用户名: 密码: 验证码:
甘蓝型油菜S45AB隐性细胞核雄性不育表达谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜细胞核雄性不育(GMS)败育彻底,不育性表现稳定,细胞质来源丰富,恢复源广泛,已成为我国油菜杂种优势利用的重要途径之一。甘蓝型油菜近等基因系(NIL) S45AB只在育性控制位点上Bnms1/BnMs1存在差异。以S45AB作为基础材料,利用半薄切片技术比较了S45AB花药的显微结构,利用差减文库和基因芯片技术分析了S45AB花蕾转录谱的表达差异,并通过差异表达基因的功能分析,推理了可能导致S45A花粉败育的代谢过程。主要结果如下:
     半薄切片观察发现:在减数分裂前,不育材料S45A与可育材料S45B花药没有明显差异;至四分体时期,不育花药的绒毡层比可育花药的体积增大并排列紧密;在单核花粉期,S45A中小孢子没有花粉外壁的形成,小孢子切片呈光滑的圆形,发育长时间停留在小孢子单核期,同时,S45A中绒毡层继续恶化,液泡化明显,并最终解体。而在S45B中,由于小孢子表面外壁的存在,小孢子切片呈现出不规则四边形,小孢子发育为成熟的花粉粒。S45A败育发生的开始时期为四分体至小孢子单核期,绒毡层异常是引起败育的主要原因。
     利用SSH构建了正向差减文库(富集了可育材料中上调表达的基因)和反向差减文库(富集了不育材料中上调表达的基因)两个文库,每个文库包含1536个克隆。对两个文库进行了反向Northern blot筛选,并且对正向文库的阳性克隆进行了测序,发现这些克隆代表了71个基因,其中有4条基因,分别为At1g30330, At1g71170, At5g10400, At5g52160在拟南芥花蕾中特异或相对大量表达。
     利用Affymatrix公司的拟南芥寡核苷酸芯片,对S45AB花蕾之间的表达差异进行了分析,发现在S45B中有69条上调表达的基因,在S45A中有46条上调表达的基因。根据MIPS A. thaliana Genome Database提供的信息对这些基因,包括差减文库获得的和芯片筛选得的所有在S45B中上调表达的基因进行了功能归类。结果表明,这些基因可分为18大类,包括参与代谢、蛋白命运决定、蛋白结合功能、细胞转运、环境互作、亚细胞定位的相关基因和未知功能基因,分别占了28.60%、12.20%、36.80%、11.40%、13.10%、41.80%和17.20%,参与代谢调节的基因很少,只占1.63%。对25个在S45B上调表达的基因和5个在S45A中上调表达的基因进行了Real-time PCR验证,Real-time PCR结果证实芯片的结果真实可靠,并根据他们表达模式的差异,将在S45B中上调表达的23个基因分成三类,对第一类基因做了功能分析,发现4个基因,At3g06860、At3g51590、At4g00040和At5g48880参与了脂肪酸代谢途径,并且推测可能是绒毡层中脂肪酸代谢紊乱致使孢粉素合成受阻从而导致了S45A的小孢子败育。
     根据Real-time PCR结果,比较了拟南芥花药发育的关键基因,A6, CALS5、DEX1、MYB103、MS1、MS2和NEF1在S45AB花蕾中的表达模式,比较了各拟南芥突变体的小孢子外壁缺失严重程度和发生的发育顺序及绒毡层外围组织的发育状况,提出了BnMs1基因在花药发育调控网络中的位置模型。
The genic male sterile (GMS) system has been widely applied for heterosis utilization in Brassica napus because of its stable and complete male sterility, rich sources of cytoplasm and wide spread of restorer lines. In this study, S45AB, a near isogenic line, which has been sub-matted for 25 generations and the fertility was controlled by BnMsl, was used as material. Semi-thin anther sections were used to compare the anther and pollen development of S45AB. Expression profile analyses between S45A and S45B buds were carried out by SSH libraries and microarray. According to the bioinformatic analysis of differentially expressed genes, predicted metabolism pathways were deduced for the male sterility. Main results are as follows:
     Until meiosis of the pollen mother cell, no differences were observed between the male sterile S45A and fertile S45B anther tissues. The tapetum cell elongated rapidly and was arranged tightly in tetrad stage, cross section of the uninucleate microspore was an approximate quadrangle in the S45B line but almost circular in the S45A line due to the complete lack of exine. After release of microspore from the tetrad, compared to the normal developmental microspore in the S45B line, the development of the microspore was blocked at the uninucleate stage and was followed by vacuolization, and then the microspores resulted in breakdown. Meanwhile, the tapetum cell deteriorated with evident vacuolization and soon collapsed in the S45A line. It is clear that the abnormal tapetal development cause the male sterility.
