, Bosch D, Stiekema W. Bacillus thuringiensis toxin-mediated insect resistance in plants[J]. Trends in Plant Science,1999,4(1):9-13.
    [31]de Maagd RA, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world[J]. Trends in Genetics,2001,17(4):193-199.
    [32]de Maagd RA, Weemen-Hendriks M, Stiekema W, et al. Bacillus thuringiensis delta-endotoxin CrylC domain Ⅲ can function as a specificity determinant for Spodoptera exigua in different, but not all, Cryl-CrylC hybrids[J]. Applied and Environmental Microbiology,2000,66(4): 1559-1563.
    [33]Dhurua S, Gujar GT. Field-evolved resistance to Bt toxin CrylAc in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera:Gelechiidae), from India[J]. Pest Management Science,2011,67(8):898-903.
    [34]Doebley J. Molecular evidence for gene flow among Zea species[J]. Bioscience, Biotechnology, and Biochemistry,1990,40(4):44-48.
    [35]Donovan WP, Tan Y, Slaney AC. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein[J]. Applied and Environmental Microbiology,1997,63(6):2311-2317.
    [36]Dorsch JA, Candas M, Griko NB, et al. CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta:involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis[J]. Insect Biochemistry and Molecular Biology,2002,32(9):1025-1036.
    [37]Dove A. Bt resistance plan appraised[J]. Nature Biotechnology,1999,17(6):531-532.
    [38]Downes S, Mahon R, Olsen K. Monitoring and adaptive resistance management in Australia for Bt-cotton:current status and future challenges[J]. Journal of Invertebrate Pathology,2007,95(3): 208-213.
    [39]Downes S, Parker T, Mahon R. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton[J]. PLoS One,2010,5(9):e12567.
    [40]Estruch JJ, Warren GW, Mullins MA, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(11): 5389-5394.
    [41]Faria CA, Wackers FL, Pritchard J, et al. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of Lepidopteran pests[J]. PLoS One,2007,2(7).
    [42]Fernandez LE, Aimanova KG, Gill SS, et al. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae[J]. Biochemical Journal,2006,394(Pt 1):77-84.
    [43]Ferre J, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis[J]. Annual review of entomology,2002,47501-533.
    [44]Fischhoff DA, Bowdish KS, Perlak FJ, et al. Insect tolerant transgenic tomato plants[J]. Bio-Technology,1987,5(8):807-813.
    [45]Fitt GP. The ecology of Heliothis species in relation to agroecosystems[J]. Annual review of entomology,1989,34(1):15-72.
    [46]Forcada C, Alcacer E, Garcera MD, et al. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins[J]. Archives of Insect Biochemistry and Physiology,1996,31(3):257-272.
    [47]Gahan LJ, Gould F, Heckel DG. Identification of a gene associated with Bt resistance in Heliothis virescens[J]. Science,2001,293(5531):857-860.
    [48]Gahan LJ, Gould F, Lopez JD, Jr., et al. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin[J]. Journal of Economic Entomology,2007,100(1):187-194.
    [49]Gahan LJ, Ma YT, Coble ML, et al. Genetic basis of resistance to CrylAc and Cry2Aa in Heliothis virescens (Lepidoptera:Noctuidae)[J]. Journal of Economic Entomology,2005,98(4): 1357-1368.
    [50]Gahan LJ, Pauchet Y, Vogel H, et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis CrylAc toxin[J]. PLoS Genetics,2010,6(12):e1001248.
    [51]Galitsky N, Cody V, Wojtczak A, et al. Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis[J]. Acta Crystallographica Section D,2001,57(Pt 8): 1101-1109.
    [52]Gassmann AJ, Carriere Y, Tabashnik BE. Fitness costs of insect resistance to Bacillus thuringiensis[J]. Annual review of entomology,2009,54147-163.
    [53]Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, et al. Field-evolved resistance to Bt maize by western corn rootworm[J]. PLoS One,2011,6(7):e22629.
    [54]Gatehouse JA. Biotechnological prospects for engineering insect-resistant plants[J]. Plant Physiology,2008,146(3):881-887.
