用户名: 密码: 验证码:
猪八个候选基因的分离、特征分析多态性及其与性状间的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子标记辅助选择与传统育种方法的结合加速了猪遗传改良的进程。分子标记辅助选择的基础是寻找与重要经济性状相关的主效基因和分子标记。随着猪分子遗传图谱、QTL定位以及人、鼠等功能基因组研究的深入,通过报道的QTL-定位结果,在与之同源的人鼠等染色体区域内,确定经济性状相关候选基因是切实可行的,基于此,本研究筛选了8个与肌肉代谢相关基因作为猪生产性状候选基因进行了研究,并取得了以下结果:
     1、HK2(HexokinaseⅡ,己糖激酶2):(1)获得了大白猪、长白猪、梅山猪三个猪种基因编码区序列和部分基因组序列,并提交到GenBank中,获得四个登录号为DQ432056、DQ432057、AY818385、AY821788;(2)序列比对发现了13处cSNPs(single nucleotide polymorphism in coding sequence)和2处3’非翻译区的SNP;内含子中发现了38个SNPs;(3)建立了第10内含子A/G替换的PCR-MspⅠ-RFLP(MspⅠ酶切片段长度多态性)和第17外显子的T/G替换的PCR-MspⅠ-RFLP分型方法,在所检测的6个不同猪种中,第10内含子的多态在大白和长白猪中只出现了A等位基因;国内猪种可检测到A和B等位基因;第17外显子的多态在所检测的6个不同猪群中A等位基因只存在于杂合子个体中,各猪群中两等位基因频率没有多大差异。(4)在309头大×梅F_2代资源家系中进行标记性状关联分析,第10内含子的多态位点与眼肌高度、平均皮厚和股二头肌大理石纹差异显著,并且加性效应显著;在186头试验猪群(大白、长白、梅山、大白×梅山、长白×大白、大白×长白)中进行标记性状关联分析,第17外显子的多态位点与胴体长、肋骨数、肩部背膘厚和眼肌面积差异极显著,与胸腰椎间背膘厚、三点平均背膘厚、眼肌高度、眼肌宽度、肥肉率、瘦肉率和肌内脂肪差异显著。(5)该基因在猪骨骼肌中特异性表达。
     2、LMCD1(LIM and cysteine-rich domains 1,LIM富半胱氨酸区域蛋白1):(1)获得了大白猪、长白猪、梅山猪三个猪种基因编码区序列并提交到GenBank中,登录号为NM_001008692;(2)序列比对发现了4个cSNPs,其中1处预测可导致氨基酸改变;(3)建立了第三外显子G/A替换的SSCP(polymerase chain reaction-single strand conformational polymorphism)基因分型方法。在所检测的6个猪种中,大白、长白、鄂西黑和皖南花猪种G等位基因的基因频率为1或接近1,而梅山和清平品种的等位基因G基因频率分别为0.2889和0;(4)在178头大×梅F_2代资源家系中进行标记性状关联分析,该位点与胸腰椎间背膘厚和臀部平均背膘厚差异显著,该位点以显性作用方式为主,且方向一致;(5)该基因在所检测的各组织中均有表达,在心脏和肌肉中表达量最高。
     3、NRAP(Nebulin-related anchoring protein,伴肌动蛋白相关锚定蛋白):(1)获得了大白猪、杜洛克猪、梅山猪三个猪种基因编码序列、5’RACE(rapid amplificationof cDNA end,快速扩增cDNA末端)及其第39、40内含子序列,序列已提交到GenBank中,登录号为DQ157553和DQ480149;(2)发现了35个SNPs,其中3处预测可导致氨基酸改变;(3)建立了第39内含子A/G替换的PCR-Eco721-RFLP分型方法;在所检测的8个猪种中,大白、长白猪种B等位基因的基因频率为1,中国地方猪群可检测到A和B等位基因;(4)在302头大×梅F_2代资源家系中进行标记性状关联分析,该位点与出生重、内脂率、眼肌高度、肩部背膘厚、背最长肌pH值、失水力、系水力、背最长肌肌肉色值、股二头肌pH值和股二头肌色值显著或极显著相关,该位点在胴体性状以显性作用方式为主,肉质性状则以加性作用为主;(5)该基因特异性的在心脏和骨骼肌中表达。
     4、ECHI (Enoyl CoA hydramse 1,烯酯酰辅酶A水合酶1):(1)获得了大白猪、长白猪、梅山猪三个猪种基因编码序列、5’RACE及第3内含子外的所有内含子序列,并提交到序列的GenBank登录号为DQ157552和DQ480146;(2)序列比对发现了17个SNPs,其中1处cSNP;(3)建立了第1内含子A/G替换的PCR-BamHⅠ-RFLP、第5内含子A/G替换的PCR-PstⅠ-RFLP分型方法和第4外显子T/C突变的PCR-SSCP分型方法;第1内含子的酶切多态,在所检测的7个猪种中,大白和长白猪种B等位基因的基因频率接近为1,而中国猪种均可检测到A和B等位基因,除清平猪种外,其余品种均为B等位基因占优势;关于第5内含子多态性分布,在所检测的7个猪种中,监利猪未检测到A等位基因,其余猪种均可检测到A和B等位基因,均为B等位基因占优势;(4)在296头大×梅F_2代资源家系中进行标记性状关联分析,第1内含子多态的不同基因型间内脂率、眼肌高度和肌内水分等生产性状差异显著,以显性效应为主;在306头大×梅F_2代资源家系中进行标记性状关联分析,第5内含子位点与屠宰率、平均皮厚和股二头肌色值差异显著;(5)该基因在所检测的9个组织中均表达。
     5、CKMT2 (crcatine kinase,mitochondrial 2(sarcomeric),肌节线粒体肌酸激酶2):(1)获得了大白猪、长白猪、梅山猪三个猪种基因cDNA序列,该基因GenBank登录号为DQ363337,获得的第4内含子序列见附录14;(2)序列比对,发现了9个SNPs,其中3处预测可导致氨基酸改变;(3)建立了第4内含子A/G替换的PCR-MspⅠ-RFLP分型方法,在检测的9个猪种中,梅山和二花脸猪中B等位基因频率为1或接近1,其他7个猪种均为A等位基因频率为1;(4)在302头大×梅F_2代资源家系中进行标记性状关联分析,该位点与出生重、内脂率、肥肉率、胴体长、肩部背膘厚、胸腰椎间背膘厚、臀部背膘厚和肌内水分等性状差异显著,以加性作用方式为主;(5)该基因在心脏和骨骼肌中表达丰度最高,在脾脏、胃、小肠和子宫中不表达,在其余组织不同程度的表达。
     6、TTID (Titin Immunoglobul in Domain Protein;肌联蛋白免疫球蛋白区域蛋白):(1)获得了大白猪、长白猪、梅山猪三个猪种基因全长cDNA序列以及除第2、7内含子外的所有内含子序列,提交到GenBank的登录号为DQ157551和DQ480148;(2)序列比对发现了51个SNPs,该基因cDNA中没有发现碱基突变或缺失;(3)建立了第6内含子T/C替换的PCR-HinfⅠ-RFLP分型方法,在检测的10个猪种中,在大白和长白猪种中B等位基因的频率为1或是接近1,国内品种中除鄂西黑猪、清平猪和八眉猪中B等位基因频率略占优势外,其余5个品种均为A等位基因占绝对优势;(4)在279头大×梅F_2代资源家系中进行标记性状关联分析,胴体性状方面,该位点与皮率和眼肌面积差异显著,与平均皮厚差异极显著;并且表现为加性效应显著或极显著,肉质方面,该位点与股二头肌pH值、背最长肌和肌内水分差异显著,表现为显性效应显著;(5)该基因在心脏和骨骼肌中表达量很高,在脂肪和肺中微量表达,其余组织中不表达。
     7、PFKM (Phosphofructokinase Muscle Type,肌型磷酸果糖激酶):(1)获得了大白猪、长白猪、梅山猪三个猪种基因全长cDNA序列及第2到21内含子序列,验证猪中第1内含子的大小,序列GenBank的登录号为DQ363336和DQ480147;(2)序列比对发现了111处SNPs,其中4处预测可导致氨基酸改变;(3)建立了第13外显子T/C替换和第17外显子的PCR-TaqⅠ-RFLP分型方法,在所检测的7个猪种中,第13外显子多态性分布频率在检测的大白、长白和鄂西黑猪中B等位基因频率为1,另外四个国内猪种均为B等位基因占优势,在所检测的7个猪种中,第17外显子多态性分布频率基本同第13外显子位点的分布,(4)在214头大×梅F_2代资源家系中进行标记性状关联分析,第13外显子位点基因型不同时,出生重、内脂率、肥肉率、瘦肉率、瘦肥比率、眼肌高度、6—7胸腰椎间背膘厚、胸腰椎间背膘厚、肩部背膘厚、三点平均背膘厚、股二头肌色值、背最长肌大理石纹、肌内水分和肌内脂肪差异显著或极显著;该位点在部分胴体性状加性效应和显性效应均为极显著;在241头大×梅F_2代资源家系中进行标记性状关联分析,第17外显子位点与眼肌高度、臀部背膘厚、三点平均背膘厚、大理石纹、失水率、系水力、肌内脂肪和肌内水分差异显著或极显著;(5)该基因在心脏和骨骼肌中表达量很高,胃和小肠没有表达,其他组织均有不同程度的表达。
