用户名: 密码: 验证码:
影响水稻抗白叶枯病主效基因Xa3/Xa26抗性发挥的遗传背景因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病是由黄单胞杆菌水稻致病变种(Xanthomonas oryzae pv. oryzae)引起的一种细菌性维管束病害,自二十世纪五十年代末以来,一直是影响我国水稻高产、稳产的主要病害之一。充分利用抗病基因资源,培育具有高效广谱抗性的优良品种是最经济有效地防治白叶枯病的技术措施。目前已经鉴定并克隆了大量主效抗病基因,部分基因在不同遗传背景中的抗病表型存在差异。研究清楚遗传背景如何影响抗病基因功能的发挥,为更好地利用主效抗病基因培育优良品种有着重要的指导意义。
     从明恢63中鉴定并克隆的水稻抗白叶枯病主效基因Xa3/Xa26定位于第11染色体的长臂末端。该基因介导的抗性受遗传背景的影响,粳稻背景可以提高该基因的表达水平,随着表达量的增加植株的抗性也随之增强。为了证实Xa3/Xa26的剂量效应是否是影响其抗性发挥的唯一因素,本研究从基因表达谱和遗传学两个角度分析了遗传背景影响Xa3/Xa26抗性的原因。
     首先,从牡丹江8/明恢63 F2分离群体中分别于苗期和成株期随机取材分析Xa3/Xa26的表达水平与植株抗性之间的关系,发现不管是在苗期还是成株期,两者之间均有一定的相关性,然而少数单株对PX061的抗性并不受抗病基因表达水平的影响。这说明遗传背景的确可以影响Xa3/Xa26的表达量,但该基因的剂量效应并非影响植株抗性的唯一因素。
     其次,从牡丹江8/明恢63的F2群体和以明恢63为轮回亲本的多个回交群体中总共检测到5个QTLs,这些QTL位点的牡丹江8等位位点对增强植株抗性起到一定作用,即感病亲本中确实存在一些数量抗性位点,可以影响Xa3/Xa26对白叶枯病的抗性。还扫描到4个QTL位点,当它们为明恢63基因型时也可以增强植株的抗性。另外,对129个共显性标记进行两位点互作分析,发现这些QTLs之间几乎不存在互作关系,以非QTL之间的互作最多。这些结果都说明遗传背景中有很多位点可以影响Xa3/Xa26介导的抗性。
     第三,用cDNA芯片对明恢63和Rb49接种白叶枯病病原后的基因表达谱进行分析,其中Rb49是一个携带有自身启动子驱动的Xa3/Xa26基因的单拷贝转基因株系。检测到的大多数差异表达基因在Rb49中能被病原快速激活,但它们在明恢63中却受到抑制表达或表达量基本不变。编码SNAC1蛋白的Os03g60080在明恢63和Rb49中均受病原的抑制表达,但从各时间点的表达趋势来看,该基因的表达模式与Xa3/Xa26, OsWRKY13和NH1相反,且它在OsWRKY13超量表达的转基因植株中的表达受抑制,这些都说明了这个基因不仅与非生物胁迫相关,而且很可能参与了Xa3/Xa26介导的抗病信号传导。结果表明某些基因在时空表达模式上的差异也是遗传背景影响主效抗病基因发挥功能的重要原因之一。
     第四,通过生物信息学的方法将差异表达基因定位到遗传连锁图上,且部分基因位于QTLs置信区间内,那么这些基因在不同的遗传背景中可能通过不同的调节功能影响Xa3/Xa26介导的抗病反应。
Bacterial blight of rice is a vascular disease caused by Xanthomonas oryzae pv. oryzae. It became one of the most devastating diseases influencing the rice production in the late 1950s. The effective method to improve the rice disease resistance is taking the full advantage of host resistance genes to develop better varieties. Until now, a large number of resistance genes have been identified, while the resistant phenotypes of some resistance genes are diverse in different genetic background. Understanding how the genetic background affecting the R gene mediated resistance may facilitate molecular breeding to obtain higher resistance varieties.
     Xa3/Xa26 was first identified in the Oryza sativa L. ssp. indica rice variety Minghui 63; it was mapped to the long arm of chromosome 11. The function of bacterial-blight resistance gene Xa3/Xa26 in rice is influenced by genetic background; Oryza sativa L. ssp. japonica background can increase Xa3/Xa26 expression, resulting in enhanced resistance. To identify whether Xa3/Xa26 transcript level is the only factor contributing to genetic background-controlled resistance, we combined the analyses of quantitative genetics and gene expression profile in this study.
     First, some juvenile and adult plants were randomly chosen from a Mudanjiang 8/Minghui 63 F2 population to analyze the relationship between the transcription level of Xa3/Xa26 and resistance level to bacterial blight. Increasing Xa3/Xa26 expression was correlated with the enhanced resistance in theses F2 plants both at juvenile and adult stages. But a few F2 plants showed a disassociation of Xa3/Xa26 expression level and enhanced resistance. These results suggest that genetic background does influence Xa3/Xa26 expression and its expression level is not an exclusive factor which affects its function.