    [55]Gazit E, Bach D, Kerr ID, et al. The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modelling[J]. Biochemical Journal,1994,304 (Pt 3)895-902.
    [56]Gazit E, La Rocca P, Sansom MSP, et al. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12289-12294.
    [57]Gerber D, Shai Y. Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide[J]. The Journal of Biological Chemistry,2000,275(31):23602-23607.
    [58]Gill M, Ellar D. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin CrylAcl[J]. Insect Molecular Biology,2002,11(6):619-625.
    [59]Girard F, Vachon V, Prefontaine G, et al. Helix alpha 4 of the Bacillus thuringiensis Cry1Aa toxin plays a critical role in the postbinding steps of pore formation[J]. Applied and Environmental Microbiology,2009,75(2):359-365.
    [60]Girard F, Vachon V, Prefontaine G, et al. Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin CrylAa[J]. Applied and Environmental Microbiology,2008,74(9):2565-2572.
    [61]Gohar M, Faegri K, Perchat S, et al. The PlcR virulence regulon of Bacillus cereus[J]. PLoS One,2008,3(7):e2793.
    [62]Gomez I, Arenas I, Benitez I, et al. Specific epitopes of domains II and III of Bacillus thuringiensis CrylAb toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta[J]. The Journal of Biological Chemistry,2006,281(45):34032-34039.
    [63]Gomez I, Miranda-Rios J, Rudino-Pinera E, et al. Hydropathic complementarity determines interaction of epitope (869)HITDTNNK(876) in Manduca sexta Bt-R(1) receptor with loop 2 of domain II of Bacillus thuringiensis CrylA toxins[J]. The Journal of Biological Chemistry,2002,277(33):30137-30143.
    [64]Gomez I, Sanchez J, Miranda R, et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis CrylAb toxin[J]. Febs Letters,2002,513(2-3):242-246.
    [65]Gould F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology[J]. Annual Review of Entomology,1998,43701-726.
    [66]Gould F, Anderson A, Jones A, et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(8):3519-3523.
    [67]Gould F, Martinez-Ramirez A, Anderson A, et al. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens[J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(17):7986-7990.
    [68]Griffitts JS, Haslam SM, Yang T, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin[J]. Science,2005,307(5711):922-925.
    [69]Grochulski P, Masson L, Borisova S, et al. Bacillus thuringiensis CrylA(a) insecticidal toxin: crystal structure and channel formation[J]. Journal of Molecular Biology,1995,254(3):447-464.
    [70]Guo S, Ye S, Liu Y, et al. Crystal structure of Bacillus thuringiensis Cry8Eal:An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela[J]. Journal of Structural Biology,2009,168(2):259-266.
    [71]Haider MZ, Knowles BH, Ellar DJ. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases[J]. European Journal of Biochemistry,1986,156(3):531-540.
    [72]Heckel DG, Gahan LJ, Baxter SW, et al. The diversity of Bt resistance genes in species of Lepidoptera[J]. Journal of Invertebrate Pathology,2007,95(3):192-197.
    [73]Hernandez-Rodriguez CS, Van Vliet A, Bautsoens N, et al. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species[J]. Applied and Environmental Microbiology,2008,74(24):7654-7659.
    [74]Hilder VA, Gatehouse AMR, Sheerman SE, et al. A novel mechanism of insect resistance engineered into tobacco[J]. Nature,1987,330(6144):160-163.
    [75]Hofmann C, Vanderbruggen H, Hofte H, et al. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts[J]. Proceedings of the National Academy of Sciences of the United States of America,1988,85(21):7844-7848.
    [76]Hofte H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiology Reviews,1989,53(2):242-255.
    [77]Hua G, Jurat-Fuentes JL, Adang MJ. Fluorescent-based assays establish Manduca sexta Bt-R(la) cadherin as a receptor for multiple Bacillus thuringiensis CrylA toxins in Drosophila S2 cells[J]. Insect Biochemistry and Molecular Biology,2004,34(3):193-202.