     Forward and reverse subtracted cDNA libraries were constructed by Suppression subtractive hybridization (SSH). Both cDNA libraries were rich in upregulated genes of S45B and S45A respectively. Both libraries contained 1536 clones, respectively. The positive clones were obtained by reverse northern blot and were sequenced, the sequences analysis showed that the clones represented 71 unigene, and four of them, Atlg30330, At1g71170, At5g10400 and At5g52160 were expressed specifically or abundantly in the buds.
     The microarray analysis showed that 69 genes were upregulated and 46 genes were downregulated in the S45B line compared with those in S45A. Functional categories of all upregulated genes from subtracted libraries and microarray in the S45B line were carried out using MIPS (http://mips.gsf.de/proj/funcatDB/search_main_frame.html), these genes were divided into 18 categories, mainly involved in protein fate (28.60%), protein binding (12.20%), cellular transport (36.80%), interaction with the environment (11.40%), subcellular localization (13.10%) and unknown functional gene (17.20%), only a few genes (1.63%) involved in metabolism regulation.
     Real-time PCR was used to validate and further investigate the expression differences of 25 upregulated genes in S45B line and 5 upregulated genes in the S45A line. Based on the expression pattern differences, the genes,23 upregulated in the S45B, were divided into three clusters. The bioinformatic analysis indicated that 4 genes of cluster A, At3g06860, At3g51590, At4g00040, and At5g48880, were involved in the lipid/fatty acids metabolism. It is deduced that the disorder of the lipid/fatty acids metabolism blocked the biosynthesis of sporepollenine, which caused the microspore abortion.
     According to the expression pattern revealed by Real-time PCR based on the genes from male sterility mutants including A6, CALS5, DEX1, MYB103, MS1, MS2 and NEF1 and the differences of phenotypes among S45A and other Arabidopsis male sterility mutants, a model was proposed to show the possible role of BnMsl in the regulation networks of anther development.
引文
1. 陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊),1993,2:20-25
    2. 陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24:431-438
    3. 傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    4. 傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    5. 侯国佐.甘蓝型油菜隐性核不育系可育、不育型初花前后特性的观察.种子,1991,5:29-31
    6. 胡胜武.甘蓝型油菜(Brassica napus)新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2003
    7. 蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的PCR标记初报.西南农业大学学报,2000b,22:1 99-202
    8. 蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000a,22:1-4
    9. 康俊根,王晓武,张国裕,张延国,娄平,方智远.利用cDNA-AFLP检测甘蓝雄性不育相关基因的时序性表达.园艺学报,2006,33:544-548
    10.康俊根,张国裕,张延国,娄平,王晓武,方智远.四种甘蓝雄性不育类型差异基因表达分析.农业生物技术学报,2006,14:551-554
    11.李祥,易自力,蔡能。应用基因工程技术创造植物雄性不育系。中国生物工程杂志,2002,22:28-32
    12.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,6:570-575
    13.罗鑫娟, 刘旭昊, 王新宇.绒毡层小体,一种在花药绒毡层细胞中新发现的含油细胞器.细胞生物学杂志,2006,28:61-65
    14.潘家驹主编.作物遗传育种总论.北京:中国农业出版社,1995,82-87
    15.杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999a,18:405-408
    16.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16:112-117
    17.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,1999b,18:520-523
    18.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察.武汉植物研究,1990,8:209-216
