用户名: 密码: 验证码:
中国尖音库蚊复合组分子系统学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖音库蚊复合组Culex pipiens Complex是全球性分布的媒介蚊虫复合组。在我国,该复合组包括尖音库蚊指名亚种、致倦库蚊、淡色库蚊和骚扰库蚊。我国已知前三者的分布情况,其中新疆地区是典型的尖音库蚊的孳生地,北方地区为淡色库蚊,南方地区为致倦库蚊,并在北京、沈阳、上海地区发现骚扰库蚊。
     该复合组种类遍布于全国,而且是全球重要的疾病传播媒介,在医学上具有重要研究价值,其中尖音库蚊亚种的淡色库蚊和致倦库蚊是我国斑氏丝虫病的主要传播媒介。该复合组还是我国广大城乡的优势蚊虫,其中淡色库蚊和致倦库蚊分别是我国北方和南方常见蚊种,是城镇入室吸血骚扰的主要蚊种。
     该复合组的分类是蚊虫分类学研究中公认的世界性难题。国内外学者对该复合组分类地位、鉴别形态和地理区划做了不少研究,该复合组的各亚种形态颇为相似,从外形上很难鉴别,其雄蚊阳茎侧板中叶的形态特征是种下分类的重要依据,且雄蚊阳茎DV/D值是该复合组的重要形态学鉴别特征。然而对于雌性成蚊,仍然,没有可鉴别的形态特征,同时该复合组成员之间的进化和亲缘关系也还没有深入的研究。
     随着分子生物学技术,尤其是PCR技术和核酸自动测序技术的迅速发展,成熟的基因扩增及测序技术,结合比较发达的网络与信息技术,给我们提供了以DNA为基础的分子系统分类学的发展。较传统的形态分类学而言,分子系统分类学可以利用小块生物体组织进行鉴别,能够在生物的不同生长阶段鉴别物种;并能够对传统分类系统进行验证,弥补其不足。现已被广泛用于研究昆虫系统发育、行为进化、种群遗传变异和分化,以及区分近缘种的鉴别,种下分类单元的鉴定等方面。多种分子标记的出现,为尖音库蚊复合组蚊虫在系统分类学、种群遗传学、种群生态学等方面的研究提供了新的思路和方法,从而能更好地阐明媒介蚊虫和疾病传播的关系,为蚊媒和蚊媒病的防治提供重要的参考。
     本研究依据外部形态分类鉴定及前人工作的基础上,以我国尖音库蚊复合组中的四亚种为研究对象,综合多个分子标记,利用分子生物学技术对其分子标记的基因序列进行研究,通过测定基因序列,对每个分子标记进行详细的分析,构建了该复合组在分子水平的系统发育关系。
     研究结果如下:
     1.15个尖音库蚊复合组种群中COⅠ和COⅡ基因序列获得的长度为633bp和626bp,两者均表现出A+T含量高于C+G含量的趋向性和氨基酸的偏向性,它们的各序列之间的差异度与遗传距离均呈线性关系,且转换大于颠换,碱基替换未达到饱和,说明尖音库蚊复合组种间存在较大的进化潜能。
     2.15个尖音库蚊复合组种群中COⅠ和COⅡ基因序列遗传距离范围均在0~0.013之间,说明该复合组变异性较低,遗传相似性较高。聚类分析结果表明COⅠ和COⅡ基因在尖音库蚊复合组种内十分保守,不适合在分子系统学研究中用于作亚种阶元的分子特征指标,从另一个角度表明,由于COⅠ和COⅡ基因序列较为相似,因此可以看出尖音库蚊、淡色库蚊、致倦库蚊和骚扰库蚊仍属于同一个种。
     3.30个尖音库蚊复合组种群中AChE2基因序列获得的长度为925bp,其也表现出A+T含量趋向性和氨基酸的偏向性,它们的各序列之间的差异度与遗传距离也呈线性关系,且转换大于颠换,碱基替换未达到饱和。
     4.30个尖音库蚊复合组种群中AChE2基因序列遗传距离范围均在0~1.292之间,说明该复合组变异性较大。聚类分析结果表明AChE2基因序列在尖音库蚊复合组蚊虫亚种阶元分类上具有重叠交叉现象,不能与传统形态学分类统一起来,说明就AChE2基因来说,我国尖音库蚊复合组蚊虫分化还没有达到可以通过该序列区分的程度。
     5.34个地区的尖音库蚊复合组蚊虫除新疆霍城的尖音库蚊外均有wolbachia感染,感染率在24%~100%。说明我国尖音库蚊复合组地理种群内wolbachia感染现象十分普遍,且其分布不均匀,感染情况呈现多样性。其中32个地区中测得的wsp基因序列差异较小,经多序列比对排齐后完全一致。说明我国尖音库蚊复合组亲缘关系很近,同源性较高。
     6.22个地理采集点经雄蚊阳茎形态、DV/D值与蚊虫生存环境及自育性综合分析,认为黑龙江黑瞎子岛、甘肃嘉峪关、甘肃张掖、甘肃民勤、和甘肃武威的尖音库蚊复合组蚊虫为尖音库蚊,并确定在内蒙古满洲里发现骚扰库蚊新纪录。
     7.22个地区雄蚊阳茎DV/D值与纬度之间呈强负相关,运用其回归方程验证了30°左右为我国淡色库蚊与致倦库蚊地理分布的理论分界线,说明尖音库蚊复合组雄蚊阳茎DV/D值随地理纬度不同而变化。
     8.25个尖音库蚊复合组地理种群在9个微卫星位点中每个位点的平均等位基因数为5.92,平均多态信息含量为0.697,平均香农多样性指数为1.236,平均观察杂合度为0.471,说明我国尖音库蚊复合组种群内的遗传变异比较丰富,为高度多态性,属高度杂合群体,有较大的遗传潜力,能反映种间的遗传多样性信息。
     9.9个微卫星位点在25个尖音库蚊复合组种群进行哈迪温伯格平衡检验,除Cx2、Cp3和Cx7位点外均偏离哈温平衡;它们的平均固定指数为0.224,平均遗传分化系数为0.228,说明群体间并非随机交配,存在高度的遗传分化。基因流的平均值为1.008,说明种群间的遗传相似性不高,而且所选的尖音库蚊复合组群体存在或者过去某个时期发生基因交流。
     10.25个尖音库蚊复合组种群间的遗传距离介于0.089~1.775之间,说明群体间遗传差异较大。聚类分析结果表明,9个位点的微卫星标记基本能够正确的反映尖音库蚊复合组种群内各群体间的遗传关系,能够较为准确的描述各群体间的关系,及该复合组和地理分布有一定程度的关联。
The study of species complex of mosquito of medical importance is one of theimportant contents in molecular systematic.There are four species or subspeciesgenerally considered to be the members of the important Culex pipiens complex,namely, Culex pipiens pipiens, Cx. pipiens quinquefasciatus, Cx. pipiens pallens andCx. pipiens molestus.The former three are recorded in China,of which Cx. pipienspipiens is only found in Xingjiang, Cx. pipiens pallens and Cx. pipiensquinquefasciatus in north and south China respectively, Cx. pipiens molestus arefound in Beijing,Shenyang and Shanghai.
