用户名: 密码: 验证码:
摩氏摩根菌噬菌体MmP1生物学特性及其基因组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩氏摩根菌(亦称摩根摩根菌)归属肠杆菌科摩根菌属,仅有1个种,革兰染色阴性,其形态与变形杆菌相似。该菌广泛分布于自然界,人和动物粪便中,是引起医院感染重要病原菌之一,且当今发生感染的频率较过往有所增加。噬菌体作为细菌的病毒,是微生物中的非细胞形态的低级生命形式,它在自然界中广泛存在,是生物圈中数量最多的生命形式。有人估计,自然界中噬菌体的数量达1031之巨。而现实中人们对它的了解仍然很少,截止2008年4月底,目前已完成测序并登录GenBank的噬菌体基因组才484个,噬菌体的研究仍然需要更多积累。因噬菌体基因组较小,现有更多的噬菌体在被测序研究中,但是并没有一株摩氏摩根菌噬菌体。
     噬菌体是细菌之间基因水平转移的重要载体,是除质粒之外的一股重要基因流,在细菌基因组的进化,细菌的致病性和耐药性中具有非常关键的作用。近年的研究表明,多价噬菌体和经人工改造形成的“广宿主谱”噬菌体在细菌感染性疾病的治疗上有着巨大的前景,对噬菌体展开广泛和深入的研究具有重要的基础意义和潜在的临床价值。摩氏摩根菌作为医院感染重要病原菌,临床耐药问题比较严重,研究其噬菌体并潜在地作为“治疗用药”就具有重要的意义。
     本文以摩氏摩根菌的一株临床分离株作为宿主菌,从附属医院下水道污水中分离到1株噬菌体,命名为MmP1。首先对其生物学特性进行了重点研究;其次提取基因组送北京华大基因研究中心进行测序,并通过实验将“环状”的基因组鉴定为线性;进而,分离结构蛋白进行N-端测序并确定其编码基因;最后对基因组进行了初步注释,证实噬菌体MmP1属于T7噬菌体家族。研究内容及结果主要包括以下几个方面。
     1.确定肠杆菌科细菌为摩氏摩根菌。肠杆菌科细菌由本校附属西南医院检验科自临床标本中分离得到,检验仪器只鉴定为肠杆菌科,未能进一步细化。在实验中,我们设计了一对扩增肠杆菌科细菌的16s rDNA保守引物,通过PCR扩增出一段序列长为1.5kb的条带,送上海英骏公司测序。测序结果在NCBI网站经BLAST比对,发现PCR扩增产物与多株摩氏摩根菌的16s rRNA序列100%相同,从而确定本株肠杆菌为摩氏摩根菌。
     2.以摩氏摩根菌为宿主菌,从西南医院下水道污水中分离到1株具有半透明噬斑的溶原性噬菌体MmP1。噬菌体DNA经限制性内切酶HindⅢ酶切鉴定为dsDNA。其噬菌体滴度为2×1011,电镜观察发现有一个多面体立体对称的头部,直径约55nm,并有一个很短的尾巴,形态学上属于短尾噬菌体科。SDS-PAGE蛋白电泳分析发现,在中分子量蛋白质标准范围内,凝胶上至少出现了7条蛋白条带,表明噬菌体MmP1中至少含有7个结构蛋白。噬菌体MmP1感染其宿主菌摩氏摩根菌的最佳感染复数是0.1。根据一步生长曲线可知,噬菌体MmP1感染宿主菌的潜伏期约为10min,爆发期约为40min,爆发量约为105。
     3.将噬菌体MmP1基因组DNA提取纯化后送北京华大基因研究中心进行全基因组测序。经BLAST比对检索,确定噬菌体MmP1为一全新噬菌体,是第一个被测序的摩氏摩根菌噬菌体。同时用PCR扩增的方法,鉴定了其末端序列的正确性。利用基因组的物理图谱和电子酶切图谱的比较,将测序的“环状”基因组鉴定为线性,同时推测它可能有5’-突出粘性末端序列存在。
     4.噬菌体MmP1基因组的一般概况。①基因组测序表明该基因组全长为38,233bp,其碱基组成是:A = 27.98%,G = 25.30%,C = 21.24%,T =25.48%,G+C =46.54%,其G+C含量略低于T7噬菌体家族成员T7、phiA1122。②GC岛的分析表明噬菌体MmP1基因组上发现了20个大于200bp的GC岛。其中G+C含量偏离最大的两个基因,即基因35和基因42很可能是水平转移而来的外源基因。③基因表达全部位于正链上,且与噬菌体T7、T3类似,基因结构排列聚集成堆,分早中晚三个时期。
     5.基因组的生物信息学分析以及基因功能的探讨。在噬菌体MmP1基因组中具有152个大于100bp的ORFs,其中49个推定为编码基因,编码序列总长度为34359bp,基因的平均DNA长度为701bp。在整个基因组DNA中,平均每1000bp长度中有1.28个推定基因,基因组中碱基的使用率达到89.88%。在核苷酸水平,12个推定基因与目前已知的序列有同源性;在氨基酸水平,在公共数据库中共找到28个推定基因编码产物的同源蛋白质。综合分析,初步确定35个ORFs具有与噬菌体T7、phiA1122相似的功能。进而,利用CLUSTALX软件工具对搜索到的具有显著相似性的基因进行多重比对,通过phylip软件绘制系统发生树,用TreeView软件观察结果,分析其进化关系证实噬菌体MmP1属于T7噬菌体家族。
     6.噬菌体结构蛋白及其编码基因的确定。本研究结果显示,噬菌体颗粒至少含有7个结构蛋白,其中,38kD蛋白是噬菌体的主要衣壳蛋白。将电泳分离的蛋白质转印至PVDF膜上进行N-端氨基酸测序。将N-端测序得到的氨基酸残基序列与所有推定基因编码产物的N-端氨基酸序列相比对,结合分子量大小,确定了ORF35是其编码基因。同时,根据噬菌体结构蛋白大小的唯一性,确定了69kD蛋白质是由ORF48编码的,150kD蛋白质是由ORF42编码的。
     7.基因组的非编码序列分析表明在基因组上存在着37个长短不一的基因间区(1-1321bp),同时存在10个基因重叠区,16个基因的编码框相互之间发生了重叠。在基因组的5’-、3’-末端分别存在140和204bp的非编码序列。基因组中还存在大量反向重复序列、正向重复序列以及1个最长为61bp的串联重复序列。这些重复序列可能与转录调节、DNA重组以及基因组进化有关。在非编码序列还发现了5个可能的转录终止子,同时找到了5个可能的启动子。
     噬菌体MmP1的全基因组序列已经在GenBank登录(No. EU652770)。
     综上所述,通过本研究,明确了世界上第一株摩氏摩根菌噬菌体MmP1的基本生物学特性及其基因组组成序列,并对该基因组进行了初步注释。注释结果表明MmP1属于T7噬菌体家族成员,扩展了T7噬菌体家族宿主菌的范围(摩氏摩根菌未见报道为T7噬菌体家族宿主菌)。两类噬菌体(MmP1和T7)宿主菌分属不同的菌属,却拥有相同的基因结构和类似的基因,进一步揭示了噬菌体的生物多样性,为全面深入地认识噬菌体的遗传与变异、进化与分类、基因组织与调控以及寄生机制等生物学特性中的重大问题提供了新的数据。
Morganella morganii is a gram-negative rod commonly found in the environment and in the intestinal tracts of humans, mammals, and reptiles as normal flora. The genus Morganella belongs to the family Enterobacteriaceae. Despite its wide distribution, it is an uncommon cause of community-acquired infection and is most often encountered in postoperative and other nosocomial settings.