    [78]Hua G, Jurat-Fuentes JL, Adang MJ. Bt-Rla extracellular cadherin repeat 12 mediates Bacillus thuringiensis CrylAb binding and cytotoxicity[J]. The Journal of Biological Chemistry,2004,279(27):28051-28056.
    [79]Huang F, Buschman LL, Higgins RA, et al. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer[J]. Science,1999,284(5416):965-967.
    [80]Ibrahim MA, Griko N, Junker M, et al. Bacillus thuringiensis:a genomics and proteomics perspective[J]. Bioengineered Bugs,2010,1(1):31-50.
    [81]James, C. Global Status of Commercialized Biotech/GM Crops:2008. ISAAA Brief No.39, ISAAA, Ithaca, NY.2008
    [82]James C. Global Status of Commercialized Biotech/GM Crops:2010. ISAAA Brief No.37. ISAAA:Ithaca, NY,2010
    [83]Janmaat AF, Myers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni[J]. Proceedings of the Royal Society,2003,270(1530):2263-2270.
    [84]Jenkins JL, Lee MK, Valaitis AP, et al. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor[J]. The Journal of Biological Chemistry,2000,275(19):14423-14431.
    [85]Johnson DE, McGaughey WH. Contribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards indianmeal moth larvae[J]. Current Microbiology,1996,33(l): 54-59.
    [86]Jurat-Fuentes JL, Adang MJ. Characterization of a CrylAc-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae[J]. European Journal of Biochemistry,2004,271(15):3127-3135.
    [87]Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae[J]. Journal of Invertebrate Pathology,2006,92(3):166-171.
    [88]Jurat-Fuentes JL, Adang MJ. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis CrylA but not CrylFa toxins[J]. Biochemistry,2006,45(32):9688-9695.
    [89]Jurat-Fuentes JL, Gahan LJ, Gould FL, et al. The HevCaLP protein mediates binding specificity of the CrylA class of Bacillus thuringiensis toxins in Heliothis virescens[J]. Biochemistry,2004,43(44):14299-14305.
    [90]Jurat-Fuentes JL, Gould FL, Adang MJ. Dual resistance to Bacillus thuringiensis CrylAc and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance[J]. Applied and Environmental Microbiology,2003,69(10):5898-5906.
    [91]Jurat-Fuentes JL, Karumbaiah L, Jakka SR, et al. Reduced levels of membrane-bound alkaline phosphatase are common to Lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis[J]. PLoS One,2011,6(3):e17606.
    [92]Jurat-Fuentes, J. L., A. P. Valaitis and M. J. Adang. Characterization of the cadherin protein from Lymantria dispar as CrylA toxin receptor [C] 38th Annual Meeting of the Society for Invertebrate Pathology.2005. Abstract.17
    [93]Kaur S. Molecular approaches towards development of novel Bacillus thuringiensis biopesticides[J]. World Journal of Microbiology & Biotechnology,2000,16(8-9):781-793.
    [94]King, A.B.S. Heliothis/Helicoverpa (Lepidoptera:Noctuidae) [M]. Matthews, G.A., Tunstall, J.P. (Eds.), Insect Pests of Cotton. CAB International, UK,1994:39-106
    [95]Knight PJ, Crickmore N, Ellar DJ. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the Lepidopteran Manduca sexta is aminopeptidase N[J]. Molecular Microbiology,1994,11(3):429-436.
    [96]Koziel MG, Beland GL, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis[J]. Bio-Technology,1993,11(2):194-200.
    [97]Kranthi KR, Dhawad CS, Naidu SR, et al. Inheritance of resistance in Indian Helicoverpa armigera (Hubner) to CrylAc toxin of Bacillus thuringiensis[J]. Crop Protection,2006,25(2): 119-124.
    [98]Kumar NS, Venkateswerlu G. Intracellular proteases in sporulated Bacillus thuringiensis subsp. kurstaki and their role in protoxin activation[J], FEMS Microbiology Letters,1998,166(2): 377-382.
    [99]Lawo NC, Wackers FL, Romeis J. Indian Bt cotton varieties do not affect the performance of cotton aphids[J]. PLoS One,2009,4(3):e4804.