     8、MYLPF (myosin light chain,phosphorylatable,fast skeletal muscle,肌浆球蛋白轻链可磷酸化蛋白):(1)获得了大白猪、长白猪和梅山猪的基因组序列;序列GenBank的登录号为DQ533994;(2)序列比对,发现了43处SNPs,有5处cSNPs,其中3处预测可导致氨基酸改变;(3)建立了第1内含子G/A替换的PCR-TaqⅠ-RFLP和TIC替换的PCR-MspⅠ-RFLP分型方法;在所检测的7个猪种中,第1内含子MspⅠ-RFLP多态性分布频率在长白猪中A等位基因与B等位基因频率的比例大约为1:2,其余猪种为B等位基因占绝对优势;在所检测的7个猪种中,第1内含子TaqⅠ-RFLP多态性分布频率,在大白和长白猪中A等位基因与B等位基因频率的比例大约为1:2,国内猪种均为B等位基因占绝对优势;(4)在140头试验猪群(长白、梅山、长白、长白×大白、大白×长白)中进行标记性状关联分析,基因型不同时,瘦肉率、皮率、股二头肌大理石纹、背最长肌大理石纹和肌内水分差异显著,眼肌宽度、眼肌面积和肌内脂肪差异极显著,肩部背膘厚和眼肌高度差异接近显著水平;该位点在这些性状上均表现为加性作用方式,但作用方向不同;(5)该基因在各组织中均有表达,尤以心脏和骨骼肌中表达丰度最高。
     上述实验结果为进一步探讨这些基因对于猪肌肉生产和代谢相关性状影响的分子机制,以及应用标记辅助选择进行分子育种提供了一些有价值的依据,从而推进猪遗传改良工作的进程,为我国功能基因组的研究和源头创新奠定基础。
The use of the marker-assisted selection (MAS) combining with traditional breeding methods promoted the progress of genetic improvement in pigs. The basis of MAS was to seek the major gene or marker which contributed genetically much to the economic trait. With the development of pig genetic map, QTL mapping and functional genome research of human or mouse, it is practice that determining candidate gene associated with economic trait in the chromosome region which homologous to human or mouse based on the results of QTL mapping. In this study, eight candidate genes associated with muscle metabolism were selected by comparative positional genomics to research in pigs. The main results are as follows:1、HK2(Hexokinase II): (1) The full coding sequence and partial genomic sequences of Large White, Landrace, Meishan and Duroc breeds were isolated and deposited to GenBank under accession number DQ432056、DQ432057、AY818385、AY821788. (2) 13 cSNPs (single nucleotide polymorphism in coding sequence), two SNPs within 3' untranslated region and 38 SNPs within intron sequences were identified. (3) Two PCR-Msp I -RFLP were developed to detect A/G substitution in intron 10 and T/G substitution in exon 17. Allele frequencies for Msp I PCR-RFLP in intron 10 were studied in unrelated pigs from six breeds and allele A was found only in Large White and Landrace pigs, while allele A and B were both detected in Chinese pigs. For Msp I PCR-RFLP in exon 17 in unrelated pigs from six breeds, allele A was found only in heterozygocytous pig and the frequencies of two alleles were similar in all studied pig breeds. (4) In the 309 F_2 animals in LargeWhite×Meishan resource family were genotyped by Msp I PCR-RFLP in intron 10 for association analysis. For carcass traits, significant effects were observed for this locus on LEH and AST, including their additive effects; For meat quality traits, this locus was significantly associated with MM(BF). Msp I PCR-RFLP in exon 17 was typed in 186 pigs (Landrace pigs, LargeWhite×Landrace and Landrace×LargeWhite pigs) to study the association between carriers of different genotype and the trait values, statistically significant associations with CL, RNS, BFT1, LEH, LEW, LEA, BFT2, ABF, FMP, LMP and IFR were found. (5) The expression of HK2 gene was specially in skeleton muscle of pigs.2、LMCD1 (LIM and cysteine-rich domains 1) : (1) The full coding sequence of Large White, Landrace and Meishan breeds were isolated and deposited to GenBank under accession number NM_001008692. (2) 4 cSNPs were identified , of which one was predicted to change amino acid. (3) PCR-SSCP (polymerase chain reaction-Single strand conformational polymorphism) typing was developed to detect G/A substitution in intron 3. The frequencies of allele G were 1 or near to in Large White, Landrace, Erxihei and Wannanhua, while Meishan and Qingping breed were 0.2889 and 0 separately. (4) In the 178 F_2 animals were genotyped for association analysis. For carcass traits, significant effects were observed for this locus on BFT1 and BFT2; For meat quality traits, this locus was near to significantly associated with pH(LD) and pH(SC) and seemed to be dominant in action. (5) LMCD1 gene was highly expressed in heart and muscle while it had a broad expression spectrum across all tissues examined.