     Bacteriophages are viruses of bacteria. They are ubiquitous in nature, and are now recognized to be the most numerous entities in the biosphere. When the sensitive bacterium was infected by a phage, there will be two reactions, one is lytic reaction, the other is lysogenic reaction. The lysogenic bacteriophage can alter the biologic features of the host bacterium by its inheritance material, meanwhile, they can change host’s inheritance material constituent in the process of the DNA recombination, integration, transposition and excision in host genome, which result in the microbial genetic diversity. Lytic phages can lyse and kill the host bacteria, and lysogenic phages also have a lytic period. So that phages are in the hope to be developed as anti-bacteria pharmaceutics. Deep-looking insight into the genetic background of phage is very important for no matter investigating the interaction of phage and its host bacteria, and revealing the biological diversity mechanism resulting from gene horizontal transfer caused by phages, or engineering remodeling of phage and phage-therapy. Now the genomic era has re-focussed researchers’attention onto the importance of bacteriophages. To date, there are totally 484 completed bacteriophage genomes available in public databases. In this dissertation, we are focused on the whole genome sequence and annotation of Morganella morganii phage 1 ( MmP1 ). The results are as follows:
     1. The biological characterization of MmP1. The phage MmP1 is a temperate phage of Morganella morganii. Electron microscopy revealed that the phage has an isometric head (about 55 nm in diameter) and a short tail, and it belongs to the Podoviridae family. The optimal multiplicity of infection (MOI) of MmP1 is about 0.1, and hosts infected by the phages with an MOI of 0.1 will produce highest phage titer at 3.5h after infection. One-step growth kinetics of the phage showed that the latent period is about 10 min, the rise period is about 40 min, and the average burst size is about 105 phage particles per an infected cell.
     2. The general characterization of MmP1 genome. The complete nucleotide sequence of phage MmP1 is 38,233 bp, and includes terminal repeats of 61bp, which is highly similar to T7-like phage. The G+C content of the MmP1 genome averages 46.54%. There are two regions with significantly higher G+C content than the average, among which two genes, gene 35 and gene 42, having the highest G+C content, may be acquired genes by horizontal transfer. Genes are all transcribed from the same DNA strand and occupy almost 90% of the nucleotide sequence, the same value found for T7. This efficiency is presumably the result of evolutionary packaging of the maximum amount of useful information into a DNA molecule whose length is limited by a virion of fixed size.
     3. The bioinformatics analysis of phage genome. 152 ORFs longer than 100bp are found out by ORF finder software at NCBI website. Predictions using the GeneMark and Softberry programs revealed that the phage genome has 49 predicted genes. No potential tRNA coding regions were found in the phage genome. The predicted genes are tightly organized with little space between them, and there are 10 overlapping gene regions with total 91 bp, ranging from 1 to 32 bp. At the DNA level, 12 of the phage-encoded putative proteins show homology to known proteins in the database using BLASTn program, and at the protein level, 28 of the phage-encoded putative proteins show homology to known proteins in the database using BLASTp program. The function of these 35 genes show homology to phage T7 and phage phiA1122. Thus , MmP1 is thought to be a member of the T7 group. Similar to the T3 and T7 genomes, MmP1 genes could be divided into three classes: I (early), II (middle) and III(late). Multiple sequence alignment was conducted among those homologous proteins using software CLUSTALX, and then the phylogenetic trees were drawn by phylip software.