    19. Aarts M G, Hodge R, Kalantidis K, Florack D, Wilson Z A, Mulligan B J, Stiekema W J, Scott R, Pereira A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J,1997,12:615-623
    20. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato:S, Kato T, Tabata S, Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J, 2004,39:170-181
    21. Arondel V, Vergnolle C, Cantrel C, Kader JC. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci,2000,157:1-12
    22. Bairoch A. The ENZYME data bank [J]. Nucleic Acids Res,1993,21:3155-3156
    23. Bedinger P. The remarkable biology of pollen. Plant Cell,1992,4:879-887
    24. Blackmore S, Wortley AH, Skvarla JJ, Rowley JB. Pollen wall development in flowering plants. New Phytologist,2007,174:483-498
    25. Birch P R J, Avrova A O, Duncan J M, Lyon G D, Toth R L. Isolation of potato genes that are induced during an early stage of the hypersensitive response to phytophthora infestans. Mol Plant-Microbe Interact,1999,12(4):356-361
    26. Burbulis IE, Iacobucci M, Shirley BW. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell,1996,8:1013-1025
    27. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69
    28. Chee M, Yang R, Hubbell E, Berno A, Huang X C, Stern D, Winkler J, Lockhart D J, Morris M S, Fodor S P. Accessing genetic information with high-density DNA arrays. Science,1996,274: 610-614.
    29. Chen YP, Wang HZ, Wang X, Cao AZ, Chen PD. Cloning and expression of peroxisomal Ascorbate Peroxidase gene from wheat. Mol Biol Rep,2006,33:207-213
    30. Cherkasova E, Laassri M, Chizhikov V, Korotkova E, Dragunsky E, Agol V I, Chumakov K. Microarray analysis of evolution of RNA viruses:evidence of circulation of virulent highly divergent vaccine-derived polioviruses. Proc Natl Acad Sci U S A,2003,100:9398-9403
    31. Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR. Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. Journal of Expermental Botany,2003,54:1045-1056
    32. Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A,1996,93:6025-6030
    33. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J,2005,42:315-328
    34. Fischer R, Budde I, Hain R. Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J,1997,11:489-498
    35. Fitzgerald MA, Knox RB. Initiation of primexine in freeze-substituted. microspores of Brassica campestris. Sexual Plant Reproduction,1995,8:99-104
    36. Fong P Y, Xue W C, Ngan H Y, Chan K Y, Khoo U S, Tsao S W, Chiu P M, Man L S, Cheung A N. Mcl-1 expression in gestational trophoblastic disease correlates with clinical outcome:a differential expression study. Cancer,2005,103:268-276
    37. Fodor S P, Read J L, Pirrung M C, Stryer L, Lu A T, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science,1991,251:767-773
    38. Footit S, Cornah JE, Pracharoenwattana I, Bryce JH, Smith SM. The Arabidopsis 3-ketoacyl-CoA thiolase-2(kat2-1) mutant exhibits increased flowering but reduced reproductive success. J Exp Bot,2007,58:2959-2968
    39. Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM. Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J, 2001,28:1-12
    40. Girke A, Heiko C B, Gabriele M E. Resynthesized rapeseed as a new gene pool for hybrid breeding. Proc 10th Int Rapeseed Cong (Canberra, Australia),1999.90
    41. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J. Microarray analysis of developing Arabidopsis seeds, Plant Physiol,2000,124:1570-1581.