     3、NRAP (Nebulin-related anchoring protein): (1) The full coding sequence of LargeWhite, Landrace and Meishan breeds were isolated. The nucleotide sequence of 5'RACE (rapid amplification of cDNA end) and intron 39 and 40 have been deposited to GenBank under accession number DQ157553 and DQ480149. (2) 35 SNPs were identified by comparing sequences, three of which resulted in amino acid change. (3) PCR-Eco721-RFLP was developed to detect A/G substitution in intron 39. In unrelated pigs from eight breeds, both allele A and B were found in Chinese pig breeds, while only B was in LargeWhite and Landrace. (4) Association analysis in 302 F_2 animals showed significant associations between Eco721-RFLP genotypes with BWT, CFW, LEH and BFT1 for carcass traits and pH(LD), pH(BF), MCV1, MCV2, DLR and WHC for meat quality traits. This locus was predominant in dominance for carcass trait, but in addition for meat quality. (5) NRAP mRNA was transcribed especially in heart and skeleton muscle.
     4、ECH1 (Enoyl CoA hydratase 1): (1) The full coding sequence of LargeWhite, Landrace and Meishan breeds, 5'RACE and all introns except intron 3 were isolated and deposited to GenBank under accession number DQ157552 and DQ480146DQ157552. (2) 17 SNPs were identified, of which one was cSNP. (3) Two A/G substitution were detected by PCR-BamHⅠ-RFLP in intron 1 and PCR- PstⅠ-RFLP in intron 5 separately, and T/C mutation in exon 4 was detected by PCR-SSCP. Among seven different pig breeds examined, results of BamHⅠ-RFLP in intron 1 showed that the frequency of allele B was near to 1 in LargeWhite and Landrace; both allele A and B were found in Chinese pig breeds, and allele B was predominant in other breeds except Meishan and Qingping. For PCR- PstⅠ-RFLP in intron 5, in seven commercial pig breeds, both alleles C and D (allele D was dominant) were detected in all other examined breeds except Jianli pig which only had allele D.(4) Association analysis in 296 F_2 animals showed significant associations between BamHⅠ-RFLP genotypes and CFW, LEH and WM. And this locus seemed to be dominant in action. For PCR- PstⅠ-RFLP in intron 5 in 306 F_2 animals, for carcass traits, significant effects were observed for this locus on DP and AST; For meat quality traits, this locus was significantly associated with MCV2. (5) Expression of ECH1 gene can be detected in all tissues examined: heart, liver, lung, kidney, spleen, stomach, small intestine, muscle and fat.
     5、CKMT2 (creatine kinase, mitochondrial 2): (1) The full coding sequence of LargeWhite, Landrace and Meishan breeds were isolated and deposited GenBank under accession number DQ363337. In addition, the sequence of intron 4 can be seen in appendix 14. (2) Of nine SNPs identified within these sequences, three of which resulted in amino acid change. (3) An PCR- MspⅠ-RFLP was developed to detect the A/G polymorphism in intron 4. Among nine pig breeds examined, allele B was 1 or near to 1 in Meishan and Erhualian, while in other seven breeds all were 1 of allele A. (4) 302 F_2 animals were typed for association analysis. For carcass traits, significant effects were observed for this locus on BWT, IFR, FMP, CL, BFT1, BFT2 and BFT3, and their additive effects were predominant; For meat quality traits, this locus was significantly associated with WM. (5) Expression of CKMT2 gene was predominant in heart and skeleton muscle and moderate in lung, kidney and fat, although a weak signal was observed for liver, ovary and testis, and no expression in spleen, stomach, small intestine and uterus.
     6、TTID (Titin Immunoglobulin Domain Protein): (1) The full coding sequence of LargeWhite, Landrace and Meishan breeds and sequences of all introns except intron 2 and 7 were isolated and deposited to GenBank under accession number DQ157551 and DQ480148. (2) Total 51 SNPs within these intron sequences and no mutation or deletion was found in cDNA sequences. (3) An PCR- HinfⅠ-RFLP was developed to detect T/C substitution in intron 6. Among ten pig breeds which were typed by HinfⅠ-RFLP, results showed that there were significantly different in allele frequencies between Chinese indigenous pig breeds and foreign pig breeds: the frequencies were 1 or near to1 in LargeWhite and Landrace, while allele A was predominant in other five breeds although allele B were only a bit dominant in Erxihei, Qinsping and Bamei. (4) 279 F_2 animals were typed for association analysis. For carcass Waits, significant effects were observed for this locus on SP, LEA and AST, and their additive effects were significant; For meat quality traits, this locus was significantly associated with pH(BF), MCV1 and WM, and their additive effects were significant. (5) Expression of TTID gene was highest in skeleton muscle and heart, with weak level in fat and lung, and no signal in other tissues.
     7、PFKM (Phosphofructokinase Muscle Type): (1) The full cDNA sequence of LargeWhite, Landrace and Meishan breeds and sequences of 2-21 introns were isolated and deposited to GenBank under accession number DQ363336 and DQ480147. And the length of sequence of intron 1 was identified. (2) Of the 111 SNPs identified within all sequences, four of which resulted in amino acid change. (3) PCR-TaqⅠ-RFLP were developed to detect T/C substitution in exon 13 and exon 17. In unrelated individuals from seven different pig breeds, allele frequencies of the TaqⅠ-RFLP in exon 13 was compared: frequencies of allele B in LargeWhite, Landrace, Erxihei were 1 or near to 1, and a little dominant of allele B in other four Chinese pig breeds. For the same polymorphism in exon 17, the trend of allele frequencies distribution was the similar to that of exon 13. (4) For association analysis in the 214 F_2 animals, significant effects were observed for different genetype of exon 13 on BWT, IFR, FMP, LMP, RLF, LEH, BFT1, BFI2, BFT4 and ABF of carcass traits. It is notable that both additive effects and dominant effects in BWT, LMP, RLF and LEH were very significant; For meat quality traits, this locus was significantly associated with MCV2, MM1, WM and IMF. Association analysis in 241 F2 animals showed there were significant effects on BFI3 and ABF of carcass traits and on MM1, MM2, DLR, WHC, IMF and WM of meat quality traits with TaqⅠ-RFLP in exon 17. (5) Expression of PFKM gene had different levels in each examined tissue except stomach and small intestine, with highest in skeleton muscle, then in heart.
     8、MYLPF (myosin light chain, phosphorylatable, fast skeletal muscle): (1) The full genomic sequence of of LargeWhite, Landrace and Meishan breeds were isolated and deposited to GenBank under accession number DQ533994. (2)43 SNPs, including 5 cSNPs, were found by comparing sequences of three pig breeds, three of which resulted in amino acid change. (3) PCR-TaqⅠ-RFLP and PCR-MspⅠ-RFLP were developed to detect G/A substitution and T/C substitution in intron 1 separately. For MspⅠ-RFLP among seven different pig breeds examined, the frequency of allele B was two times of that of allele A in Landrace, while allele B were predominant in other breeds. For TaqⅠ-RFLP, the frequency of allele B was two times of that of allele A in LargeWhite and Landrace. (4) The locus of MspⅠ-RFLP was typed in 140 pigs (Landrace, LargeWhite, Meishan, LargeWhite×Landrace and Landrace×Large White pigs) to study the association between carders of different genotype and the trait values. For carcass traits, significant effects were observed for this locus on LMP, SP, LEW and LEA, with approximative significant on BFT1 and LEH(P<0.06). This locus appeared to be additive effects with different action direction; For meat quality traits, this locus was significantly associated with MM1, MM2 and WM and IMF, which appeared to be predominant on addictive effects. (5) RT-PCR analysis of MYLPF showed its expression in all tissues examined, with highest levels in heart and skeleton muscle.