     4. The phage capsid proteins and their coding genes. Phage particles were purified with CsCl gradient centrifugation, then the total phage capsid proteins were separated at least 7 bands by SDS-PAGE, respectively with molecular weight 150, 95, 82, 69, 62, 44 and 38kD. After transferred to a PVDF filter, Most bands were excised from the membrane and were subjected to N-terminal sequence with Edman degradation method. Only 38kD proteins could be sequenced and the N-terminal sequences were figured out. By comparative analysis of the N-terminal amino acid sequences of the proteins to the products coded by all the predicted genes, we got to know that gene 35 coded the 38kD proteins.
     5. The non-coding sequences of the genome. There are 37 intergenic regions ranging from 1 to 1321 bps. There are non-coding sequences with length of 140 bps and 204 bps respectively on the 5’-and 3’-terminus of the phage genome. 17 inverted repeats (palindrome sequence) and 1 long tandem repeats(61bp) are found in the genome. These repeat sequences are related to the transcription, recombination of DNA and genomic evolution. 5 possible terminators are found in the intergenic regions, and 5 possible promoter was predicted at the genomic positive strand.
     The genome data of phage MmP1 has been deposited in GenBank under the accession No. EU652770.
引文
1. Golubic—Cepulic B,Budimir A,Plecko V,et a1.Morganella morganii causing fatal sepsis in a platelet recipient and also isolated from a donor’S stool.Transfus Med,2004,14(3):237.
    2. Mandell G L,Bennett J E,Dolin R.Principles and practice of infectious disease(4th edition). New Yorkz:Churchioll Livingstone Inc,1994:1748.
    3.张卓然主编.临床微生物学和微生物检验(第3版).北京:人民卫生出版社,2003:140.
    4.何静玲.1000例呼吸道感染病原菌结果分析.医师进修杂志,2005,28(2):45.
    5. Hendrix R.W. Bacteriophage genomics. Current Opinion in Microbiol. 2003; 6(5): 506-511.
    6. Casjens S. prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 2003; 49(2):277-300.
    7. Ventura M., Canchaya C., Kleerebezem M.,et al. The prophage sequences of Lactobacillus plantarum strain WCFS1.Virology. 2003; 316: 245–255.
    8. Canchaya C., Fournous G., Sandra C.C., et al. Phage as agents of lateral gene transfer. Current Opinion in Microbiology. 2003; 6: 417–424.
    9. Canchaya C, Proux C, Fournous G, et al. Prophage genomics. Microbiol Mol Biol Rev. 2003; 67:238-276.
    10. McGrath S., Fitzgerald G. F. and Sinderen. D. The impact of bacteriophage genomics. Current Opinion in Biotechnology. 2004; 15:1–6.
    11. Dison B. New dawn for phage therapy. Lancet Infect Dis. 2004; 4(3):186.
    12. Huff WE., Huff GR., Rath NC., et al. Bacteriophage treatment of a severe Escherichia coli respiratory infection in broiler chickens. Avian Dis. 2003; 47(4):1399-405.
    13. Thacker PD. Set a microbe to kill a microbe: drug resistance renews interest in phage therapy. JAMA. 2003; 290(24):3183-5.
    14. Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol. 2004; 2(2):166-73.
    15. Pharmacokinetic Principles of Bacteriophage Therapy. Payne R. J. H. and Jansen V.A. A. Clin Pharmacokinet. 2003; 42 (4): 315-325.
    16. http://www.ncbi.nlm.nih.gov/genomes/static/phg.html.
    17.马晓波;吕晓菊;母丽媛;陈慧莉;陈文昭;过孝静;陶传敏;陈知行.临床分离91株摩氏摩根菌的药敏分析. 2006.31(8):501-504.
    18.余娴;凌保东;谢勇恩;周岐新;雷军.临床分离耐药摩氏摩根菌的β-内酰胺酶表型和基因型分析. 2005.30(11):665-669.
    19.贾坤如,熊建球,胡龙华,胡晓彦,桂炳东.摩根摩根茵临床分离株的耐药分析.江西医学检验,2007,25(4):312-313.
    20. MajtánováL, Majtán V, Karolcek J. Lysogeny in strains of Proteus mirabilis and Morganella morganii. Cesk Epidemiol Mikrobiol Imunol. 1988 Nov;37(6):323-8.
    21. Tan Y, Zhang K, Rao X, Jin X, Huang J, Zhu J, Chen Z, Hu X, Shen X, Wang L, Hu F. Whole genome sequencing of a novel temperate bacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol. 2007 Feb;9(2):479-91.
    22.黄建军,胡晓梅,朱军民,申晓冬,李明,饶贤才,胡福泉。铜绿假单胞菌噬菌体PaP2的结构蛋白及其编码基因的研究。医学研究生学报.2004,17(4).292-295.