    42. Goldberg R B, Beals T P, Sanders P M. Anther development:basic principles and practical applications. Plant Cell,1993,5:1217-1229
    43. Graham JA, Eastmond PJ. Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res,2002,41:156-181
    44. Gruis D, Schulze J, Jung R. Storage Protein Accumulation in the Absence of the Vacuolar Processing Enzyme Family of Cysteine Proteases. Plant Cell,2003,16:270-290
    45. Gurbette F, Grosbois M, Jolliot-Croquin A, Kader JC, Zachowski A. Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry,1999,38: 14131-14137
    46. Gutierrez R A, Ewing R M, Cherry J M, Green P J. Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis:Rapid decay is associated with a group of touch-and specific clock-controlled genes. Proc Natl Acad Sci U S A,2002,99:11513-11518
    47. Hall AE, Bleecker AB. Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ersl etrl double mutant has severe developmental defects that are EIN2 dependent. Plant Cell,2003,15:2032-2041
    48. He NH, Liu HP, Xu X. Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge. Fish Shellfish Immunol,2004,17:121-128
    49. Hsieh K, Huang AHC. Tapetosomes in Brassica Tapetum Accumulate Endoplasmic Reticulum-Derived Flavonoids and Alkanes for Delivery to the Pollen Surface. Plant Cell,2007, 19:582-596
    50. Higginson T, Li S F, Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J,2003,35:177-92
    51. Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. Plant J,1993,4:1023-1033
    52. Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol, 2003,132:640-652
    53. Hubank M, Schatzd G. IdentifyingDifference in mRNA Exp ression by Rep resentational Difference Analysis of cDNA. Nucleic Acids Research,1994,22:5640-5648
    54. Huang Y, Zhang LD, Zhang JW, Yuan DJ, Xu CG, Li XH, Zhou DX, Wang SP, Zhang QF. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006,62:579-591
    55. Huang Z, Chen YF, Yi B, Xiao L, Ma CZ, Tu JX, Fu TD. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet,2007,115:113-8
    56. Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl Acids Res,1994,22:5640-5648
    57. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann J L, Meyerowitz E M. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature,2004,430:356-360
    58. James C. Global review of commercialized transgenic crops:2002. ISAAA briefs,2002, No.27
    59. Jiang H, Kang DC, Alexandre D, Fisher P B. RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes. Proc Natl Acad Sci U S A,2000,97: 12684-12689
    60. Jin H, Cheng X, Diatchenko L, Siebert P D, Huang C C. Differential screening of a subtracted cDNA library:a method to search for genes preferentially expressed in multiple tissues. Biotechniques,1997,23:1084-1086
    61. Kader JK. Lipid-transfer proteins in plant. Plant Mol Biol,1996,47:627-654
    62. Kader JK. Lipid-transfer proteins:A puzzling family of plant proteins. Trends Plant Sci,1997,2: 66-70
    63. Kai Hsieh and Anthony H.C. Huang. Tapetosomes in Brassica Tapetum Accumulate Endoplasmic Reticulum-Derived Flavonoids and Alkanes for. Delivery to the Pollen Surface. Plant Cell,2007,19:582-596
    64. Kang DC, LaFrance R, Su Z-z, Fisher P B. Reciprocal subtraction differential RNA display:An efficient and rapid procedure for isolating differentially expressed gene sequences. Proc Natl Acad Sci USA,1998,95:13788-13793
    65. Kang JG, Zhang GY, Bonnema G, Fang ZY, Wang XW. Global analysis of gene expression in flower buds of Ms-cdl Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Mol Biol,2008,66:177-192
    66. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breeding,2005,124: 367-370
    67. Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138:163-168
    68. Kim S, Zeller K, Dang C V, Sandgren E P, Lee L A. A Strategy to Identify Differentially Expressed Genes Using Representational Difference Analysis and cDNA Arrays[J]. Analytical Biochemistry,2001,288:141-148
    69. Koizumi M,yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. Structure and expression of 2 genes that encode distinct drought-inducible cystein protenases in Arabidopsis-thalinana. Gene,1993, 129:175-182
    70. Koltunow AM, Truettner J, Cox KH, Wallroth M and Goldberg RB. Different temporal andspatial gene expression patterns occur during anther development. Plant Cell,1990,2:1201-1224