     As the important disease vectors throughout the world, the species of Cx. pipiensComplex, which are distributed all over the country, have the important medicalresearch value. Wherein the Cx. pipiens pallens and Cx. pipiens quinquefasciatus,which belong to Cx. pipiens pipiens, are the major vectors of the bancroftian filariasisin our country. This complex is the dominant mosquito species in Chinese urban andrural areas, among which the Cx. pipiens pallens acts as the common mosquitospecies in northern China and the main mosquito species responsible for the indoorhemophagia harassment in the cities and towns.
     The classification for this complex remains as the worldwide problem, which isrecognized in mosquito taxonomic study. International and domestic academics haveconducted a lot of studies on taxonomic status, morphology identification, andgeographical regionalization for this complex. The morphology is very similar amongvarious subspecies of this complex. Therefore it is difficult to distinguish from theappearance. The morphological character of the male genitalia is the important basisfor the infraspecific classification. And the DV/D ratio of male genitalia is themorphological identification character for this complex. The field acquisitiondifficulty, character information insufficiency, and identification slowness for themosquitoes of this complex cause the difficulty on rapid identification and the lack of system evolutionary data on mosquito; the above content, combined with thelimitation of morphological identification and the continuously diminished workforceof taxonomists, has formed enormous challenge on the taxonomy development forthis complex.
     Along with the rapid development of molecular biology techniques (especiallythe PCR technique and automatic nucleic acid sequencing technique), the maturegene amplified and sequenced technology, together with the relatively developednetworking and information technology, has provided the development of molecularphylogenetic taxonomy based on DNA. Compared with the traditional morphologicaltaxonomy, the molecular phylogenetic taxonomy could carry out the identificationusing the smallish slice of organism tissue, distinguish the species in the differentgrowth stages, and verify the traditional taxonomy system to compensate itsdeficiencies. Consequently, it has been widely applied in many aspects, such as theresearch of insect phylogeny, action evolution, population genetic variation anddifferentiation, the identification of distinguishing the species swarm, the verificationof infraspecific taxa, and so on. The advent of many kinds of molecular geneticmarkers provides the new thinking and method for researching the Cx. pipiensComplex mosquitoes in terms of system taxonomy, population genetics,populationecology, and so on, thus better illustrates the relationship between the vectormosquitoes with the disease transmission, and offers the essential reference for theprevention and treatment of Mosquito and the vectors diseases.
     Based on the external morphological classification and identification and theprevious work, this study focuses on the four subspecies of Cx. pipiens Complex inour country. After compositing multiple molecular genetic markers, we study the genesequences of the molecular genetic markers with the molecular biology techniques.By determining the genetic sequences, we analyze each molecular genetic markerdetailedly and establish the phylogenetic relationship of this complex at the molecularlevel.
     The results for this study are as follows:
     1. In the15Cx. pipiens Complex populations, Wherein the acquired COⅠgenesequence length is633bp, the COⅠand COⅡ gene sequences all show thetropism and the bias. and the COⅡgene sequence length is626bp. The formermeans that the A+T content is higher than C+G content, and the latter means thebias of amino acid. The difference degrees and genetic distances among their sequences are all of linear relationship, and the conversion is greater thantransversion. The base substitution does not achieve the level of saturation. Theabove information indicates that there is large evolutionary potential among theCx. pipiens Complex populations.
     2. In the15Cx. pipiens Complex populations, the COⅠand COⅡ gene sequencesgenetic distances all fall into the range from0to0.013, which indicates that thevariability of this complex is low and the genetic similarity is high. The result ofcluster analysis shows that the COⅠand COⅡgenes are very conservative withinthe Cx. pipiens Complex population thus unfit for serving as the molecularcharacteristic index of subspecies categories in molecular systematics study. Itindicates from another perspective that the COⅠand COⅡ gene sequences arerelatively similar, thus it can be seen that they still belong to the same population.
     3. In the30Cx. pipiens Complex populations, wherein the acquired AChE2genesequence length is925bp, the AChE2gene sequences also show the tropism andthe bias. The former means that the A+T content are higher than C+G content, andthe latter means the bias of amino acid. The difference degrees and geneticdistances among their sequences are also all of the linear relationship, and theconversion is greater than transversion. The base substitution does not achieve thelevel of saturation.
     4. In the30Cx. pipiens Complex populations, the AChE2gene sequences geneticdistances all fall into the range from0to1.292, which indicates that for thiscomplex the variability, is high. The result of cluster analysis shows that theAChE2gene sequences has the crossing and overlapping phenomenons in termsof Cx. pipiens Complex mosquito subspecies categories classification thus cannotbe unified with the traditional morphological classification. The aboveinformation indicates that for the AChE2gene, the Cx. pipiens Complex mosquitodifferentiation in our country has not reached the degree in which it can bedistinguished by this gene sequence.