    23.黄建军,胡晓梅,饶贤才,张克斌,金晓琳,周莹冰,李明,申晓冬,朱军民,胡福泉。铜绿假单胞菌噬菌体PaP2生物学特性的研究。第三军医大学学报.2004,26(13).1133-1136.
    24. Chmielewska-Badora J, Zwoliński J, Cisak E, Wójcik-Fatla A, Buczek A, Dutkiewicz J. Prevalence of Anaplasma phagocytophilum in Ixodes ricinus ticks determined by polymerase chain reaction with two pairs of primers detecting 16S rRNA and ankA genes. Ann Agric Environ Med. 2007 Dec;14(2):281-5.
    25. Chuang HP, Imachi H, Tandukar M, Kawakami S, Harada H, Ohashi A.Microbial community that catalyzes partial nitrification at low oxygen atmosphere as revealed by 16S rRNA and amoA genes.J Biosci Bioeng. 2007 Dec;104(6):525-8.
    26. Zhang HB, Shi W, Yang MX, Sha T, Zhao ZW.Bacterial diversity at different depths in lead-zinc mine tailings as revealed by 16S rRNA gene libraries.J Microbiol. 2007 Dec;45(6):479-84.
    27.林万明主编.细菌分子遗传学分类鉴定法[M].上海,上海科学技术出版社,1990.
    28. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
    29.余贺.《医学微生物学》.北京:人民卫生出版社,1964.
    30. J.萨姆布鲁克.《分子克隆实验指南》第二版.北京:科学出版社, 1996.
    31.司稚东,何晓青.《噬菌体学》.科学出版社,1996.
    32. Calender R. The bacteriophage. New York: Plenum Press, 1988.
    33. Mesyanzhinov VV., Robben J., Grymonprez B. The Genome of Bacteriophage ?KZ of Pseudomonas aeruginosa. J. Mol. Biol. 2002; 317(1): 1-19.
    34. Olsthoorn RC., Garde G., Dayhuff T., et al. Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures. Virology. 1995; 206(1): 611-25.
    35. Pajunen, M. I., Kiljunen, S. J., So¨derholm, M. E-L. & Skurnik, M. (2001). Complete genomic sequence of the lytic bacteriophageφYeO3-12 of Yersinia enterocolitica serotype O:3. J. Bacteriol. 183, 1928–1937.
    36. Xinyao Liu, Miao Shi, Shuanglei Kong, Yin Gao, Chengcai An. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology 366 (2007):28–39.
    37. D. Scholl, J. Kieleczawa and I. J. Molineux. Genomic Analysis of Bacteriophages SP6 and K1-5,an Estranged Subgroup of the T7 Supergroup. J. Mol. Biol. (2004) 335, 1151–1171.
    38. Nakayama K., Kanaya S., Ohnishi M.,et al. The complete nucleotide sequence of ?CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol .1999; 31(2): 399–419.
    39. Kovalyova I.V. and Kropinski A.M. The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida—evidence for close relationship to the T7 group. Virology. 2003; 311(2): 305–315.
    40. Rohwer F. The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol. 2002; 184(16): 4529-35.
    41. Lu Z., Breidt F.J., Fleming H.P., et al. Isolation and characterization of a Lactobacillus plantarum bacteriophage,ΦJL-1, from a cucumber fermentation. Int J Food Microbiol.2003; 84(2): 225-235.
    42.金晓琳,张克斌,胡福泉.噬菌体最佳保存方法探讨.第三军医大学学报.2001. 23(7):863.
    43. Weiss B.D., Capage M.A., Kessel M., et al. Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv. Campestris. J Bacteriol.1994; 176(11): 3354-3359.
    44. Lavigne R., Burkal’tseva M.V., Robben J., et al. The genome of bacteriophage ?KMV,a T7-like virus infecting Pseudomonas aeruginosa. Virology. 2003; 312(1): 49-59.
    45. Maria Pajunen, Saija Kiljunen And Mikael Skurnik. Bacteriophage ?YeO3-12, Specific for Yersinia enterocolitica Serotype O:3, Is Related to Coliphages T3 and T7.JOURNAL OF BACTERIOLOGY, Sept. 2000, 182(18):5114–5120.
    46. Fleischmann RD., Adams MD, White O., et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995; 269(5223): 496-512.
    47. Dong H., Lin W, Zhang CK., et al. Genomic sequence and expression analysis of human chromatin assembly facor 1 p150 gene. Gene. 2001; 264(2):187-96.
    48. Loessner M. J., Inman R.B., Lauer P., et al. Complete nucleotide sequence, molocular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Molecular Microbiology. 2000;35(2):324-40.
    49. Byl C.V. and Kropinski A.M. Sequence of the Genome of Salmonella Bacteriophage P22. J.B. 2000; 182(22):6472–6481.
    50. Schicklmaier P., Wieland T. and Schmieger H. Molecular characterization and module composition of P22-related Salmonella phage genomes. J. B. 1999; 73:185–194.
    51. Smith M.C. M., Burns R. N., Wilson S.E., et al. The complete genome sequence of the Streptomyces temperate phageφC31: evolutionary relationship to other viruses. Nucleic Acids Research. 1999; 27(10):2145-2155.
    52. Oakey H.J., Cullen B.R. and Owens L. The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. Journal of Applied Microbiology. 2002; 93:1089–1098.