    [100]Lee MK, Jenkins JL, You TH, et al. Mutations at the arginine residues in alpha 8 loop of Bacillus thuringiensis delta-endotoxin CrylAc affect toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N[J]. Febs Letters,2001,497(2-3):108-112.
    [101]Lee MK, Rajamohan F, Gould F, et al. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration[J]. Applied and Environmental Microbiology,1995,61(11):3836-3842.
    [102]Lee MK, Young BA, Dean DH. Domain Ⅲ exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors[J]. Biochemical and Biophysical Research Communications,1995,216(1):306-312.
    [103]LeOra Software. Polo Plus, a user's guide to probit and logit analysis.2002
    [104]Li H, Oppert B, Higgins RA, et al. Characterization of cDNAs encoding three trypsin-like proteinases and mRNA quantitative analysis in Bt-resistant and -susceptible strains of Ostrinia Biochemical Society Transactions,2001,29(Pt 4):571-577.
    [106]Li JD, Carroll J, Ellar DJ. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution[J]. Nature,1991,353(6347):815-821.
    [107]Liang YZ, Patel SS, Dean DH. Irreversible binding kinetics of Bacillus thuringiensis CrylAa Delta-endotoxins to gpsy moth brush border membrane vesicles is directly correlated to toxicity[J]. Journal of Biological Chemistry,1995,270(42):24719-24724.
    [108]Likitvivatanavong S, Katzenmeier G., Angsuthanasombat C. Asn(183) in alpha 5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin[J]. Archives of Biochemistry and Biophysics,2006,445(1):46-55.
    [109]Liu F, Xu Z, Chang J, et al. Resistance allele frequency to Bt cotton in field populations of Helicoverpa armigera (Lepidoptera:Noctuidae) in China[J]. Journal of Economic Entomology,2008,101(3):933-943.
    [110]Liu F, Xu Z, Zhu YC, et al. Evidence of field-evolved resistance to Cry1Ac-expressing Bt cotton in Helicoverpa armigera (Lepidoptera:Noctuidae) in northern China[J]. Pest Management Science,2010,66(2):155-161.
    [111]Liu Y, Tabashnik BE. Inheritance of resistance to the Bacillus thuringiensis toxin CrylC in the diamondback moth[J]. Applied and Environmental Microbiology,1997,63(6):2218-2223.
    [112]Liu YB, Tabashnik BE, Moar WJ, et al. Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella)[J]. Applied and Environmental Microbiology,1998,64(4):1385-1389.
    [113]Lu YH, Wu KM, Jiang YY, et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science,2010,328(5982):1151-1154.
    [114]Luo S, Wu K, Tian Y, et al. Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera:Noctuidae) to Cry2Ab[J]. Journal of Economic Entomology,2007,100(3): 909-915.
    [115]Macintosh SC, Kishore GM, Perlak FJ, et al. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors[J]. Journal of Agricultural and Food Chemistry,1990,38(4): 1145-1152.
    [116]Mahon RJ, Olsen KM, Downes S, et al. Frequency of alleles conferring resistance to the Bt toxins CrylAc and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology,2007,100(6):1844-1853.
    [117]Mahon RJ, Olsen KM, Downes S. Isolations of Cry2Ab resistance in Australian populations of Helicoverpa armigera (Lepidoptera:Noctuidae) are allelic [J]. Journal of Economic Entomology,2008,101(3):909-914.
    [118]Mahon RJ, Olsen KM, Garsia KA, et al. Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera:Noctuidae) in Australia[J]. Journal of Economic Entomology,2007,100(3):894-902.
    [119]Mandal CC, Gayen S, Basu A, et al. Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects[J]. Protein Engineering Design & Selection,2007,20(12):599-606.
    [120]MartinezRamirez AC, Real MD. Proteolytic processing of Bacillus thuringiensis CryⅢA toxin and specific binding to brush-border membrane vesicles of Leptinotarsa decemlineata (Colorado potato beetle)[J]. Pesticide Biochemistry and Physiology,1996,54(2):115-122.