     5. The study for34geographic strains has been conducted. Except the strain ofHuocheng County in Xinjiang, the Cx. pipiens Complex mosquitoes of other33geographic strains all have the Wolbachia infection, and the infection rate is24%~100%, which indicates that the Wolbachia infection phenomenons withinthe Cx. pipiens Complex geographical populations are widespread and unevenlydistributed, and that the infectious status is diversified. Among32geographic strains we have measured the wsp gene sequences of the Wolbachia strain andfound that the diversity is relatively low. After the sequence comparison andalignment they are exactly consistent. The above information indicates that in ourcountry there is the closed relationship and high homology among the Cx. pipiensComplex.
     6. After comprehensively analyzing the male genitalia morphology, DV/D ratiomosquitoes living environment, and the autogeny in22geographical field sites,we conclude that the Cx. pipiens Complex mosquitoes of the following geographicstrains are Cx. pipiens pipiens: the strain of Heixiazi Island in Heilongjiang, thestrain of Jiayuguan in Gansu, the strain of Zhangye in Gansu, the strain of Minqinin Gansu, the strain of Wuwei in Gansu. It is confirmed the discovery of the newrecord of Cx. pipipens molestus in Manzhouli, Inner Mongolia.
     7. For the22geographic strains, the DV/D ratio of male genitalia appears strongnegative correlation with the latitude. Utilizing its regression equation, we haveverified that the theoretical dividing line for the geographical distribution of Cx.pipiens pallens and Cx. pipiens quinquefasciatus in our country is about30°. Theabove information indicates that the male genitalia DV/D ratio of Cx. pipiensComplex changes with the variation of geographic latitude.
     8. For25Cx. pipiens Complex geographical populations, the average number ofallelic genes for each site is5.92, the average polymorphism information contentis0.697and the average Shannon's diversity index is1.236and the averageheterozygosity observed of the25Cx. pipiens Complex populations is0.471. Theabove information indicates that in our country the genetic variation within the Cx.pipiens Complex populations is rich. All highly polymorphic with high geneticpotential and it could reflect the genetic diversity information among thepopulations.
     9. The Hardy-Weinberg equilibrium inspection is conducted at9microsatellite sitesfor the25Cx. pipiens Complex populations. Except the Cx2site, Cp3site, andCx7site, other sites all deviate from the HWE. The average fixation index of the9microsatellite sites among the25Cx. pipiens Complex populations is0.224, andthe average genetic differentiation coefficient is0.228, which indicates that thereis no random mating among the populations and the high degree of geneticdifferentiation. The average value of the gene flow is1.008, which indicates thatthe genetic similarity among the populations is low, and that there is the gene exchange, which may also occurred during some period in the past, among theselected Cx. pipiens Complex populations.
     10. The genetic distances of the25Cx. pipiens Complex populations fall into therange from0.089to1.775, which indicates that the genetic diversity among thepopulations is large. The result of the cluster analysis shows that themicrosatellite markers at the9sites can basically reflect the genetic relationshipsamong the Cx. pipiens Complex populations properly and describe therelationships among the populations accurately, thus indicate that thegeographical distribution has certain connection with this complex.
引文
【1】Knight K. L.and A. Stone. A catalog of the mosquitoes of the world (Diptera:Culicidae).2nd edition.Thomas Say Foundation. Ent.Soc.Am.,1977,Vol.Ⅵ:597-600.
    【2】Knight K. L.. Supplement to a catalog of the mosqutioes of the world (Diptera:Culicidae).Thomas Say Foundation. Ent.Soc.Am.,1978,Suppl. to Vol.Ⅵ.:107.
    【3】Ronald A. W.. Second Supplement to “A Catalog of the Mosquitoes of theWorld”(Diptera:Culicidae). Mosquito Systematics,1984,16(3):227-270.
    【4】Lu B. L.. A note on the Culex pipiens complex of China. AkaiekaNewsletter,1985,10(2):17-18.
    【5】赵彤言,陆宝麟.骚扰库蚊在我国新纪录及其自育性和分类学研究.中国媒介生物及控制杂志,1993,4(4):241-243.
    【6】赵彤言,陆宝麟.中国尖音库蚊复合组生物分类学的研究:雄蚊阳茎DV/D值的数值分析.昆虫学报,1994,37(4):446-449.
    【7】Zhao T. Y. and Lu B. L.. Biosystematics of culex pipiens complex inChina.Entomologia sinica,1995,2(1):1-8.
    【8】Severini C.,F Silvestrini,P.Mancini, et a1.Sequence and secondary structureof the rDNA second internal transcribed spacer in the sibling species Culex pipiensL.and Cx. quinquefasciatus Say (Diptera:Culicidae). Insect Molecular Biology,1996,5:181-186.
    【9】陈汉彬,陆宝麟.中国尖音库蚊复组的研究.贵阳医学院学报,1983,8(1):1-12.
    【10】陈汉彬.中国尖音库蚊组的分类志要.贵阳医学院学报,1988,13(1):136-143.
    【11】仇锦波.尖音库蚊复组的研究概况.医学动物防制,1991,7(4):298-299.
    【12】仇锦波.不同地理株尖音库蚊复组雄蚊尾器的光学镜和扫描电镜观察.昆虫分类学报,1991,13(1):47-53.
    【13】 Ishii T.. The taxonomic status of “culex pipiens pallens”.AkaiekaNewsletter,1985,10(2):18-36.
    【14】 Ishii T.. Integrated study on the Culex pipiens complex. AkaiekaNewsletter,1991,14(3):5-40.
    【15】仇锦波,邵英远.尖音库蚊复组构成比变化与气候关系的探讨.医学动物防制,1989,9(4):193-195.
    【16】王丽珠,曹毓存,刘成模.沈阳地区淡色库蚊的自育性.中国媒介生物学及控制杂志,1993,4(4):252-253.