    53. Mcgraw T., Mindich l. and Frangione. Nucleotide sequence of the small double-strand RNA segment of bacteriophageφ6: novel mechanism of nature translational control. Journal of virology. 1986; 58(1): 142-151.
    54. Gottieb P., Potgieter C., Wei H., et al. charaterization ofφ12, a bacteriophage related toφ6:nucleotide sequence of the large double-stranded RNA. Virology. 2002;295:266-71.
    55. Moyer E., Kimsey H.H. and Waldor M.K. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXφ. Molecular Microbiology. 2001; 41 (2):311–323.
    56. Klovins J., Overbeek G. P., Worm S. H. E., et al. Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. J. Gen. Virol. 2002; 83: 1523 - 1533.
    57. Mannisto R.H., Kivela H.M., Paulin L, et al. The Complete Genome Sequence of PM2, the First Lipid-Containing Bacterial Virus To Be Isolated. Virology. 1999;262: 355-363.
    58. Dunn, J. J. & Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166,477–535.
    59. Pajunen, M. I., Elizondo, M. R., Skurnik, M., Kieleczawa,J. & Molineux, I. J. (2002). Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J. Mol. Biol. 319, 1115–1132.
    60. Pajunen, M. I., Kiljunen, S. J., So¨derholm, M. E-L. & Skurnik, M. (2001). Complete genomic sequence of the lytic bacteriophageφYeO3-12 of Yersinia enterocolitica serotype O:3. J. Bacteriol. 183, 1928–1937.
    61. Garcia, E., Elliott, J. M., Ramanculov, E., Chain, P. S. G., Chu, M. C. & Molineux, I. J. (2003). The genome sequence of Yersinia pestis bacteriophageφA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J. Bacteriol. 185, 5248–5262.
    62. Scholl, D., S. Rogers, S. Adhya, and C. R. Merril. 2001. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J. Virol. 75:2509–2515.
    63. Dobbins, A. T., M. George, Jr., D. A. Basham, M. E. Ford, J. M. Houtz, M. L. Pedulla, J. G. Lawrence, G. F. Hatfull, and R. W. Hendrix. 2004. Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J. Bacteriol. 186:1933–1944.
    64.郑伟国,郭英,常春艳.生物信息学的现状与未来.口岸卫生控制. 2004; 9(5): 40-43.
    65. Lowe T.M. and Eddy S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 1997;25: 955-964.
    66. Byl C.V. and Kropinski A.M. Sequence of the Genome of Salmonella Bacteriophage P22. J.B. 2000; 182(22):6472–6481.
    67. Besemer J. and Borodovsky M. Heuristic approach to deriving models for gene finding. NAR. 1999; 27(19):3911-3920.
    68. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER, Nucleic Acids Research 27:23 (1999), 4636-4641.
    69. Salzberg S, Delcher A, Kasif S, White O. Microbial gene identification using interpolated Markov models, Nucleic Acids Research 26:2 (1998), 544-548.
    70. Hegyi H, Pongor S. Predicting potential domain homologies from FASTA search results. Comput Appl Biosci. 1993 Jun;9(3):371-2.
    71. Pearson WR. Using the FASTA program to search protein and DNA sequence databases. Methods Mol Biol. 1994;25:365-89.
    72. Zehua Chen and Thomas D. Schneider. Information theory based T7-like promoter models:classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Research, 2005, 33(19): 6172–6187.
    73. Casey M. Bergman and Hadi Quesneville. Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics 2007 8(6):382-392.
    74. G. Benson,Tandem repeats finder: a program to analyze DNA sequences.Nucleic Acids Research (1999) Vol. 27, No. 2, pp. 573-580.
    75. Lin C.T., Lin W.T., Lyu Y.L., et al. Inverted repeats as genetic elements for promoting DNA inverted duplication:implication in gene amplification. Nucleic Acids. Research. 2001; 29(17):3529-3538.
    76. Liu J., Munakata H., Aimaiti A. Tandem repeats in prokaryotic genomes. Genome Informatics. 2002; 13:408-409.
    77. Seguritan V, Feng IW, Rohwer F, et al. Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. J Bacteriol. 2003; 185(21):6434-47.
    78. Jawetz, E., and K. F. Meyer. 1943. Avirulent strains of Pasteurella pestis.J. Infect. Dis. 73:124–143.
    79. Monod C, Repoila F, Kutateladze M, Tetart F, Krisch H M. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J.Mol.Biol. 1997; 267: 237-249.
    80. Lucchini S, Desiere F, Brussow H. Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J.Virol. 1999; 73:8647-8656.
    81. Auad L, Raisanen L, Raya R R, Alatossava T. Physical mapping and partial genetic characterization of the Lactobacillus delbrueckii subsp. bulgaricus bacteriophage lb539. Arch.Virol. 1999; 144: 1503-1512.
    82. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354:484–490.
    83. Juhala, R. J., M. E. Ford, R. L. Duda, A. Youlton, G. F. Hatfull, and R. W.Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol.299:27–51.
    84. Pedulla, M. L., M. E. Ford, J. M. Houtz, T. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182.
    85. Hardies, S. C., A. M. Comeau, P. Serwer, and C. A. Suttle. 2003. The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology 310:359–371.
    86. Chen, F., and J. Lu. 2002. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl. Environ. Microbiol. 68:2589–2594.
    87. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82.