     The results described above provide some valuable basis for the further research of the molecular mechanism of these genes with the production and metabolism of muscle in pig and the application of molecular breeding with MAS. All these works would facilitate the progress of genetic improvement in pig, and establish the basis for the research of functional genome in our country.
引文
1. 樊斌.微卫星标记评估中国猪遗传多样性与标记辅助选择效率若干制约因素的研究.[硕士学位论文].武汉:华中农业大学,1999:
    2. 黄耀江,黎燕.生物信息学技术克隆并分析新基因STRF7.大连理工大学学报,2001,41(4):446—450
    3. 姜勋平,熊远著.猪肌肉蛋白质含量的OWL分析.遗传学报,2002,29(12):1068-1072
    4. 蒋隽,施启顺.家猪1号染色体微卫星标记与背膘厚的相关性.湖南农业大学学报,2002,28(2):132-134
    5. 金伯泉.细胞和分子免疫学.科学出版社,2001
    6. 李慧,李亦平,慈宏亮.编码锌指蛋白的人类新基因TFL76的电子克隆.生物技术,2003,13(6):15-17
    7. 李加琪,陈赞谋,刘德武,刘小红,孙宝丽,凌飞,张豪,陈瑶生.IFG-1基因对长白×蓝塘猪资源群生产性能的遗传效应分析.遗传学报,2003,30(9):835—839
    8. 李鹏,何泉,陈兰英.转基因小鼠中外源基因部分内含子序列的缺失及其对转录的影响.中国生物化学与分子生物学报,1999,5:704-708
    9. 李其松,沈华,桑林华,何远清,王金玉.分子育种研究手段之猪QTL定位现状及应用前景,动物科学与动物医学,2005,9:14-16
    10.李树春,杨章平,蔡文瑜.猪数量性状QTL定位研究进展.黑龙江畜牧兽医,2004(8):80—81
    11.李伟,印莉萍.基因组学相关概念及其研究进展.生物学通报,2000,35(11):1-33
    12.刘春宇,张春玲,夏家辉.数据综合分析鉴定人类Auxilin基因.生物化学与生物物理进展,1998,25(5):434-439
    13.刘桂兰,蒋思文,熊远著,郑嵘,屈彦纯.IGF2基因PCR-RFLP多态性与脂肪沉积相关性状的关联分析.遗传学报,2003,30(12):1107-1112
    14.刘桂兰,蒋思文,熊远著,郑蝾.屈彦纯.猪资源家系WC4R基因扫描及其与脂肪性状的相关分析.遗传学报,2002.29(6):497-501
    15.屈彦纯,邓昌彦.猪6号染色体部分遗传连锁图谱的构建与QTL定位.华中农业大学学报,2002,21(5):409-413
    16.苏玉虹,刘艳华.猪资源家系中肉品质性状基因定位和遗传效应分析.锦州医学院学报,2003,24(2):38-42
    17.苏玉虹,熊远著,张勤,蒋思文,雷明刚,余雳,郑嵘,邓昌彦.猪胴体脂肪沉积性状的QTL定位.遗传学报,2002b,29(8):681—684
    18.苏玉虹,熊远著.大白×梅山猪资源家系生长性状的检测.遗传学报,2002a,29(7):607-611
    19.苏玉虹.猪重要经济性状的QTL定位和遗传效应研究.[博士学位论文].武汉:华中农业大学图书馆,2001:
    20.陶立,金邦荃.定远猪及其一代杂种猪胴体,肌肉品质的比较研究.养猪,2000,3:28—29
    21.涂荣剑.猪解耦联蛋白基因3(UCP3)的序列及多态性研究.[硕士学位论文].武汉:华中农业大学图书馆,2003
    22.汪玉松,邹思湘,张玉静.现代动物生物化学.中国农业出版社,1999:162-164
    23.熊远著,邓昌彦.种猪测定原理及方法.北京:中国农业出版社,1999:57-118
    24.熊远著.猪的生化及分子遗传实验导论.北京:中国农业出版社,1999:39-51
    25.徐德全.猪背最长肌差异表达基因的克隆鉴定及其特征分析.[博士学位论文].武汉:华中农业大学图书馆,2005:
    26.杨金娥.猪12号染色体上10个新基因的分离、定位及其与部分性状的关联分析.[博士学位论文].武汉:华中农业大学图书馆,2004:
    27.杨又兵.猪MYOG基因和CAST基因多态性研究及部分DNA片段的测序.[硕士学位论文].武汉:华中农业大学图书馆,2003:
    28.杨昭庆,洪坤学.单核苷酸多态性的研究进展.国外医学遗传学分册,2000,23(1):4-8
    29.于浩,刘娣,杨秀芹.基于表达序列标签数据库(dbEST)的电子克隆技术.黑龙江畜牧兽医,2003(4):19-23
    30.袁红丰,王冬梅,李海民,陈琳,王晓,白慈贤,岳文,裴雪涛.人伴肌动蛋白相关锚定蛋白基因cDNA的克隆与功能分析.生物化学与生物物理进展,2003,30(2):257-261
    31.岳根华,H Bartenschlager,G Moser,H Geldermann.在猪12号染色体上定位数量性状位点(英文).遗传学报,2000,27(10):858-865
    32.张成岗,贺福初.生物信息学在新基因全长cDNA序列分析及功能预测中的应用.生物化学与生物物理进展,2003,30(1):159-162
    33.张恩平,耿社民,刘林丽.利用SNP进行QTL分子标记的基本原理和统计学方法.Animal Biotechnology Bulletin,2002,8(10):365-369
    34.张华莉,邓昊,张瑞芳,夏昆,夏家辉.人类TECTB基因的电子克隆.遗传学报,2003,30(4):317—320
    35.左波,熊远著,苏玉虹等.利用24个微卫星进行猪数量性状座位定位及其遗传效应分析.畜牧兽医学报,2003a,34:139-146
    36.左波,熊远著,苏玉虹等.猪4号和7号染色体部分微卫星位点的遗传图谱构建.农业生物技术学报,2003b,(1):70-74
    37.左波.猪3、4和7号染色体QTL定位及六个候选基因的分离和鉴定.[博士学位论文].武汉:华中农业大学图书馆,2004:
    38. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, and DJ Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25(17):3389-3402
    39. Andersson L, Haley C. S., Ellegren H, Knott S A, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hans.son I, et al. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science, 1994, 263(5154): 1771-1774
    40. Bertani GR, Johnson RK, Robic A, Pomp D. Mapping of porcine ESTs obtained from the anterior pituitary. Anita Genet, 2003, 34(2): 132-134
    41. Bespalova IN, Burmeister M. Identification of a novel LIM domain gene, LMCD1, and chromosomal localization in human and mouse. Genomics,2000,63(1):69-74
    42. Bidanal J. P., Milan D., Iannuccelli N, Amigues Y, Boscher M. Y., Bourgeois F, Caritez J. C., Gruand J, Le Roy P, Lagant H, Bonneau M, Lefaucherur L, Moruot J, Prunier A, Desautes C, Mormede P, Renard C, Vainman M, Robic A, Gellin J, et. al. Detection de locus a effects quantitatifs clans le croisement entre les races porcines Largewhite et Meishan. Resultats et perspectives. Journees de la Recherche Porcine en France, 2000, 32:369-383
    43. Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Geilin J, Ollivier L, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol, 2001a, 33:289-309
    44. Bidanel J P, Prunier A, Iannuccelli, Milan D. Detection of quantitative trait loci for male and female reproductive traits in Meishan×Large White F2 pigs. Book of abstract of the 51th Annual meeting of the European Association for Animal Production. Wageningen Pers. Wageningen. The Netherlands, 2001b, 7:54
    45. Bidanel J. P., Milan D., Renard C., Gruand J, Mourot J. Detection of quantitative trait loci for intramuscular fat content and iipogenic enzyme activities in Meishan×Large White F2 pigs. Proceedings of the 7th World Congress on Genetics. 2002
    46. Brunsch C, Sternstein I, Reinecke P, Bieniek J. Analysis of associations of PIT1 genotypes with growth, meat quality and carcass composition traits in pigs. J Appl Genet, 2002, 43(1): 85-91.