    【17】海秀平,尚文旭,战志胜.淡色库蚊自育性的研究.医学动物防制,2007,23(11):841.
    【18】Harbach R. E., C. Dahl and G.B. White. Culex (Culex) pipiens Linnae-us(Diptera:Culicidae): concepts, type designation, and description.Proc.Entoml.Soc.Wash.,1985,87(1):1-24.
    【19】Jupp P. G.. Culex(Culex)pipiens pipiens Linnaeus and Culex(Culex)pipiensquinquefasciatus Say in South Africa:morphological and reproductive evidence infavour of their status as two species. Mosq.syst.,1978,10(4):461-8.
    【20】Miles S. L.and H. E. Paterson. Protein variation and systematics in the Culexpipiens group of species. Mosq. Syst.,1979,1l(3):187-193.
    【21】Sirivaskam S.and G.B.White. Neotype designation of Culex quinquefasciatusSay(Diptera:Culicldae). Proc.Entoml.Soc.Wash.,1978,80(3):360-372.
    【22】Barr.A,R.Culex.Handbook of Genetics,V01.3.Edited by R.C.King.NewYork:Plenum Press.1976.
    【23】赵彤言,陆宝麟.中国尖音库蚊复合组生物分类学的研究—幼虫形态特征的数值分析.寄生虫与医学昆虫学报,1995,2(3):153-160.
    【24】赵彤言,陆宝麟.中国尖音库蚊复合组杂交的研究.动物分类学报,1996,21(2):218-223.
    【25】赵彤言,周方,陈立茵,等.尖音库蚊复合组生物分类学的研究:表皮碳氢化合物的气相色谱分析.寄生虫与医学昆虫学报,1996,3(1):36-43.
    【26】赵彤言,董言德,朱礼华,等.骚扰库蚊与尖音库蚊复合组其它亚种杂交的研究.寄生虫与医学昆虫学报,1998,5(1):41-44.
    【27】赵彤言,董言德,陆宝麟.淡色库蚊与致倦库蚊三个地理株杂交的研究.寄生虫与医学昆虫学报,1998,5(4):240-245.
    【28】赵彤言,陆宝麟.中国尖音库蚊复合组支序系统学的研究.动物分类学报,1999,24(2):206-210.
    【29】赵彤言,董言德,陆宝麟.我国尖音库蚊复合组的聚类分析.寄生虫与医学昆虫学报,1999,(1):44-45.
    【30】宋社吾,赵彤言,董言德,等.wolbachia的wsp基因片段在我国尖音库蚊复合组蚊虫中的PCR扩增.寄生虫与医学昆虫学报,2000,7(2):96-98.
    【31】宋社吾,赵彤言,董言德,等. wolbachia在我国蚊虫体内感染组织定位的透射电镜观察和PCR检测.寄生虫与医学昆虫学报.2002.9(11):28-32.
    【32】宋社吾,赵彤言,董言德,等.我国蚊虫体内感染wolbachia的wsp基因序列测定与分析.昆虫学报,2002,45(5):571-577.
    【33】宋社吾,赵彤言,董言德,等.我国尖音库蚊复合组蚊虫的杂交及其与wolbachia感染关系.昆虫学报,2002,45(6):705-710.
    【34】宋社吾,赵彤言,董言德,等.我国蚊虫中昆虫共生微生物wolbachia感染的研究.中国媒介生物学及控制杂志,2002,13(1):19-21.
    【35】Jakob W. L. and D. B. Francy. Observations on the DV/D ratio of male genitaliaof Culex pipiens complex mosquitoes in the United States. Mosqutio Systematics,1984,16(4):282-283.
    【36】赵彤言,董言德,朱礼华,等.尖音库蚊复合组杂交子一代4龄幼虫形态性状的研究.昆虫学报,1999,42(3):264-269.
    【37】成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用.动物分类学报,2000,25(2):121-133.
    【38】程家安,唐振华.昆虫分子科学.科学出版社,2001,1-44
    【39】徐宏发,王静波.分子系统学研究进展.生态学杂志,2001,20(3):41-46.
    【40】Miller B.R.,M.B. Crabtree and H.M.Savage. Phylogeny of fourteen Culexmosquito species, including the Culex pipiens complex,inferred from the internaltranscribed spacers of ribosomal DNA. Insect Molecular Biology,1996,5:93-107.
    【41】瞿逢伊.蚊虫分子分类研究进展.寄生虫与医学昆虫学报.1996.3(1):58-64.
    【42】马雅军,瞿逢伊,郑哲民.分子生物学技术在蚊虫近缘种鉴别中的研究进展.中国寄生虫病防治杂志,1998,11(4):338-40.
    【43】宋社吾,赵彤言,蒋书楠,等.我国尖音库蚊复合组蚊虫核糖体DNA第2内转录间隔区序列测定与分析.寄生虫与医学昆虫学报,2003,10(2):74-82..
    【44】宋社吾,赵彤言,董言德,等.几种蚊虫线粒体DNA16SrRNA序列及其相互关系的研究.动物分类学报,2002,27(4):665-670.
    【45】Clare E. L., B. K. Lim, M. D. Engstrom, et al. DNA barcoding of Neotropicalbats: species identification and discovery within Guyana. Molecular Ecology Notes,2006,7(2):184-190.
    【46】Hebert P. D. N, M. Y. Stoeckle, T. S. Zemlak, et al. Identification of birdsthrough DNA barcodes. PLOS Biol.,2004,2(10): e312.
    【47】Janzen D. H., M. Hajibabaei, J. M. Burns. Wedding biodiversity inventory of alarge and complex lepidoptera fauna with DNA barcoding. Phil.Trans.R.Soc.B,2005,360:1835-1845.
    【48】Ward R. D., T. S. Zemlak, B, H, Innes, et al. DNA barcoding Australia’s fishspecies. Phil.Trans.R.Soc.B,2005,360:1847-1857.