    88. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998 Oct;23(10):403-5.
    89. Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol. 2000;132:243-58.
    90. Maniloff,J. and Ackermann,H.W. (1998) Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch. Virol., 143, 2051–2063.
    91. Ackermann,H.W. (2003) Bacteriophage observations and evolution. Res. Microbiol., 154, 245–251.
    92. Molineux, I. J. 1999. The T7 family of bacteriophages, p. 2495–2507. In T. E. Creighton (ed.), Encyclopedia of molecular biology. John Wiley and Co.,New York, N.Y.
    93.贾盘兴,噬菌体分子生物学——基本知识和技能。科学出版社,2001:95-97.
    94. Garcia, L. R., and I. J. Molineux. 1995. Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J. Bacteriol. 177:4066–4076.
    95. Zhang, X., and F. W. Studier. 2004. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection. J. Mol. Biol. 340:707–730.
    96. Parkinson MJ, P?hler JR, Lilley DM. Catalytic and binding mutants of the junction-resolving enzyme endonuclease I of bacteriophage t7: role of acidic residues. Nucleic Acids Res. 1999 Jan 15;27(2):682-689.
    1. Dunn, J. J. & Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166,477–535.
    2. Maniloff,J. and Ackermann,H.W. (1998) Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch. Virol., 143, 2051–2063.
    3. Ackermann,H.W. (2003) Bacteriophage observations and evolution. Res. Microbiol.,154, 245–251.
    4. Pajunen, M. I., Kiljunen, S. J., So¨derholm, M. E-L. & Skurnik, M. (2001). Complete genomic sequence of the lytic bacteriophageφYeO3-12 of Yersinia enterocolitica serotype O:3. J. Bacteriol. 183, 1928–1937.
    5. Ackermann,H.W. (2001) Frequency of morphological phage descriptions in the year 2000. Brief review. Arch. Virol., 146, 843–857.
    6. Alain Chopin, Hélène Deveau, S. Dusko Ehrlicha,Sylvain Moineau, Marie-Christine Chopin. KSY1, a lactococcal phage with a T7-like transcription. Virology 365 (2007) 1–9.
    7. Pajunen, M. I., Elizondo, M. R., Skurnik, M., Kieleczawa,J. & Molineux, I. J. (2002). Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J. Mol. Biol. 319, 1115–1132.
    8. Scholl D, Merril C. The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli. J Bacteriol. 2005 Dec;187(24):8499-503.
    9. Garcia, E., Elliott, J. M., Ramanculov, E., Chain, P. S. G., Chu, M. C. & Molineux, I. J. (2003). The genome sequence of Yersinia pestis bacteriophageφA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J. Bacteriol. 185, 5248–5262.
    10. Scholl, D., J. Kieleczawa, P. Kemp, J. Rush, C. C. Richardson, C. Merril, S. Adhya, and I. J. Molineux. 2004. Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J. Mol. Biol. 335: 1151–1171.
    11. Dobbins, A. T., M. George, Jr., D. A. Basham, M. E. Ford, J. M. Houtz, M. L. Pedulla, J. G. Lawrence, G. F. Hatfull, and R. W. Hendrix. 2004. Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J. Bacteriol. 186:1933–1944.
    12. Kovalayova, I. V. & Kropinski, A. M. (2003). The complete genomic sequence of lytic bacteriophage gh-1 infecting pseudomanas putida–evidence for close relationship to the T7 group. Virology, 311,305–315.
    13. Hausmann, R. 1988. The T7 group, p. 259–289. In R. Calendar (ed.), The bacteriophages, vol. 1. Plenum Press, New York, N.Y.
    14. Lavigne R, Burkal'tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G. The genome of bacteriophagephiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology. 2003 Jul 20;312(1):49-59.
    15. Xinyao Liu, Miao Shi, Shuanglei Kong, Yin Gao, Chengcai An. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology 366 (2007) 28–39.
    16. Zehua Chen and Thomas D. Schneider. Information theory based T7-like promoter models:classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Research, 2005, 33(19):6172–6187.
    17. Zehua Chen and Thomas D. Schneider. Comparative analysis of tandem T7-like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands. Nucleic Acids Research, 2006, Vol. 34, No. 4 1133–114.
    18. DaRocha WD, Otsu K, Teixeira SM, Donelson JE. Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Mol Biochem Parasitol. 2004 Feb;133(2):175-86.
    19. Takakusagi Y, Takakusagi K, Kuramochi K, Kobayashi S, Sugawara F, Sakaguchi K. Identification of C10 biotinylated camptothecin (CPT-10-B) binding peptides using T7 phage display screen on a QCM device. Bioorg Med Chem. 2007 Dec 15;15(24):7590-8.
    20. Danner S, Belasco JG. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):12954-9.
    21. Muhlenhoff, M., K. Stummeyer, M. Grove, M. Sauerborn, and R. Gerardy- Schahn. 2003. Proteolytic processing and oligomerization of bacteriophagederived endosialidases. J. Biol. Chem. 278:12634–12644.