    71. Lee HS, Wang J, Tian L, Jiang H, Black MA, Madlung A, Watson B, Lukens L, Pires JC, Wang JJ, Comai L, Osborn TC, Doerge RW, Chen J. Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnol J,2004,2:45-57
    72. Lee KF, Yeung W S B, Chow J F C, Shum C K, Luk J M.Different Testicular Gene Expression Patterns in the First Spermatogenic Cycle of.Postnatal and Vitamin A-Deficient Rat Testis. Biol Reprod,2004,70:1010-1017
    73. Lei SL, Yao XQ, Yi B, Chen W, Ma CZ, Tu JX, Fu TD. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115: 643-51
    74. Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell,2004,16:596-615
    75. Liang P, Bauer D, Averboukh L, Warthoe P, Rohrwild M, Muller H, Strauss M, Pardee A B. Analysis of altered gene expression by differential display. Methods in Enzymology,1995,254: 304-321
    76. Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science,1993,259:946-951
    77. Ma H. Molecular gentic analysis of microsporogenesis and microgametogenesis in flowering plants. Ann Rev Plant Biol,2005,56:393-434
    78. Ma LG, Li JM, Qu LJ, Hager J, Chen ZL, Zhao HY, Deng X W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell,2001,13:2589-2607
    79. Mariani C, Beckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plant by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    80. Martin K J, Graner E, Li Y, Price L M, Kritzman B M, Fournier M V, Rhei E, Pardee A B. High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc Natl Acad Sci USA,2001,98:2646-2651
    81. Matsushira H, Shinada H, Yui-Kurino R, Hamato N, Umeda M, Mikami T, Kubo T. An anther-specific lipid transfer protein gene in sugar beet:Its expression is strongly reduced in male-sterile plants with Owen cytoplasm. Physiol Plant,2007,129:407-414
    82. Micheli F, Holliger C, Goldberg R, Richard L. Characterization of the pectin methylesterase-like gene AtPME3:a new member of a gene family comprising at least 12 genes in Arabidopsis thaliana. Gene,1998,220:13-20
    83. Mohring S, Esch E, Wricke G. Breeding hybrid varitiles in winter rapeseed using recessivly inherited self-incompatibility. Proc 10th Int Rapeseed Cong (Canberra, Australia),1999,72
    84. Morant M, J(?)rgensen K, Schaller H, Pinot F, M(?)ller B L, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell,2007,19:1473-1487
    85. Murgia M, Charzynska M, Rougier M, Cresti M. Secretory tapetum of Brassica oleracea L. Polarity and ultrastructural features. Sex Plant Reprod,1991,4:28-35
    86. Nelson T, McEachron D, Freedman W, Yang W-P. Cold acclimation increases gene transcription of two calcium transport molecules, calcium transporting ATPase and parvalbumin beta, in carassius auratus lateral musculature. Journal of Thermal Biology,2003,28:227-234
    87. Ogura H. Studies on the new male sterility in Japanese Radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ,1968,6:39-78
    88. Palusa SG, Golovkin M, Shin SB, Richardson DN, Reddy ASN. Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis. New Phytol,2007,174:537-550
    89. Papini A, Mosti S, Brighigna L. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma,1999,207:213-221
    90. Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA. DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol, 2001,127:1739-1749
    91. Pollak PE, Vogt T, Mo Y, Taylor LP. Chalcone Synthase and Flavonol Accumulation in Stigmas and Anthers of Petunia hybrida. Plant Physiol,1993,102:925-932
    92. Piffanelli P, Ross JHE, Murphy DJ. Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod,1998,11:65-80
    93. Rast J P, Amore G, Calestani C, Livi C B, Ransick A, Davidson E H. Recovery of developmentally defined gene sets from high-density cDNA macroarrays. Dev Biol,2000,228: 270-286
    94. Rhee SY, Osborne E, Poindexter PD, Somerville CR. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol,2003,133:1170-1180
    95. Rhee SY, Somerville CR. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J,1998, 15:79-88
    96. Richmond TA, Bleecker AB. A defect in (3-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell,1999,11:1911-1923
    97. Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada),1991,1:2-5