    47. Burge, C. B. and Karlin, S. Finding the genes in genomie DNA. Curr. Opin. Struct. Biol. 1998,8: 346-354
    48. Capone MC, Gorman DM, Ching EP, Zlotnik A. Identification through bioinformatics of cDNAs encoding human thymie shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family. J mmunol, 1996, 157(3): 969-973
    49. Carroll S L, Horowits R. Myofibrillogenesis and formation of cell contacts mediate the localization of N2RAP in cultured chick cardiomyocytes. Cell Motil Cytoskeleton, 2000,47 (1) : 63~76
    50. Casas-Carrillo E, Prill-Adams A, Price S G, Clutter A C, Kirkpatrick B W. Mapping genomic regions associated with growth rate in pigs. J Anim Sci, 1997a, 75:2047-2053
    51. Casas-Carrillo E, Prill-Adams A, Price S G, Clutter A C, Kirkpatrick B W. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim Genet, 1997b, 28:88-93
    52. Cassady J. P., Johnson R. K. Identification of quantitative trait loci affecting reproduction in pigs.Journal of Animal Science,2001,79(3):623-633
    53. Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, Plastow G, Rothschild M. Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics, 2001, 159(3): 1151-1162
    54. Cirera S, Jorgensen CB, Sawera M, Raudsepp T, Chowdhary BP, Fredholm M. Comparative mapping in the pig: localization of 214 expressed sequence tags. Mamm Genome, 2003, 14(6):405-426
    55. Clop A, Ovilo C, Perez-Enciso M, Cercos A, Tomas A, Fernandez A, Coil A, Foleh J M, Barragan C, Diaz I, Oliver M A, Varona L, Silio L, Sanchez A, Noguera J L. Detection of QTL affecting fatty acid composition in the pig. Mamm Genome, 2003, 14(9): 650-656
    56. Davoli R, Fontanesi L, Zambonelli P, Bigi D, Gellin J, Yerle M, Mile J, et al. Isolation of porcine expressed sequence tags for the construction of a first genomie transcript map of the skeletal muscle in pig. Anim Genet, 2002, 33(1): 3-18
    57. Davoli, L. Fontanesi, M. Cagnazzo, E. Scotti, L. Buttazzoni, M. Yerle and V. Russo. Identification of SNPs, mapping and analysis of allele frequencies in two candidate genes for meat production traits: the porcine myosin heavy chain 2B (MYH4) and the skeletal muscle myosin regulatory light chain 2 (HUMMLC2B). Anim Genet,2003,34(3):221-225
    58. de Koning D J, Janss L L, Rattink A P, van Oers P A, de Vries B J, Groenen M A, van der Poel J J, de Groot P N, Braseamp E W, van Arendonk J A. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Genetics, 1999, 152(4): 1679-1690
    59. de Koning D J, Rattink A P, Harlizins B, van Arendonk J A, Braseamp E W, Groenen M A. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA, 2000, 97:7947-7950
    60. de Koning D J, Rattink A P, Harlizius B, Groenen M A, Brascamp E W, van Arendonk J A. Detection and characterization of quantitative trait loci for growth and reproduction in pigs. Livest Prod Sci, 2001, 72:185-198
    61. Denis Milan, Jin-Tae Jeon, Christian Looft, Valerie Amarger, Annie Robic, Mattias Thelander, Claire Rogel-Gaillard, Sven Paul, Nathalie Iannuccelli, Lars Rask, Hans Ronne, Kerstin Lundstrom, Norbert Reinsch, Joel Gellin, Ernst Kalm, Pascale Le Roy, Patrick Chardon, Leif Andersson. A Mutation in PRKAG3 Associated with Excess Glycogen Content in Pig Skeletal Muscle. Science, 2000,288(5469): 1248-1251
    62. D.Q. Xu, Y.Z. Xiong, X.F. Ling, J. Lan, M. Liu, C.Y. Deng, S.W. Jiang, M.G. Lei. Identification of a differential gene HUMMLC2B between F1 hybrids Landrace×Yorkshire and their female parents Yorkshire. Gene, 2005,352(6): 118-126
    63. Echwald S M, Bjorbaek C, Hansen T, Clausen J O, Vestergaard H, Zierarth, J R, Printz R L, Granner D K, Pedersen O. Identification of four amino acid substitutions in hexokinase Ⅱ and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity. Diabetes, 1995,44:347-353
    64. Ehler E, Horowits R, Zuppinger C, et al. Alterations at the intercalated disk associated with the absence of muscle L IM protein. J Cell Biol, 2001,153 (4): 763~772
    65. Ernst CW, Robic A, Yerle M, Wang L, Rothschild MF. Mapping of calpastatin and three micrnsatellites to porcine chromosome 2q2.1-q2.4. Anim Geneto 1998, 29(3): 212-215
    66. FitzPatrick D R, Germain-Lee E, Valle D. Isolation and characterization of rat and human cDNAs encoding a novel putative peroxisomal enoyl-CoA hydratase. Genomics, 1995,27:457-466
    67. Fontanesi, L, Davoli, R, Zijlstra, C, Bosma, AA, Russo, V. Mapping of the Na+,K+-ATPase subunit alpha 2 (ATP1A2) and muscle phosphofructokinase (PFKM) genes in pig by somatic cell hybrid analysis. Animal Genetics, 1999,30:57-59
    68. Fronicke L, Chowdhary B P, Scherthan H, Gustavsson I. A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome, 1996, 7(4): 285-290
    69. Fronicke L, Wienberg J. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mamm Genome, 2001, 12(6): 442-499
    70. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 1991,253(5018): 448-451
    71. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Balroch A.ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31:3784-3788
    72. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.Protein Identification and Analysis Tools on the ExPASy Server. (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005:571-607
    73. Gattiker A., Gasteiger E. and Bairoch A. ScanProsite: a reference implementation of a PROSITE scanning tool.Applied Bioinformatics,2002,1:107-108
    74. Geldermann H, Muller E, Moser G, Reiner G, Bartenschlager H, Cepica S, Stratil A, et al.Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Board crosses. Journal of Animal Breeding and Genetics, 2003, 120(6): 363-393
    75. Gerbens F, Jansen A, Van Erp A J M, Harders F L, Meuwissen T H E, Rettenberger G, Veerkam J H, Tepas M F W. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm Genome, 1998, 9:1022-1026
    76. Gerbens F, van Erp A J, Harders F L, Verburg F J, Meuwissen T H, Veerkamp J H, te Pas M F. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J Anim Sci, 1999, 77(4): 846-852
    77. Gerbens F, de Koning D J, Harders F L, Meuwissen T H E, Jams L L G, Groenen M A M, Veerkamp J H, Van Arendonk J A M, Tepas M F W. The effect of adipocyte fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J Anim Sci, 2000, 78:552-559