    【49】Witt J. D. S., D. L. Threloff, P. D. N. Hebert, et al. A barcoding revealsextraordinary cryptic diversity in an amphipod genus: implications for desert springconservation. Molecular Ecology,2006,5(10):3073-3082.
    【50】Remigio E. A., P. D. N Hebert. Testing the utility of partial COI sequences forphylogenetic estimates of gastropod relationships.Mol.Phylogenet.Evol,2003,29:641-647.
    【51】Liu H., A. Beckenbach. Evolution of the mitochondrial cytochrome oxidase IIgene among10orders of insects. Mol.Phylogenet.Evol,1992,1:41-52.
    【52】Hebert P. D. N., S. Ratnasingham, J. R. de Waard. Barcoding animal life:cytochrome c oxidase subunit1divergences among closely related species. Proc.R.Soc.Lond. B.Sci,2003,270:96-99.
    【53】Cywinska A., F. F. Hunter, P. D. N. Hebert. Identifying Canadian mosquitospecies through DNA barcodes. Medical and Veterinary Entomology,2006,20(4):413-424.
    【54】Kumar N. P, A. R. Rajavel, R. Natarajan, et al. DNA barcodes can distinguishspecies of Indian mosquitoes (Diptera: Culicidae). J. Med. Entomol.,2007,44(1):1-7.
    【55】赵明,谭玲,莫邦辉,等.DNA条形码识别Ⅲ媒介蚊类DNA条形码芯片的初步研究.中国媒介生物学及控制杂志,2008,19(2):99-103.
    【56】Wang G., C. X. Li, X. X. Guo, et.al. Identifying the Main Mosquito Species inChina Based on DNA Barcoding. PLoS One,2012,7(10):e47051.
    【57】Ho C. M., Y. M. Liu, Y. H. We, et a1. Gene for cytochrome c oxidase subunitII in the mitochondrial DNA of Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae). J. Med. Entomol.,1995,32(2):174-180.
    【58】Foley D. H., J. H. Bryan, D. Yeates, et a1.Evolution and systematics ofAnopheles: insights from a molecular phylogeny of Australasian mosquitoes. Mol.Phylogenet. Evol.,1998,9(2):262-275.
    【59】黄朝晖,王金福.三种蚊虫COⅡ基因的克隆与序列分析.中国寄生虫学与寄生虫病杂志,2001,19(2):90-92.
    【60】黄朝晖,王金福.3种蚊虫线粒体COⅡ基因的分子进化.浙江大学学报(理学版),2003,30(4):457-460.
    【61】Besansky N. J., G. T. Fahey. Utility of the white gene in estimatingphylogenetic relationships among mosquitoes (Diptera: Culicidae). Mol. Biol. Evol.,1997,14:442-454.
    【62】Sanogo Y. O., C. H. Kim, R. Lampman, et a1. A real-time TaqMan polymerasechain reaction for the identification of Culex vectors of West Nile and Saint Louisencephalitis viruses in North America. Am. J. Trop.Med. Hyg.,2007,77:58-66.
    【63】Sanogo Y. O., C. H. Kim, R. Lampman, et a1.Identification of Male Specimensof the Culex pipiens Complex(Diptera: Culicidae) in the Hybrid Zone UsingMorphology and Molecular Techniques. J. Med. Entomol.,2008,45(2):203-209.
    【64】Smith J. L., D. M. Fonseca. Rapid assays for identification of members of theCulex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera:culicidae). Am. J. Trop. Med. Hyg.,2004,70:339-345.
    【65】Kasai S., O. Komagata, T. Tomita, et al. PCR-based identification of Culexpipiens complex collected in Japan. Jpn. J. Infect. Dis.,2008,61:184-191.
    【66】Hasana A. U., S. Suguria, S. M. Ahmed, et a1. Molecular phylogeography ofCulex quinquefasciatus mosquitoes in central Bangladesh.Acta.Trop.2009,112:106-14
    【67】宋锋林,赵彤言.微卫星DNA标记技术及其在蚊虫生物学研究中的应用.寄生虫与医学昆虫学报,2004,11(2):115-120.
    【68】宋锋林,赵彤言,董言德,等.淡色库蚊(Culex pipiens pallens)微卫星DNA位点的克隆.寄生虫与医学昆虫学报,2004,11(3):151-156.
    【69】Fonseca D. M., C. T.Atkinson, R. C. Fleischer. Microsatellite primers for Culexpipiens quinquefasciatus, the vector of avian malaria in Hawaii. Molecular Ecology,1998,7:1617-1619.
    【70】Keyghobadi N., M. A. Matrone, G. Ebel, et al. Microsatellite loci from thenorthern house mosquito (Culex pipiens), a principal vector of West Nile virus inNorth America. Molecular Ecology Notes,2004,4:20-22.
    【71】Fonseca D. M., D. A. LaPointe, R. C. Fleischer. Bottlenecks and multipleintroductions: population genetics of the vector of avian malaria in Hawaii. MolecularEcology,2000,9:1803-1814.
    【72】Fonseca D. M., N. Keyghobadi, C. A. Malcolm, et al. Emerging vectors in theCulex pipiens complex. Science,2004,303:1535-1538.
    【73】Smith J. L., N. Keyghobadi, M. A. Matrone, et al. Cross-species comparison ofmicrosatellite loci in the Culex pipiens complex and beyond. Molecular EcologyNotes,2005,5(3):697-700.
    【74】Brown G. G.,G. Gadaleta,G. PePe,et al. Structurale conservation and Variationin the D-loop containing region of vertebrate mitochondrial DNA.J.Mol.Biol.,1986,192(3):503-511.
    【75】Feagin J. E.. Mitoehondrial genome diversity in Parasites. Int. J. Parasitol.,2000,30:371-390.
    【76】徐庆刚,花保祯.线粒体DNA在昆虫系统学研究中的应用.西北农林科技大学学报(自然科学版),2001,29:79-83.