    98. Roberts MR, Foster GD, Blundell RP, Robinson SW, Kumar A, Draper J and Scott R. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J, 1993,3:111-120
    99. Rylott EL, Eastmond PJ, Gilday AD, Slocombe SP, Larson TR, Baker A, Graham IA. The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal β-oxidation is essential for seedling establishment. Plant J,2006,45:930-941
    100. Sanders P M, Bui A Q, Weterings K, McIntire K N, Hsu Y-C, Lee P Y, Truong M T, Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod,1999,11:297-322
    101. Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270:467-470
    102. Scott R, Dagless E, Hodge R. Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol,1991,17:195-207
    103. Scott RJ, Spieman M, dickinson HG. Stamen Structure and Function. Plant Cell,2004,16: S46-S60
    104. Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA,1999,96:11664-11669
    105. Shewry PR, Napier JA, Tatham AS. Seed Storage Proteins:Structures and Biosynthesis. Plant Cell,1995,7:945-956
    106. Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J,1995,8:659-671
    107. Shull G H. The composition of a field of maize. Am Breeders Assoc Rep,1908,4:296-301
    108. Smyth DR, Bowman JL, Meyerowitz EM. Early Flower Development in Arabidopsis. Plant Cell, 1990,2:755-767
    109. Sorensen A M, Krober S, Unte U S, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J,2003,33: 413-423
    110. Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci U S A,2006,103:6805-6810
    111. Tian Z D, Liu J, Xie C H. Isolation of resistance related-genes to Phytophthora infestans with suppression subtractive hybridization in the R-gene-free potato. Yi Chuan Xue Bao,2003,30: 597-605
    112. Tuteja JH, Clough SJ, Chan WC, Vodkin LO. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell,2004,16:819-835
    113. Van der Meer IM, Stam ME, Van Tunen AJ, Mol, JNM, Stuitje AR. Antisense Inhibition of Flavonoid Biosynthesis Bios-y nthesis in Petunia Anthers Results in Male Sterility. Plant Cell, 1992,4:253-262
    114. Von Stein O D, Thies W G, Hofmann M A. A high through put screening for rarely transcribed differtially expressed genes. Nucleic Acids Res,1997,25:2598-2602
    115. Wijeratne A J, Zhang W, Sun Y, Liu W, Albert R, Zheng Z, Oppenheimer D G, Zhao D, Ma H. Differential gene expression in Arabidopsis wild-type and mutant anthers:insights into anther cell differentiation and regulatory networks. Plant J,2007,52:14-29
    116. Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1 (MSI) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J,2001,28:27-39
    117. Wu H, Cheun AY. Programmed cell death in plant reproduction. Plant Mol Biol,2000,44: 267-281
    118. Yang G S, Duan Z H, Fu T D, Wu C S. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. Proc 10th Int Rapeseed Cong (Canberra, Australia),1999, 73
    119. Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev,1999,13: 2108-2117
    120. Yang CY, Vizcay-Barrena G, Conner K, Wilson ZA. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell,2007,19:3530-3548
    121. Yang Y C, Li X, Chen W. Characterization of genes associated with different phenotypes of human bladder cancer cells. Acta Biochim Biophys Sin.2006,38:602-610
    122. Yi B, Chen YN, Lei SL, Tu JX, Fu TD. Fine mapping of the recessive genic male-sterile gene (Bnmsl) in Brassica napus L. Theor Appl Genet,2006,113:643-650
    123. Yui R, Lketani S, Mikami T, Kubo T. Antisense inhibition of a mitochondrial pyruvate dehydrogenase Elasubunit in anther tapetum causes male sterility. Plant J,2003,34:57-66
    124. Zhang Z B, Zhu J, Gao J F, Wang C, Li H, Li H, Zhang H Q, Zhang S, Wang D M, Wang Q X, Huang H, Xia H J, Yang Z N. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J,2007,52:528-538
    125. Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16:2021-2031
    126. Zhao J, Wang J, An L, Doerge RW, Chen ZJ, Grau CR, Meng J, Osborn TC. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta,2007,227: 13-24
    127. Zhao S, Ooi S L, Pardee A B. New primer strategy improves precision of differential display. Biotechniques,1995,18:842-846
    128. Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J,2008,55:266-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700