    22. Deng, W., et al. 2002. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184:4601–4611.
    23. Parkhill, J., et al. 2001. Genome sequence of. Yersinia pestis, the causative agent of plague Nature 413:523–527.
    24. Zinder, N. D. (1961). A bacteriophage specific for F2 Salmonella strains. Science, 133, 2069–2070.
    25. Molineux, I. J. (1999). The T7 family of bacteriophages. In Encyclopedia of Molecular Biology (Creighton, T. E., ed.), pp. 2495–2507, Wiley, New York.
    26. Vimr, E. R., R. D. McCoy, H. F. Vollger, N. C. Wilkison, and F. A. Troy. 1984. Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes. Proc. Natl. Acad. Sci. USA 81:1971–1975.
    27. Han,K.G., Kim,D.H., Junn,E., Lee,S.S. and Kang,C. (2002) Identification of bacteriophage K11 genomic promoters for K11 RNA polymerase. J. Biochem. Mol. Biol.,35, 637–641.
    28. Dietz,A., Weisser,H.J., Kossel,H. and Hausmann,R. (1990) The gene for Klebsiella bacteriophage K11 RNA polymerase: sequence and comparison with the homologous genes of phages T7, T3, and SP6. Mol. Gen. Genet.,221, 283–286.
    29. Hyman,R.W., Brunovskis,I. and Summers,W.C. (1974) A biochemical comparison of the related bacteriophages T7,φI,φII, W31, H, and T3. Virology, 57, 189–206.
    30. Michalewicz,J., Hsu,E., Larson,J.J. and Nicholson,A.W. (1991) Physical map and genetic early region of the T7-related coliphage, BA14. Gene, 98, 89–93.
    31. Mertens,H. and Hausmann,R. (1982) Coliphage BA14: a new relative of phage T7. J. Gen. Virol., 62, 331–341.
    1. Dunn, J. J. & Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166,477–535.
    2. Maniloff,J. and Ackermann,H.W. (1998) Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch. Virol., 143, 2051–2063.
    3. Ackermann,H.W. (2003) Bacteriophage observations and evolution. Res. Microbiol., 154, 245–251.
    4. Pajunen, M. I., Kiljunen, S. J., So¨derholm, M. E-L. & Skurnik, M. (2001). Complete genomic sequence of the lytic bacteriophageφYeO3-12 of Yersinia enterocolitica serotype O:3. J. Bacteriol. 183, 1928–1937.
    5. Pajunen, M. I., Elizondo, M. R., Skurnik, M., Kieleczawa,J. & Molineux, I. J. (2002). Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J. Mol. Biol. 319, 1115–1132.
    6. Scholl D, Merril C. The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli. J Bacteriol. 2005 Dec;187(24):8499-503.
    7. Garcia, E., Elliott, J. M., Ramanculov, E., Chain, P. S. G., Chu, M. C. & Molineux, I. J. (2003). The genome sequence of Yersinia pestis bacteriophageφA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J. Bacteriol. 185, 5248–5262.
    8. Scholl, D., J. Kieleczawa, P. Kemp, J. Rush, C. C. Richardson, C. Merril, S. Adhya, and I. J. Molineux. 2004. Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J. Mol. Biol. 335: 1151–1171.
    9. Lavigne, R., Bourkaltseva, M. V., Robben, J., Sykilinda,N. N., Kurochkina, L. P., Grymonprez, B. et al.(2003). The genome of bacteriophageφKMV: a T7-like lytic phage infecting Pseudomonas aeruginosa.Virology, 312, 49–59.
    10. Hardies, S. C., Comeau, A. M., Serwer, P. & Suttle,C. A. (2003). The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment.Virology, 310, 359–371.
    11. Xinyao Liu, Miao Shi, Shuanglei Kong, Yin Gao, Chengcai An. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology 366 (2007) 28–39.
    12. Rohwer, F., Segall, A., Steward, G., Seguritan, V.,Breitbart, M., Wolven, F. & Azam, F. (2000). The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45, 408–418.
    13. Tan Y, Zhang K, and Hu F. Whole genome sequencing of a novel temperate bacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol. 2007 Feb;9(2):479-91.
    14. Chen F, Lu J.Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages.
    15. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005 May;3(5):e144.
    16. Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup within the T7 supergroup. J Bacteriol. 2006 Oct;188(19):6924-31.
    1. Brussow,H. and Hendrix,R.W. (2002) Phage genomics: small is beautiful. Cell, 108, 13–16.
    2. Cairns, J., G. S. Stent, and J. D. Watson. 1992. Phage and the origins of molecular biology, expanded ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
    3. Tan Y, Zhang K, and Hu F. Whole genome sequencing of a novel temperate bacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol. 2007 Feb;9(2):479-91
    4. Ackermann,H.W. (2001) Frequency of morphological phage descriptions in the year 2000. Brief review. Arch. Virol., 146, 843–857.
    5. Hausmann, R. 1988. The T7 group, p. 259–289. In R. Calendar (ed.), The bacteriophages, vol. 1. Plenum Press, New York, N.Y.
    6. Rohwer,F. and Edwards,R. (2002) The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol., 184, 4529–4535.
    7. Zehua Chen and Thomas D. Schneider. Information theory based T7-like promoter models:classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Research, 2005, 33(19): 6172–6187
    8. Hardies,S.C., Comeau,A.M., Serwer,P. and Suttle,C.A. (2003) The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology, 310, 359–371.
    9. Dunn, J. J. & Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166,477–535.
    10. Pajunen, M. I., Elizondo, M. R., Skurnik, M., Kieleczawa,J. & Molineux, I. J. (2002). Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J. Mol. Biol. 319, 1115–1132.