    【77】Walton C., M. Handley,W. Tun-lin, et a1.Population structure and populationhistory of Anopheles dirus mosquitoes in southeast Asia.The Society for MolecularBiology and Evolution,2000,17(6):962-974.
    【78】Chen B., R. E. Harbach, R. K. Buliin.Genetic variation and population structureof the mosquito Anopheles jeyporiensis in southern china. Molecular Ecology,2004,13:3051-3056.
    【79】Jazzmin A., J. P. Mutebi, P. A. Hermes, et al. The taxonomic status ofgenetically divergent populations of Lutzomyia longipalpis (Diptera:Psychodidae)based on the distribution of mitochondrial and isozyme variation. MedicalEntomology,2003,40(5):615-627.
    【80】Navajas M., D. Foumier, J. Lagnel, et a1. Mitochondrial COI sequences inmites:evidence for variations in base composition.Insect Mol.Bjol.1996.5(4):281-285.
    【81】师永霞,相大鹏,李祖海,等.广东口岸不同蚊虫COⅠ序列分析和分子鉴定方法.中国国境卫生检疫杂志,2008,31(2):103-107.
    【82】Modais I., D. W. Severson. Complete mitochondrial DNA sequence and aminoacid analysis of the cytochrome C oxidase suhunit (ICOI)from Aedes aegypti. DNASeq,2002,13(2):123-127.
    【83】Crozier R. H., Y. C. Crozier. The cytochrome b and ATPase genes of honeybeemitochondrial DNA. Mol. Biol. Evol.,1992,9:474-482.
    【84】Desalle R., T. Freedman, E. M. Prager, et a1. Tempo and mode of sequenceevolution in mitochondrial DNA of Hawaiian Drosophila. J.Mol.Evol.,1987,26:157-164.
    【85】Hugall L., J. Stanton, C. Noritz. Evolution of the AT-rich mitochondrial DNAof the root knot nematode Meloidogyne hapla. Mol. Biol. Evol.,1997,14:(1):40-48.
    【86】Simon C., F. Frail,A. Beckenbach, et al.Evolution,weighting,and phylogeneticutility of mitochondrial gene sequences and a compilation of conserved polymerasechain reaction primers.Ann. Entomol. Soc. Am.,1994,87(5):651-701.
    【87】Knight A., D. P. Mindeii. Substitution bias, weighting of DNA sequenceevolution,and the phylogenetic position of fea’s viper.SystematicBiology,1993,42(1):18-31.
    【88】卜云,郑哲民.COⅡ基因在昆虫分子系统学研究中的作用及地位.昆虫知识,2005,42(1):18-22.
    【89】Jermiin L. S., R. H. Crozier. The cytochrome b region in mitochondrial DNA ofthe ant Teraponera ruforniger:sequence divergence in Hymenoptera may beassociated with nucleotide content. J. Mol. Evol.,1994,38:282-294.
    【90】Felsentein J. Phylogenies from molecular sequences:inference and reliability.Annu. Rev. Genet.,1988,22:521-565.
    【91】Kim J.. Improving the accuracy of phylogenetic estimation by combiningdifferent methods. Syst. Bio1.,1993,42:331-340.
    【92】唐振华,吴士雄.昆虫抗药性的遗传与进化.上海科学技术出版社,2000,190-192.
    【93】唐振华,毕强.杀虫剂作用的分子行为.上海:上海远东出版社,2003,243-324.
    【94】 Bourguet D., M. aymond, D. Fournier, et al. Existence of twoacetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J.Neurochem.,1996,67:2115-2123,
    【95】Weill M., P. Fort, A. Berthomieu, et al. A novel acetylcholinesterase gene inmosquitoes codes for the insecticide target and is non-homologous to the ace gene inDrosophila. Proc. R. Soc. Lond B,2002,269:2007-2016.
    【96】王敦,唐振华,尚金燕,等.昆虫乙酰胆碱酯酶基因研究进展.昆虫学报,2006,49(3):497-503.
    【97】张玲敏,吴明玮.白纹伊蚊乙酰胆碱酯酶基因片段克隆及序列分析.Chin.J.Parasit.Dis.,2003,16(1):47-51.
    【98】Lee S. W., S. Kasai, O. Komagata, et al. Molecular characterization of twoacetylcholinesterase cDNAs in Pediculus human lice. J.Med.Entomo1.,2007,44:72-79.
    【99】O’Neill S. L., R. Giordano, A. M. E. Colbert, et al.16S rRNA phylogeneticanalysis of the bacterial endosymbionts associated with cytoplasmic incompatibilityin insect. Proceedings of the national academy of sciences,1992,89:2699-2702.
    【100】Juchault P.,M. Frelon,D. Bouchon, et al. New evidence for feminizing bacteriain terrestrial isopods:evolutIonary implications. CRA cad. Sci.,1994,317:225-230.
    【101】Herting M..The rickettsia Wolbachia pipientis(gen.et sp.n.)and sociatedinclusions of the mosqueito Culex pipiens.Parasitology,193,28:453-486.
    【102】Werren J. H., D. Windsor. Wolbachia infection frequencies in insects:evidenceof a global equilibrium. Proc. R. Soc. Lond B,2000,267:1277-1285.
    【103】Kondo N., N. Ijichi, M. Shimada, et al. Prevailing triple infection withWolbachia in Callosobruchus chinensis (Coleoptera:Bruchidae).Mol.Ecol.,2002,11(2):167-180.
    【104】Turelli M., A. A. Hoffmann. Cytoplasmic in compatibility in Drosophilasimulans:dynamics and parameter estimates from natural populations. Genetics,1995,140:1319-1338.
    【105】 Stouthamer R., D. J. Kazmer. Cytogenetics of microbeassociatedparthenogenesis and its consequences for gene flow in Trichogrammawasps.Heredity,1994,73:317-327.
    【106】Huigens M. E.. On the evolution of Wolbachia-induced parthenogenesis inTrichogramma wasps. Doctoralthesis:University of Wageningen,2003.