    [121]Masson L, Tabashnik BE, Liu YB, et al. Helix 4 of the Bacillus thuringiensis CrylAa toxin lines the lumen of the ion channel[J]. The Journal of Biological Chemistry,1999,274(45): 31996-32000.
    [122]Masson L, Tabashnik BE, Mazza A, et al. Mutagenic analysis of a conserved region of domain Ⅲ in the CrylAc toxin of Bacillus thuringiensis[J]. Applied and Environmental Microbiology,2002,68(l):194-200.
    [123]Mcbride KE, Svab Z, Schaaf DJ, et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco[J]. Bio-Technology,1995,13(4):362-365.
    [124]McNall RJ, Adang MJ. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis[J]. Insect Biochemistry and Molecular Biology,2003,33(10):999-1010.
    [125]Milne RE, Pang AS, Kaplan H. A protein complex from Choristoneura fumiferana gut-juice involved in the precipitation of delta-endotoxin from Bacillus thuringiensis subsp. sotto[J]. Insect Biochemistry and Molecular Biology,1995,25(10):1101-1114.
    [126]Morin S, Biggs RW, Sisterson MS, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(9):5004-5009.
    [127]Morin S, Henderson S, Fabrick JA, et al. DNA-based detection of Bt resistance alleles in pink bollworm[J]. Insect Biochemistry and Molecular Biology,2004,34(11):1225-1233.
    [128]Morse RJ, Yamamoto T, Stroud RM. Structure of Cry2Aa suggests an unexpected receptor binding epitope[J]. Structure,2001,9(5):409-417.
    [129]Nagamatsu Y, Koike T, Sasaki K, et al. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CrylAa toxin[J]. Febs Letters,1999,460(2):385-390.
    [130]Nagamatsu Y, Toda S, Koike T, et al. Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin[J]. Bioscience, Biotechnology, and Biochemistry,1998,62(4):727-734.
    [131]Newcombe RG. Two-sided confidence intervals for the single proportion:comparison of seven methods[J]. Stat Med,1998,17(8):857-872.
    [132]Nielsen KM, Bones AM, Smalla K, et al. Horizontal gene transfer from transgenic plants to terrestrial bacteria--a rare event?[J]. FEMS Microbiology Reviews,1998,22(2):79-103.
    [133]Nigh R, Benbrook C, Brush S, et al. Transgenic crops:A cautionary tale[J]. Science,2000,287(5460):1927-1927.
    [134]Ning C, Wu K, Liu C, et al. Characterization of a CrylAc toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hubner) larvae[J]. Journal of Insect Physiology,2010,56(6):666-672.
    [135]Obata F, Kitami M, Inoue Y, et al. Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis CrylAa toxin[J]. FEBS Journal,2009,276(20): 5949-5959.
    [136]Ogiwara K, Indrasith LS, Asano S, et al. Processing of delta-endotoxin from Bacillus thuringiensis subsp. kurstaki HD-1 and HD-73 by gut juices of various insect larvae[J]. Journal of Invertebrate Pathology,1992,60(2):121-126.
    [137]Oppert B, Kramer KJ, Beeman RW, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins[J]. The Journal of Biological Chemistry,1997,272(38):23473-23476.
    [138]Pacheco S, Gomez I, Arenas Ⅰ, et al. Domain Ⅱ Loop 3 of Bacillus thuringiensis Cry1Ab Toxin Is Involved in a "Ping Pong" Binding Mechanism with Manduca sexta Aminopeptidase-N and Cadherin Receptors[J]. Journal of Biological Chemistry,2009,284(47):32750-32757.
    [139]Pandian GN, Ishikawa T, Togashi M, et al. Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis CrylA, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity[J]. Applied and Environmental Microbiology,2008,74(5): 1324-1331.
    [140]Pardo-Lopez L, Gomez I, Rausell C, et al. Structural changes of the CrylAc oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion[J]. Biochemistry,2006,45(34):10329-10336.
    [141]Pardo-Lopez L, Munoz-Garay C, Porta H, et al. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis[J]. Peptides,2009,30(3):589-595.