    78. Goureau A, Yerle M, Schmitz A, Piquet J, Milan D, Pinton P, Frelat G, Gellin J. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics, 1996, 36(2): 252-62
    79. Goureau A, Garrigues A, Tosser-Klopp G, Lahbib-Mansais Y, Chardon P, et al. Conserved synteny and gene order difference between human chromosome 12 and pig chromosome 5. Cytogenet Cell Genet,2001, 94:49-54
    80. Grindflek E, Szyda J, Liu Z, Lien S. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm Genome, 2001, 12:299-304
    81. Halushka M K, Fan J B, Bently K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet, 1999, 22(3): 239-247
    82. Jeon J T, Carlborg O, Tomsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genet, 1999, 21: 157-158
    83. Bang Z, He H, Hamasima N, Susuki H, Gibbins A. Comparative mapping of Homo sapiens Chromosome 4 (HSA4) and Sus scrofa chromosome 8 (SSCS) using orthologous genes representing different cytogenetic bands as landmarks. Genome, 2002,45:147-156
    84. King A h. Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biology of Reproduction,2003,68(6):2172-2179
    85. Knott S A, Marklund L, Haley C S, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller M, Andersson L. Multiple marker mapping of quantitative trait loci in a cross between outbred wild hoar and large white pigs. Genetics, 1998, 149:1069-1080
    86. Hamilton DN, Ellis M, Miller KD, McKeith FK, Parrett DF. The effect of the Halothane and Rendement Napole genes on carcass and meat quality characteristics of pigs. J Anim Sci, 2000, 78(11): 2862-2867
    87. Harlizius B, Rattink A P, de Koning D J, Faivre M, Joosten R G, van Arendonk J A, Groenen M A. The X chromosome harbors quantitative trait loci for backfat thichness and intramuscular fat content in pigs. Mamm Genome, 2000, 11:800-802
    88. Hauser M A, Horrigan S K, Salmikangas P, Torian U M, Viles K D, Dancel R, Tim R W, Taivainen A, Bartoloni L, Gilchrist J M, Stajich J M, Gaskell P C, Gilbert J R, Vance J M, Pericak-Vance M A, Carpen O, Westbrook C A, Speer M C. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Molec. Genet,2000,9: 2141-2147
    89. Heikkinen S, Suppola S, Malkki M, Deeb S S, Janne J, Laakso M. Mouse hexokinase Ⅱ gene: structure, cDNA, promoter analysis, and expression pattern. Mamm Genome, 2000,11:91-96
    90. Herrera A H, Elzey B, Law D J, et al. Terminal regions of mouse Nebulin: sequence analysis and complementary localization with N2RAP. Cell Motil Cytoskeleton, 2000, 45 (3): 211~222
    91. Higgins D., Thompson J., Gibson T.Thompson J.D., Higgins D.G., Gibson T.J..CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22:4673-4680
    92. Hirooka H, de Koning D J, Harlizius B, van Arendonk J A, Rattink A P, Groenen M A, Braseamp E W, Bovenhuis H. A whole genome scan for quantitative trait loci affecting teat number in pigs. J Anim Sci, 2001, 79:2320-2326
    93. Ingolf Bach.The LIM domain: regulation by association. Mech Dev,2000,91(1-2):5-17
    94. Laakso M, Malkki M, Deeb S S. Amino acid substitutions in hexokinase Ⅱ among patients with NIDDM. Diabetes, 1995,44:330-334
    95. Lehto M, Xiang K, Stoffel M, Espinosa R Ⅲ, Groop L C, Le Beau M M, Bell G I. Human hexokinase Ⅱ: localization of the polymorphic gene to chromosome 2. Diabetologia, 1993,36: 1299-1302
    96. Jeon J T, Carlborg O, Tomsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genet, 1999, 21: 157-158
    97. J. G. Kim, G. A. Rohrer, J. L. Vallet, R. K. Christenson and D. Nonneman. Addition of 14 anchored loci to the porcine chromosome 8 comparative map. Anim Genet, 2004, 35(6):474-476
    98. Jiang ZH, Gibson JP. Genetic polymorphisms in the leptin gene and their association with fatness in four pig breeds. Mamm Genome, 1999, 10(2): 191-193
    99. Johansson Moller M, Chaudhary R, Hellmen E, Hoyheim B, Chowdhary B, Andersson L. Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome, 1996, 7(11): 822-830
    100. Karsson A H, Klont R E, Fernandez X, et al. Skeletal muscle fibres as factors for pork quality. Livest Prod Sci, 1999, 60(3): 255-269
    101. Luo G, Leroy E, Kozak CA, Polymeropoulos M H, Horowits R. Mapping of the gens (NRAP) encoding N-RAP in the mouse and human genomes. Genomics,1997,45:229-232
    102. Kim KS, Larsen H, Short T, Plastow G, Rothschild MF. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome, 2000, 11(2): 131-135
    103. King A H, Jiang Z, Gibson J P, Haley C S, Archibald A L. Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Bioi Reprod, 2003, 68(6): 2172-2179
    104. Kumar S, Tamura K, and Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics,2004,5:150-163
    105. Lebret, B., Le, Roy, P., Menin, G., Lefaucheur, L., Caritez, J C., Talmant, A., Elsen, J M., Sellier, P. Influence of the three RN genotypes on chemical composition, enzyme activities,and myofiber characteristics of porcine skeletal muscle. Journal of Animal Science,1999,77:1482-1489
    106. Lee C, Chung Y, Kim J H. Quantitative trait loci mapping for fatty acid contents in the backfat on porcine chromosomes 1, 13, and 18. Mol Cells, 2003, 15(1): 62-67
    107. Leroy, P., Naveau, J., Elsen, J.M., Sellier, P. (1990). Evidence for a New Major Gene Influencing Meat Quality in Pigs. Genetical Research, 1990,55:33-40
    108. L.S. Biltueva, F. Yang, N.V. Vorobieva, A.S. Graphodatsky. Comparative map between the domestic pig and dog. Mammalian Genome, 2004, (15):809-818
    109. Malek M, Dekkers J C M, Lee H K, Bass T J, Rothschild M F. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. Ⅰ: Growth and body compostion. Mamm Genome, 2001 a, 12:630-636
    110. Malek M, Dekkers J C M, Lee H K, Bass T J, Rothschild M F. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. Ⅱ: Meat and muscle composition. Mamm Genome, 2001b, 12:637-645
    111. Mariani P, Lundstrom K, Gustafsson U, Enfalt AC, Juneja RK, Andersson L. A major locus (RN) affecting muscle glycogen content is located on pig chromosome 15. Mamm Genome, 1996, 7(1):52-54
    112. Martin H. Braunsehweig, Adam A. Paszek, Joel I. Weller, Yang Da, Rachel J. Hawken, Matthew B. Wheeler, Lawrence B. Schook, Leeson J. Alexander. Generation and exploration of a dense genetic map in a region of a QTL affecting corpora lutea in a Meishan×Yorkshire cross. Mammalian Genome,2001,12:719-723