    11. Garcia, E., Elliott, J. M., Ramanculov, E., Chain, P. S. G., Chu, M. C. & Molineux, I. J. (2003). The genome sequence of Yersinia pestis bacteriophageφA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J. Bacteriol. 185, 5248–5262.
    12. Pajunen, M. I., Kiljunen, S. J., So¨derholm, M. E-L. & Skurnik, M. (2001). Complete genomic sequence of the lytic bacteriophageφYeO3-12 of Yersinia enterocolitica serotype O:3. J. Bacteriol. 183, 1928–1937.
    13. Kovalayova, I. V. & Kropinski, A. M. (2003). The complete genomic sequence of lytic bacteriophage gh-1 infecting pseudomanas putida–evidence for close relationship to the T7 group. Virology, 311,305–315.
    14. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
    15. Sambrook J and Russel DW. Molecular Cloning, 3th edition, Cold Spring Harbor Laboratory Press, 2001
    16. Shelton CB, Crosslin DR, Casey JL et al. Discovery, purification, and characterization of a temperate transducing bacteriophage for Bordetella avium. J. Bacteriol. 2000,182(21): 6130-6.
    17. Imberechts, H., P. Wild, G. Charlier, H. De Greve, P. Lintermans, and P. Pohl. 1996. Characterization of F18 fimbrial genes fedE and fedF involved in adhesion and length of enterotoxemic Escherichia coli strain 107/86. Microb. Pathog. 21:183–192.
    18. Adams, M. H. 1959. Bacteriophages, p. 14–15. Interscience Publishers, Inc., New York, N.Y.
    19. Lu Z., Breidt F.J., Fleming H.P., et al. Isolation and characterization of a Lactobacillus plantarum bacteriophage,ΦJL-1, from a cucumber fermentation. Int J Food Microbiol.2003; 84(2): 225-235.
    20. Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995, 269:496-512
    21. Dong H, Lin W, Zhang CK, et al. Genomic sequence and expression analyses of human chromatin assembly factor 1 p150 gene. Gene. 2001,264:187-96.
    22. Besemer J. and Borodovsky M. Heuristic approach to deriving models for gene finding. NAR. 1999; 27(19):3911-3920
    23. Altschul, S F, Madden TL, Schaffer AA,et al.Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997,25: 3389-4022
    24. Hegyi H, Pongor S. Predicting potential domain homologies from FASTA search results. Comput Appl Biosci. 1993 Jun;9(3):371-2.
    25. Pearson WR. Using the FASTA program to search protein and DNA sequence databases. Methods Mol Biol. 1994;25:365-89.
    26. Lowe T.M. and Eddy S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 1997;25: 955-964.
    27. Matthews, R. E. F. 1981. The classification and nomenclature of viruses. Intervirology 16:53–60.
    28. Ackermann, H.-W., and M. S. DuBow. 1987. Family Podoviridae, p. 85–100. In H.-W. Ackermann and M. S. DuBow (ed.), Viruses of prokaryotes, vol. II. Natural groups of bacteriophages. CRC Press, Boca Raton, Fla.
    29. Xinyao Liu, Miao Shi, Shuanglei Kong, Yin Gao, Chengcai An. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology 366 (2007):28–39.
    30. Canchaya C., Fournous G., Sandra C.C., et al. Phage as agents of lateral gene transfer. Current Opinion in Microbiology. 2003; 6: 417–424.
    31. Canchaya C, Proux C, Fournous G, et al. Prophage genomics. Microbiol Mol Biol Rev. 2003; 67:238-276.
    32. McGrath S., Fitzgerald G. F. and Sinderen. D. The impact of bacteriophage genomics. Current Opinion in Biotechnology. 2004; 15:1–6
    33. Nakayama K., Kanaya S., Ohnishi M.,et al. The complete nucleotide sequence of ?CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol .1999;31(2): 399–419.
    34. Molineux, I. J. 1999. The T7 family of bacteriophages, p. 2495–2507. In T. E. Creighton (ed.), Encyclopedia of molecular biology. John Wiley and Co.,New York, N.Y.
    35. Studier, F. W. 1975. Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of its host. J. Mol. Biol. 94:283–295.
    36. Garcia, L. R., and I. J. Molineux. 1995. Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J. Bacteriol. 177:4066–4076.
    37. Zhang, X., and F. W. Studier. 2004. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection. J. Mol. Biol. 340:707–730.
    38. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354:484–490.
    39. Juhala, R. J., M. E. Ford, R. L. Duda, A. Youlton, G. F. Hatfull, and R. W.Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol.299:27–51.
    40. Pedulla, M. L., M. E. Ford, J. M. Houtz, T. Karthikeyan, C. Wadsworth, J. A.Lewis, D. Jacobs-Sera, J. Falbo, J. Gross, N. R. Pannunzio, W. Brucker, V.Kumar, J. Kandasamy, L. Keenan, S. Bardarov, J. Kriakov, J. G. Lawrence,W. R. Jacobs, Jr., R. W. Hendrix, and G. F. Hatfull. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182.
    41. Lawrence, J. G., G. F. Hatfull, and R. W. Hendrix. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phonetic approaches. J. Bacteriol. 184:4891–4905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700