    【107】O’Neill S. L.,T. L. Karr. Bidirectional incompatibility between conspecificpopulations of Drosophila simulans.Nature,1990,348:178-180.
    【108】Louis C., L. Nigro. Ultrastructural evidence of Wolbachia rickettsialesinDrosophila simulans and their relat ionships with unidirectional cross-incompatibility.Journal of Invertebrate Pathology,1989,54:39-44.
    【109】Braig H. R., W. Zhou, S. L. Dobson, et al. Cloning and characterization of agene encoding the major surface protein of the bacterial endosymbiont Wolbachiapipientis. J. Bacterial.,1998,180(9):2373-2378.
    【110】Zhou W, F. Rousset, S. L. O’Neill. Phylogeny and PCR-based classification ofWolbachia strains using wsp gene sequences. Proc. R. Soc. Lond B,1998,265:509-515.
    【111】Fukatsu T.,N. Kondo,N. jichi,et al. Discovery of symbiont-host horizontalgenome transfer: a beetle carrying two bacteria l and one chromosomal Wolbachiaendosymbionts. In: Insect Symbiosis,BourtzisK, M i ller T A, eds. New York: CRCPress,2003,305-324
    【112】Van Meer M. M. M., J. Witteveldt, R. Stouthamer. Phylogeny of the arthropodendosymbiont Wolbachia, based on the wsp gene. Insect Mol. Biol.,1999,8:399-408.
    【113】龚鹏,沈佐锐,李志红.我国麦蚜体内的沃尔巴克氏体(Wol bachia)的检测.昆虫知识,2002,39(3):188-190.
    【114】姬淑红,赵彤言,冷培恩,等.骚扰库蚊上海新纪录及其自育性对四种杀虫剂的抗性水平研究.寄生虫与医学昆虫学报,2010,17(3)170-173.
    【115】常洪.中国家畜遗传资源研究.西安:陕西人民教育出版社,187-210.
    【116】陈幼春,曹红鹤,李宏滨.品种内亚群定点随机抽样法的应用研究.黄牛杂志,2001,27(1):1-3.
    【117】Baker J. S. E.. A global protocol for determining genetic distance amongdomestic livestock breeds. Proc.5thWorldCongr. Genet. Appl. Livest. Prod.,1994,21:501-508.
    【118】国伟,沈佐锐.微卫星DNA标记技术及其在昆虫学上的应用.生物技术,2004,14(2):60.
    【119】Zheng L., F. K. Collins, V. Kumar. A detailed genetic map for the Xchromosome of the malaria vector,Anopheles gambiae.Science,1993,261:605-608.
    【120】Zheng L., M. Q. Benedict, A. J. Cornel, et al. An integrated genetic map of theAfrican human malaria vector mosquito, Anopheles gambiae. Genetics,1996,143:941-952.
    【121】Annan Z., P. Kengne, A. Berthomieu, et al. Isolation and characterisation ofpolymorphic microsatellite markers from the mosquito Anopheles moucheti, malariavector in Africa. Mol. Ecol. Notes,2003,3(1):56-58.
    【122】Nei M., T. Marauyma, R. Chakiaborty. The bottleneck effect and geneticvariability in population.Evolution,1975,29:1-10.
    【123】Paschke M., C. Abs, B. Sehmid. Relationship between population size,allozyme variation, and plant performance in the narrow endemic Cochlearia bavarica.Conservation Genetics,2002,3:131-144.
    【124】Maudet C., C. Miller, B. Bassano, et al. Microsatellite DNA and recentstatistical methods in wild conservation management:applications in Alpineibex[Capraibex(ibex)]. Molecular Ecology,2002,421-436.
    【125】Marshall D. R., A. H. D. Brown. Optimum sampling strategies in geneticconservation.In Frankel,O. H. and Hawkes J. G. eds.Corp Genetic Resource for Todayand Tomorrow.Cambridge University Perss.1975,53-80.
    【126】Nei M.. Estimation of average heterozygosity and genetic distance from asmall number of individuals.Genetics,1978,89:583-590.
    【127】Botstein D., R. L. White, M. Skolnick. Construction of a genetic linkage mapin man-using restriction fragment length polymorphisms. Am. J. Hum. Gene,1980,32(3):314-331.
    【128】张民照.用多态位点率和香农指数分析的飞蝗地理种群遗传多样性.中国农学通报,2008,24(9):376-381.
    【129】Takezaki N.,M. Nei. Genetic distances and reconstruction of phylogenetictrees from microsatellite DNA.Genetics,1996,144:389-399.
    【130】郎侠,吕潇潇.兰州大尾羊微卫星DNA多态性研究,中国畜牧杂志,2011,47(1):14-17
    【131】陈幼春.关于分子水平下遗传距离检测的模型和适宜样本数的讨论.AinmalBiotechnology Bulletin,1996,130-132.
    【132】Balloux F., N. Logon-Moulin. The estimation of population differentiationwith microsatellite markers. Mol. Ecol.,2002,11:155-165.
    【133】耿岩,杨章平,常洪,等.中国蒙系6个绵羊品种的遗传分化和基因流.扬州大学学报(农业与生命科学版),2007,3:26-30.
    【134】Cavalli-Sforza L. L., A. W. F. Edwards. Phylogenetic analysis:Models andestimation procedures. Am. J. Hum. Genet.,1967,19:233-257.
    【135】Nei M. Genetic distance between populations. Am. Nat.,1972,106:283-292.
    【136】Rogers J.. Measures of genetic similarity and genetic distance. Studies inGenetics,Univ. Texas PubJ.,1972.
    【137】Feldman M. W., A. Bergman, D. D. Pollock, et a1. Microsatellite geneticdistances with range constraints:analytic description and problems of estimation.Genetics,1997,145:207-216.
    【138】Chowdari K. V., S. R. Venkatachalam, A. P. Davierwala, et a1. Hybridperformance and genetic distance as revealed by the (GATA)4microsatellite andRAPD markers in pearl millet. Theoretical and Applied Genetics,1998,97:163-169.