    113. Mathupela S P, Heese C, Pedersen P L. Glucose catabolism in cancer cells: the type Ⅱ hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem, 1997,272:22776-22780
    114. Milan D, Riquet J, Yerle M, Goureau A, Schmitz A, Cribiu E P, Frelat G, Gellin J. Homologous and heterologous FISH painting with PARM-PCR chromosome-specific probes in mammals. Mamm Genome, 1996, 7(3): 194-199
    115. Milan D, Woloszyn N, Yerle M, Le Roy P, Bonnet M, piquet J, Lahbib-Mansais Y, et al. Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15. Mamm Genome, 1996, 7(1): 47-51
    116. Milan D, Bidanel J P, lannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol, 2002, 34(6): 705-728
    117. M.Van Poucke, M.Yerle,P.Chardon,K.Jacobs,C.Genet, M.Mattheeuws,A,Van Zeveren and L.J.Peelman.A refined comparative map between porcine chromosome 13 and human chromosome 3.Cytogenet Genome Res,2003, 102:133-138
    118. Nakajima,H., Kono,N.,Yamasaid,T.,Hotta,K.,Kawachi,M., Kuwajima,M., Noguchi,T., Tanaka,T. and Tarui,S. Genetic defect in muscle phosphofructokinase deficiency. Abnormal splicing of the muscle phosphofructokinase gene due to a point mutation at the 5'-splice site. J Biol Chem, 1990, 265 (16): 9392-9395
    119. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleus J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet, 1999, 21:155-156
    120. Nezer C, Collette C, Moreau L, Brouwers B, Kim JJ, Giuffra E, Buys N, Andersson L, Georges M. Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Geneaes, 2003,16(1): 277-285
    121. Nickerson D A, Taylor S L, Weiss K M, Clark A G, Hutchinson R G, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing C F. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet, 1998, 19(3): 233-240
    122. Nonneman D, Rohror G A. Comparative mapping of six porcine ESTs corresponding to human chromosome 10p and porcine chromosome 10q which contains QTL for reproductive traits in swine. Plant, Animal & Microbe Genomes Conference, Town & Country Convention Center, San Diego, CA, 2002,1:12-16
    123. O'Brien S J, Graves J A,. Report of the committee on comparative gene mapping. Cytogenet Cell Genet, 1991,58:1124-1151
    124. Ovilo C, Perez-Enciso M, Barragan C, Clop A, Rodriguez C, Oliver M A, Tore M A, Noguera J L. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome, 2000, 11: 344-340
    125. Park E.W.. Identification of quantitajtive trait loci (QTL) affecting meat quality traits in pigs. Proceedings of the 7th World Congress on Genetics. Applied to Livestock Production,2002,(2):4-9
    126. Park HB, Carlborg O, Marklund S, Andersson L. Melanocortin-4 receptor (MC4R) genotypes have no major effect on fatness in a Large White x Wild Boar intercross. Anita Genet, 2002, 33(2): 155-157
    127. Paszek A A, Wilkie P J, Flickinger G H, Rohrer G A, Alexander L J, Beattic C W, Schook L B. Interval mapping of growth in divergent swine cross. Mamm Genome, 1999, 10:117-122
    128. Perez-Enciso M, Clop A, Hoguera J L, Ovilo C, Coll A, Folch J M, Babot D, Estany J, Oliver M A, Diaz I, Sanchez A. A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landtace intercross. J Anim Sci, 2000, 78:2525-2531
    129. Pinton P, Schibler L, Cribiu E, Gellin J, Yerle M. Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mamm Genome, 2000, 11(4): 306-315
    130. Ponsuksili S, Wimmers K, Yerle M, Schellander K. Mapping of 93 porcine ESTs preferentially expressed in liver. Mamm Genome, 2001, 12(11): 869-872
    131. Rathje T A, Rohrer G A, Johnson R K. Evidence for quantitative trait loci affecting ovulation rate in pigs.Journal of animal Science, 1997, 75:1486-1494
    132. R. Davoli, P. Zamboneili, L. Fontanesi,M. Cagnazzo, D. Bigi, V. Rnsso and D. Milan. Radiation hybrid mapping of three skeletal muscle genes (CKM, ECH1 and TNNT1) to porcine chromosome 6. Animal Genetics, 2003,34:302-318
    133. Reddy, A.S.N., et al., Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem, 2002,6:4206-4214
    134. Rosenberg L M, Gilbert W. Intron phase correlation and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA, 1995, 92:12495-12499
    135. Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, Hameister H. Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics, 1995, 26(2): 372-378
    136. Rettenberger G., Bruch J, Fries R.,. Archibald A.L, Hameister H. Assignment of 19 porcine type I loci by somatic cell hybrid analysis detects new regions of conserved synteny between human and pig. Mamm Genome, 1996, 7(4):275-279
    137. Rink A, Santschi E M, Eyer K M, Roelofs B, Hess M, Godfrey M, Karajnsuf E K, Yerle M, Milan D, Beattie C W. A first-generation EST RH comparative map of the porcine and human genome. Mamm Genome, 2002, 13(10): 578-587
    138. Rohrer G A, Keele J. Identification of quantitative trait loci affecting carcass composition in swine Ⅰ: Fat deposition traits. J Anim Sci, 1998a, 76:2247-2254
    139. Rohrer G A, Keele J. Identification of quantitative trait loci affecting carcass composition in swine Ⅱ: Muscling and wholesale product trait yield traits. J Anim Sci, 1998b, 76:2255-2262
    140. Rohrer G A. Identification of quantitative trait loci affecting birth character and accumulation of backfat and weight in a Meishan and Large White composite resource population. J Anim Sci, 2000, 78:2547-2553
    141. Rohrer G A, Wise T H, Lunstra D D, Ford J J. Identification of genomic regions controlling plasma FSH concentrations in Meishan White composite boars. Physiological Genomics, 2001,6:145-151
    142. Rosenberg L M, Gilbert W. Intron phase correlation and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA, 1995, 92:12495-12499
    143. Rothschild M F, Liu H C, Tuggle C K, Yu T P, Wang L. Analysis of chromosome 7 genetic markers for growth and carcass performance traits. J. Anim Breed Genet, 1995, 112:341-348
    144. Rothschild M.F., Vincent A & Tuggle C., Prolactin receptor gene as a genetic marker for increased litter size in pigs. PCT patent application WO98/03682,1998
    145. Rothschild M F. From a sow's ear to a silk purse: real progress in porcine genomics. Cytogenet Genome Res, 2003, 102(1-4): 95-99