    [142]Park HW, Federici BA. Effect of specific mutations in helix alpha7 of domain I on the stability and crystallization of Cry3A in Bacillus thuringiensis[J]. Molecular Biotechnology,2004,27(2): 89-100.
    [143]Payton ME, Greenstone MH, Schenker N. Overlapping confidence intervals or standard error intervals:what do they mean in terms of statistical significance[J]? Journal of Insect Science,2003,334.
    [144]Peng D, Xu X, Ye W, et al. Helicoverpa armigera cadherin fragment enhances CrylAc insecticidal activity by facilitating toxin-oligomer formation[J]. Applied Microbiology and Biotechnology,2010,85(4):1033-1040.
    [145]Perlak FJ, Fuchs RL, Dean DA, et al. Modification of the coding sequence enhances plant expression of insect control protein genes[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(8):3324-3328.
    [146]Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity[J]. Microbiology and Molecular Biology Reviews,2007,71(2):255-281.
    [147]Pray, C, Huang, J, Ma, D, et al. Impact of Bt cotton in China [J]. World Develop,2001,29, 813-825.
    [148]Qiao F, Huang J, Rozelle S, et al. Natural refuge crops, buildup of resistance, and zero-refuge strategy for Bt cotton in China[J]. Science China Life Sciences,2010,53(10):1227-1238.
    [149]Rajagopal R, Arora N, Sivakumar S, et al. Resistance of Helicoverpa armigera to CrylAc toxin from Bacillus thuringiensis is due to improper processing of the protoxin[J]. Biochemical Journal,2009,419309-316.
    [150]Rajagopal R, Sivakumar S, Agrawal N, et al. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor[J]. The Journal of Biological Chemistry,2002,277(49):46849-46851.
    [151]Rajamohan F, Cotrill JA, Gould F, et al. Role of domain Ⅱ, loop 2 residues of Bacillus thuringiensis CrylAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens[J]. Journal of Biological Chemistry,1996,271(5):2390-2396.
    [152]Rajamohan F, Hussain SRA, Cotrill JA, et al. Mutations at domain Ⅱ, loop 3, of Bacillus thuringiensis CryLAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts[J]. Journal of Biological Chemistry,1996,271(41):25220-25226.
    [153]Raymond B, Johnston PR, Nielsen-LeRoux C, et al. Bacillus thuringiensis:an impotent pathogen [J]? Trends in Microbiology,2010,18(5):189-194.
    [154]Reed W, Pawar C S. Heliothis:a global problem[C]. Reed W, Kumble V(Eds.), Proceedings of the International Workshop on Heliothis Management, International Centre for Research in the Semi-Arid Tropics, Patacheru (1981) pp.9-14
    [155]Regev A, Keller M, Strizhov N, et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae[J]. Applied and Environmental Microbiology,1996,62(10):3581-3586.
    [156]Roush RT. Bt-transgenic crops:just another pretty insecticide or a chance for a new start in resistance management [J]? esticide Science,1997,51(3):328-334.
    [157]Roush RT, Miller GL. Considerations for Design of Insecticide Resistance Monitoring Programs[J]. Journal of Economic Entomology,1986,79(2):293-298.
    [158]Salamitou S, Ramisse F, Brehelin M, et al. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects [J]. Microbiology-Uk,2000,1462825-2832.
    [159]Sanahuja G, Banakar R, Twyman RM, et al. Bacillus thuringiensis:a century of research, development and commercial applications[J]. Plant Biotechnology Journal,2011,9(3):283-300.
    [160]Sangadala S, Walters FS, English LH, et al. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CrylA(c) toxin binding and 86Rb(+)-K+ efflux in vitro[J]. The Journal of Biological Chemistry,1994,269(13):10088-10092.
    [161]Saraswathy N, Kumar PA. Protein engineering of delta-endotoxins of Bacillus thuringiensis[J]. Electronic Journal of Biotechnology,2004,7(2):178-188.
    [162]Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews,1998,62(3):775-806.