    【139】杨勇,朱庆,胡刚安.利用微卫星标记分析家鸡的群体遗传变异.四川大学学报(自然科学版),2000,37(10):148-152.
    【140】贾青,常洪.地方家畜品种杂交后群体规模和基因频率的变化.畜牧兽医杂志,1996.3:4-6.
    1. Reinert JF,Revised list of abbreviations for genera and subgenera of Culicidae(Diptera) and notes on generic and subgeneric changes,J Am Mosq Control Assoc,2001,17(1):51-55.
    2. Reinert JF,Tewarius Reinert,a new genus of Aedini(Diptera:Culicidae),ProcEntomol Soc Wash,2006,108(3):639-645.
    3.翟逢伊,我国蚊虫种质资源现状及共享利用,中国寄生虫学与寄生虫病杂志,2006,26(S1):S13-S15.
    4.陆宝麟,50年来我国蚊媒研究进展,中国媒介生物学及控制杂志,1999,10(3):1-6
    5.邵柏,黄佳礼,张岳林,梁坚,蚊虫研究进展,中国国境卫生检疫杂志,2002,25(3):183-185
    6.欧阳小艳,莫帮辉,余华丽,等,DNA条形码识别——DNA条形码与DNA芯片识别蚊媒准确性的比较,中国国境卫生检疫杂志,2007,30(6):349-352
    7.莫邦辉,屈莉,韩松,等,DNA条形码识别Ⅰ. DNA条形码研究进展及应用前景,四川动物,2008,27(2):303-306
    8.肖金花,肖辉,黄大卫,生物分类学的新动向———DNA条形编码,动物学,2004,50(5):852-855
    9.张英培分子分类的若干问题[J]动物学研究,1994.15(1):1-10.
    10.杨明,陈汉彬,DNA的温晓红分类研究技术,贵阳医学院学报,2001,26(3):227-230
    11. Brown G. G.,G. Gadaleta,G. PePe,et al. Structurale conservation and Variation inthe D-loop containing region of vertebrate mitochondrial DNA.J.Mol.Biol.,1986,192(3):503-511.
    12. Feagin J. E.. Mitoehondrial genome diversity in Parasites. Int. J. Parasitol.,2000,30:371-390.
    13.徐庆刚,花保祯.线粒体DNA在昆虫系统学研究中的应用.西北农林科技大学学报(自然科学版),2001,29:79-83.
    14. Walton C., M. Handley,W. Tun-lin, et a1.Population structure and populationhistory of Anopheles dirus mosquitoes in southeast Asia.The Society forMolecular Biology and Evolution,2000,17(6):962-974.
    15. Chen B., R. E. Harbach, R. K. Buliin.Genetic variation and population structure ofthe mosquito Anopheles jeyporiensis in southern china. Molecular Ecology,2004,13:3051-3056.
    16. Jazzmin A., J. P. Mutebi, P. A. Hermes, et al. The taxonomic status of geneticallydivergent populations of Lutzomyia longipalpis (Diptera:Psychodidae) based onthe distribution of mitochondrial and isozyme variation. MedicalEntomology,2003,40(5):615-627.
    17. Hebert P. D. N., S. Ratnasingham, J. R. de Waard. Barcoding animal life:cytochrome c oxidase subunit1divergences among closely related species. Proc.R.Soc.Lond. B.Sci,2003,270:96-99.
    18. Hebert P D N,Cywinska A,Ball S L,et a1.Biological identification through DNAbarcodes.Proc R Soc Lond B Biol Sci.2003.270:313-321.
    19. Hebert P D N,Stoeckle M Y,Zemlak T S,et al.Identification of birds throughDNA barcodes.PLOS Biol.2004,2(10):1657-1663.
    20.钱路,安榆林,物种鉴定的新武器——基因条码,植物检疫,2009,23(3):42-45
    21. Cywinska A., F. F. Hunter, P. D. N. Hebert. Identifying Canadian mosquito speciesthrough DNA barcodes. Medical and Veterinary Entomology,2006,20(4):413-424.
    22. Kumar N. P, A. R. Rajavel, R. Natarajan, et al. DNA barcodes can distinguishspecies of Indian mosquitoes (Diptera: Culicidae). J. Med.Entomol.,2007,44(1):1-7.
    23.赵明,谭玲,莫邦辉,等.DNA条形码识别Ⅲ媒介蚊类DNA条形码芯片的初步研究.中国媒介生物学及控制杂志,2008,19(2):99-103.
    24. Wang G., C. X. Li, X. X. Guo, et.al. Identifying the Main Mosquito Species inChina Based on DNA Barcoding. PLoS One,2012,7(10):e47051.
    25.彭居俐,王绪祯,DNA条形码技术的研究进展及其应用,水生生物学报,2008,32(6):916-919
    26.卜云,郑哲民.COⅡ基因在昆虫分子系统学研究中的作用及地位.昆虫知识,2005,42(1):18-22.
    27. Ho C. M., Y. M. Liu, Y. H. We, et a1. Gene for cytochrome c oxidase subunit IIin the mitochondrial DNA of Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae). J. Med. Entomol.,1995,32(2):174-180.
    28. Foley D. H., J. H. Bryan, D. Yeates, et a1.Evolution and systematics ofAnopheles: insights from a molecular phylogeny of Australasian mosquitoes. Mol.Phylogenet. Evol.,1998,9(2):262-275.
    29.黄朝晖,王金福.三种蚊虫COⅡ基因的克隆与序列分析.中国寄生虫学与寄生虫病杂志,2001,19(2):90-92.
    30.黄朝晖,王金福.3种蚊虫线粒体COⅡ基因的分子进化.浙江大学学报(理学版),2003,30(4):457-460.
    31. Jermiin L. S., R. H. Crozier. The cytochrome b region in mitochondrial DNA ofthe ant Teraponera ruforniger:sequence divergence in Hymenoptera may beassociated with nucleotide content. J. Mol. Evol.,1994,38:282-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700