    146. Salmikangas P, Mykkanen O.-M, Gronhoim M, Heiska L, Kere J, Carpen O. Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum. Molec. Genet, 1999,8:1329-1336
    147. Salmikangas P, van der Ven P F M, Lalowski M, Taivainen A, Zhao F, Suila H, Schroder R, Lappalainen P, Furst D O, Carpen O. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Molec. Genet,2003,12: 189-203
    148. Sasaki S, Clutter AC, Pomp D. Assignment of the porcine obese (leptin) gene to chromosome 18 by linkage analysis of a new PCR-based polymorphism. Mamm Genome, 1996, 7(6): 471-472
    149. Schmitz A, Oustry A, Vaiman D, Chaput B, Frelat G, Cribiu E P. Comparative karyotype of pig and cattle using whole chromosome painting probes. Hereditas, 1998, 128(3): 257-263
    150. Schlattner, U., Gehring,F., Vernoux,N., Tokarska-Schlattner, M., Neumann,D., Marcillat,O., Vial,C. and Wallimann,T.. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase. J Biol Chem, 2004,279 (23): 24334-24342
    151. Schuler GD.Sequence mapping by electronic PCR. Genome Res, 1997,7(5): 541-550
    152. Sellier P. et al.Genetics of pig meat quality: a review. Journal of Muscle Foods. 1994,5:187-219
    153. Sellier P. Genetics of meat and carcass traits. The Genetics of the Pigs. CAB International. Oxon, UK,1998, 463-510
    154. Sato S, Oyamada Y, Atsuji K, Nade T, Sato S, Kobayashi E, Mitsuhashi T, Nirasawa K, Komatsuda A, Salto Y, Terai S, Hayashi T, Sugimoto Y. Quantitative trait loci analysis for growth and carcass traits in a Meishan×Duroc F2 resource population. J Anita Sci, 2003, 81(12): 2938-2949
    155. Shackelford SD, Koohmaraie M, Cundiff LV, Gregory KE, Rohrer GA, Savell JW. Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. J Anim Sci, 1994, 72(4): 857-863
    156. Song, C. Gao, B., Teng, Y., Wang, X., Wang, Z., Li, Q., Mi, H., Jing, R., Mao, J. MspI polymorphisms in the 3rd intron of the swine POU1F1 gene and their associations with growth performance. Journal of Applied Genetics, 2005,46(3):285-289
    157. Staron R S, Pette D. Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochemistry, 1986, 86:19-23
    158. Still, I. H., Hamilton, M., Vince, P., Wolfman, A., and Cowell, J. K. Cloning of TACCI, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amolicon. OncoQene,1999,18:4032-4038
    159. Sun H-F, Ernst C, Yerle M, Pinton P, Rothschild M, et al. Human Chromosome 3 and pig Chromosome 13 show complete synteny conservation but extensive gene-order differences. Cytogenet Cell Genet, 1999,85:273-278
    160. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832-836
    161. Van Poucke M, Yerle M, Tuggle C, Piumi F, Genet C, Van Zeveren A, Peelman L J. Integration of porcine chromosome 13 maps. Cytogenet Cell Genet, 2001, 93: 297-303
    162. Vidal-Puig A, Printz R L, Stratton I M, Granner D K, Moller D E. Analysis of the hexokinase Ⅱ gene in subjects with insulin resistance and NIDDM and detection of a gln142-to-his substitution. Diabetes, 1995,44: 340-346
    163. Wada Y., Akita T. Quantitative trait loci (QTL) analysis in a Meishan×Gttingen cross population. Animal Genetics, 2000,31(6):376-384
    164. Walling G A, Archibald A L, Cattermole J A, Downing A C, Finlayson H A, Nicholson D, Visscher P M, Walker C A, Haley C S. Mapping of quantitative trait loci on chromosome 4. Anim Genet, 1998a, 29:415-424
    165. Walling G A, Archibald A L, Visscher P M, Haley C S. Mapping genes for growth rate and fatness in a LargeWhite and Meishan F2 pig population. Proceedings of the British Society of Animal Science, 1998b, 7
    166. Walling G A, Visacher P M, Andetsson L, Rothschild M F, Wang L Z, Moser G, Groenen M A M, Bidanel J P, Cepica S, Archibald A L, Geldermann H, de Koning D J, Milan D, Haley C S. Combined analysis of data from QTL mapping studies: chromosome 4 effects on porcine growth and fatness. Genetics, 2000, 155:1369-1378
    167. Wada Y, Akita T, Awata T, Furukawa T, Sugai N, Inae Y, Ishii K, Ito Y, Kobayashi E, Kusumoto H, Matsumoto Y, Mikawa S, Miyake M, Murase A, Shimanuki S, Sugiyama T, Uchida Y, Yanai S, Yasue H. Quantitative trait loci analysis in a Meishan×Gottingan cross population. Anita Genet, 2000, 31: 376-384
    168. Wang Jun, Deng Chang-yan, Xiong Yuan-zhu, Zuo Bo,Xing Lei, Li Fenge et.al..cDNA clonging, sequence analysis of the porcine LIM and Cysteine-rich domain 1 gene. Acta biochim niophys sin, 2005,37(12):843-450
    169. Wang L, Yu T P, Tuggle C K, Liu H C, Rothschild M F. A directed search for quantitative trait loci on chromosome 4 and 7 in the pig. J Anim Sci, 1998, 76:2560-2567
    170. Weller J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markets. Biometrics, 1986, 42:627-641
    171. Wilikle P J, Flickinger G H, Paszek A A, Schook L B. Scan of eight chromosomes for growth, carcass and reproductive traits reveals two likely quantitative trait loci. Anim Genet, 1996,27(supp 12): 117-118
    172. Xia D, Zhao RQ, Wei XH, Xu QF, Chen J. Developmental patterns of GHr and SS mRNA expression in porcine gastric tissue. World J Gastroenterol, 2003, 9(5): 1058-1062
    173. Yoshinori SEKI, Kan SATO, Tatsuyoshi KONO and Yukio AKIBA. Cloning and gene expression of hexokinase Ⅰ and Ⅱ in the chicken skeletal muscle. Animal Science Journal, 2005, 76:491-497
    174. Yu TP, Tuggle CK, Schmitz CB, Rothschild MF. Association of PIT1 polymorphisms with growth and carcass traits in pigs. J Anim Sci, 1995, 73(5): 1282-1288
    175. Zhang J Q, Elzey B, Williams G, et al. Ultrastructural and biochemical localization of N2RAP at the interface between myofibrils and intercalated disks in the mouse heart. Biochemistry, 2001, 40 (49): 14898~14906
    176. Zuo Bo, Xiong Yuan Zhu. Mapping quantitative trait loci for meat quality on pig chromosome 3, 4 and 7. Asian-Australasian Journal of Animal Science,2003,16(3):320-324
    177. Zuo B, Y. Z. Xiong, C. Y. Deng, et al. cDNA cloning, genomic structure and polymorphism of the porcine FHL3 gene. Anim Genet, 2004, 3:230-233
    178. Schlattner, U., Gehring,E, Vernoux,N., Tokarska-Schlattner, M., Neumann,D., Marcillat, O., Vial,C. and Wallimann,T. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase. J. Biol. Chem, 2004, 279 (23): 24334-24342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700