    [163]Schwartz JL, Lu YJ, Sohnlein P, et al. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors[J]. Febs Letters,1997,412(2):270-276.
    [164]Shao Z, Cui Y, Liu X, et al. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors [J]. Journal of Invertebrate Pathology,1998,72(1):73-81.
    [165]Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants[J]. Annual review of entomology,2002,47845-881.
    [166]Soberon M, Gill SS, Bravo A. Signaling versus punching hole:How do Bacillus thuringiensis toxins kill insect midgut cells?[J]. Cellular and Molecular Life Sciences,2009,66(8):1337-1349.
    [167]Sokal R R, Rohlf F J, Biometry:the principles and practice of statistics in biological research, 2nd ed[M].Freeman:San Francisco.1981,859 pp.
    [168]Stone BF. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals[J]. Bull World Health Organ,1968,38(2):325-326.
    [169]Storer NP, Babcock JM, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico[J]. Journal of Economic Entomology,2010,103(4):1031-1038.
    [170]Tabashnik BE, Unnithan GC, Masson L, et al. Asymmetrical cross-resistance between Bacillus thuringiensis toxins CrylAc and Cry2Ab in pink bollworm[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(29):11889-11894.
    [171]Tabashnik BE. Evolution of Resistance to Bacillus thuringiensis[J].Annual review of entomology,1994,3947-79.
    [172]Tabashnik BE. Delaying insect resistance to transgenic crops[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(49):19029-19030.
    [173]Tabashnik BE, Carriere Y, Dennehy TJ, et al. Insect resistance to transgenic Bt crops:lessons from the laboratory and field[J]. Journal of Economic Entomology,2003,96(4):1031-1038.
    [174]Tabashnik BE, Fabrick JA, Henderson S, et al. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure[J]. Journal of Economic Entomology,2006,99(5):1525-1530.
    [175]Tabashnik BE, Gassmann AJ, Crowder DW, et al. Insect resistance to Bt crops:evidence versus theory[J]. Nature Biotechnology,2008,26(2):199-202.
    [176]Tabashnik BE, Huang F, Ghimire MN, et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance[J]. Nature Biotechnology,2011,29(12): 1128-1131.
    [177]Tabashnik BE, Liu YB, Malvar T, et al. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(24):12780-12785.
    [178]Tabashnik BE, Liu YB, Malvar T, et al. Insect resistance to Bacillus thuringiensis:uniform or diverse[J]? Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1998,353(1376):1751-1756.
    [179]Tabashnik BE, Van Rensburg JBJ, Carriere Y. Field-Evolved Insect Resistance to Bt Crops: Definition, Theory, and Data[J]. Journal of Economic Entomology,2009,102(6):2011-2025.
    [180]Terra WR, Ferreira C. Insect digestive enzymes:properties, compartmentalization and function[J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,1994,109(1):1-62.
    [181]Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(34):14037-14042.
    [182]Tsukamoto M. The log dosage-probit mortality curve in genetic researches of insect resistance to insecticides[J]. Botyu-Kagaku,1963.28:91-98.
    [183]Ukamoto M. Methods of genetic analysis of insecticide resistance [M]. Georgiou G P, Saito T eds. Pest Resistance to Pesticides. New York and London:Plenum Press.1983,225-235
    [184]Vadlamudi RK, Ji TH, Bulla LA, Jr. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner[J]. The Journal of Biological Chemistry,1993,268(17):12334-12340.
    [185]Vadlamudi RK, Weber E, Ji I, et al. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis[J]. The Journal of Biological Chemistry,1995,270(10):5490-5494.
    [186]Vaeck M, Reynaerts A, Hofte H, et al. Transgenic plants protected from insect attack[J]. Nature,1987,328(6125):33-37.
    [187]van Frankenhuyzen K. Insecticidal activity of Bacillus thuringiensis crystal proteins[J]. Journal of Invertebrate Pathology,2009,101(1):1-16.
    [188]van Rensburg J B J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize[J]. South African Journal Of Plant And Soil,2007,24(3):147-151.
    [189]Wang G, Wu K, Liang G, et al. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its CrylA binding region[J]. Science in China Series C,2005,48(4):346-356.
    [190]Wu KM, Guo YY. The evolution of cotton pest management practices in China[J]. Annual review of entomology,2005,5031-52.
    [191]Wu KM, Lu YH, Feng HQ, et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science,2008,321(5896):1676-1678.
    [192]Wu Y, Vassal JM, Royer M, et al. A single linkage group confers dominant resistance to Bacillus thuringiensis delta-endotoxin CrylAc in Helicoverpa armigera[J]. Journal of Applied Entomology,2009,133(5):375-380.
    [193]Xie R, Zhuang M, Ross LS, et al. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to CrylA toxins[J]. The Journal of Biological Chemistry,2005,280(9):8416-8425.
    [194]Xu X, Yu L, Wu Y. Disruption of a cadherin gene associated with resistance to CrylAc delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera[J]. Applied and Environmental Microbiology,2005,71(2):948-954.
    [195]Yang Y, Chen H, Wu S, et al. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera[J]. Insect Biochemistry and Molecular Biology,2006,36(9):735-740.
    [196]Yang Y, Chen H, Wu Y, et al. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac[J]. Applied and Environmental Microbiology,2007,73(21):6939-6944.
    [197]Yang Y, Zhu YC, Ottea J, et al. Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer, Diatraea saccharalis[J]. Insect Biochemistry and Molecular Biology,2010,40(8): 592-603.
    [198]Yang Y, Zhu YC, Ottea J, et al. Down regulation of a gene for cadherin, but not alkaline phosphatase, associated with CrylAb resistance in the sugarcane borer Diatraea saccharalis[J]. PLoS One,2011,6(10):e25783.
    [199]Yang YH, Yang YJ, Gao WY, et al. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin CrylAc[J]. Bulletin of Entomological Research,2009,99(2):175-181.
    [200]Yaoi K, Nakanishi K, Kadotani T, et al. Bacillus thuringiensis CrylAa toxin-binding region of Bombyx mori aminopeptidase N[J]. Febs Letters,1999,463(3):221-224.
    [201]Yue BS, Huang FN, Leonard BR, et al. Verifying an F(1) screen for identification and quantification of rare Bacillus thuringiensis resistance alleles in field populations of the sugarcane borer, Diatraea saccharalis[J]. Entomologia Experimentalis Et Applicata,2008,129(2): 172-180.
    [202]Zeilinger AR, Andow DA, Zwahlen C, et al. Earthworm populations in a northern US Cornbelt soil are not affected by long-term cultivation of Bt maize expressing CrylAb and Cry3Bb1 proteins[J]. Soil Biology & Biochemistry,2010,42(8):1284-1292.
    [203]Zhang FIN, Yin W, Zhao J, et al. Early Warning of Cotton Bollworm Resistance Associated with Intensive Planting of Bt Cotton in China[J]. PLoS One,2011,6(8).
    [204]Zhang S, Cheng H, Gao Y, et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis CrylAc toxin[J]. Insect Biochemistry and Molecular Biology,2009,39(7):421-429.
    [205]Zhang X, Candas M, Griko NB, et al. Cytotoxicity of Bacillus thuringiensis CrylAb toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells[J]. Cell Death & Differentiation,2005,12(11):1407-1416.
    [206]Zhang X, Candas M, Griko NB, et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(26): 9897-9902.
    [207]Zhang X, Griko NB, Corona SK, et al. Enhanced exocytosis of the receptor BT-R(1) induced by the CrylAb toxin of Bacillus thuringiensis directly correlates to the execution of cell death[J]. Comparative Biochemistry and Physiology-Part B:Biochemistry & Molecular Biology,2008,149(4):581-588.
    [208]Zhao J, Jin L, Yang YH, et al. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera[J]. Insect Biochemistry and Molecular Biology,2010,40(2):113-118.
    [209]Zhao JZ, Cao J, Collins HL, et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(24):8426-8430.
    [210]Zhao JZ, Cao J, Li Y, et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution[J]. Nature Biotechnology,2003,21(12):1493-1497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700