     Second, five quantitative trait loci (QTLs) were identify from a Mudanjiang 8/Minghui 63 F2 population and some backcross populations using the Minghui 63 as a recurrent parent. The resistance alleles at these five QTLs were from the susceptible parent Mudanjiang 8. It means that some loci contributed by susceptible parent can influence Xa3/Xa26-mediated Xoo resistance. The other four QTLs also can enhance resistance when these alleles were homozygous for Minghui 63. Furthermore, One hundred and twenty-nine co-dominant markers were used for testing digenic interactions in this F2 segregating population. Few epistatic effects were existed between these QTLs. Most digenic interactions were detected between non-significant effect loci (non-QTL). These results suggest that Xa3/Xa26-mediated resistance was affected by multiple loci, including QTLs and epistatic interactions.
     Third, analysis difference of the expression profile of Xa3/Xa26-mediated resistance between Minghui 63 and Rb49, using a cDNA microarray. Rb49 is a transgenic line carrying a single copy of Xa3/Xa26 regulated by its native promoter in the genetic background of susceptible Mudanjiang 8. Most differentially expressed genes were rapidly activated in the Rb49, but not in the indica background, during disease resistance. Os03g60080, encoding a SNAC1 protein, was suppressed by pathogen in both Minghui 63 and Rb49, while its expression pattern of four time point after inoculation was opposite to that of Xa3/Xa26,OsWRKY13 and NH1 This gene was also suppressed in OsWRKY13-overexpressing lines. It was indicated that the differentially expressed gene not only related with abiotic stress, but also participated in the signal transduction of Xa3/Xa26-mediated resistance. It means that the different spatiotemporal expression pattern of some genes was another important factor affecting the R gene function.
     Fourth, the colocalization of some differentially expressed genes with QTLs in Xa3/Xa26-mediated resistance will help to characterize the genes underlying these QTLs and involved in regulation of genetic background-controlled resistance.
引文
1.曹应龙.水稻抗白叶枯病基因Xa26和Xa4的遗传和功能分析.[博士学位论文],武汉:华中农业大学图书馆,2007
    2. 陈惠兰.我国南方稻区稻瘟病菌群体结构及水稻和大麦抗病QTL的比较作图.[博士学位论文],武汉:华中农业大学图书馆,2001
    3.储昭晖,王石平.水稻白叶枯病抗性基因的克隆、结构与功能和分子进化.见:章琦主编,水稻白叶枯病抗性的遗传及改良.北京:科学出版社,2007,349-377
    4.王金生.水稻白叶枯病细菌无毒基因及相关调节因子.见:章琦主编,水稻白叶枯病抗性的遗传及改良.北京:科学出版社,2007,277-319
    5.邢婉丽,程京.生物芯片技术.北京:清华大学出版社,2003
    6.于彦春,滕胜,曾大力,董国军,钱前,黄大年,朱立煌.水稻抗白叶枯病微效QTL的定位分析.中国水稻科学,2003,17:315-318
    7.张端品,谢岳峰,Mew TW.水稻品种对白叶枯病成株抗性研究.中国农业科学,1984,1:40-50
    8.赵新平,张端品,谢岳峰.水稻对白叶枯病成株抗性基因显性反转的研究.遗传,1986,8:5-9
    9.周永力,翟文学,章琦,王春连,田文忠,潘学彪,朱立煌.Xa21转基因水稻对白叶枯病的抗性及其遗传.植物病理学报,2001,31:123-129
    10. Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA,1998,95: 10306-10311
    11. Albar L, Lorieux M, Ahmadi N, Rimbault I, Pinel A, Sy AA, Fargette D, Ghesquiere A. Genetics basis and mapping of the resistance to rice yellow mottle virus. I. QTLs identification and relationship between resistance and plant morphology. Theor Appl Genet,1998,97:1145-1154
    12. Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon, JL. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science,2004,306:1957-1960
    13. Altenbach D, Robatzek S. Pattern recognition receptors:from the cell surface to intracellular dynamics. Mol Plant Microbe Interact,2007,20:1031-1039
    14. Amante-Bordoes A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryzae sativa. Theor Appl Genet,1992,107:62-73
    15. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,2002,415:977-983
    16. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science,2002,295:2077-2080
    17. Axtell MJ, Staskawicz B. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell,2003,112: 369-377
    18. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science,2002,295:2073-2076
    19. Banerjee D, Zhang XC, Bent AF. The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Genetics,2001,158:439-450
    20. Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol,2004,7:391-399
    21. Bent AF, Mackey D. Elicitors, effectors, and R genes:the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol,2007,45:399-436
    22. Bittel P, Robatzek S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol,2007,10:335-341
    23. Bittner-Eddy PD, Beynon JL. The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol Plant Microbe Interact,2001,14:416-421
    24. Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol,2009,60:379-406
    25. Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J, Nijkamp HJ. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternate f. sp. Lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA,2000, 97:4961-4966
    26. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A. The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA, 2002,99:9328-9333
    27. Buschges R, Hollrichner K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barely mlo gene:a novel control element of plant pathogen resistance. Cell,1997,88:695-705
    28. Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EM, Lange W, Stiekema WJ, Wyss U, Grundler FM, Jung C. Positional cloning of a gene for nematode resistance in sugar beet. Science,1997,275:832-834
    29. Cao H, Bowling SA, Gordon S, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell,1994,6: 1583-1592
    30. Cao Y, Ding X, Cai M, Zhao J, Lin Y, Li X, Xu C, Wang S. The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics,2007, 177:523-533
    31. Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC. Developmental control of Xa21-mediated disease resistance in rice. Plant J,1999,20:231-236
    32. Chen H, Wang S, Zhang Q. A new gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology, 2002,92:750-754
    33. Chen S, Lin XH, Xu CG, Zhang Q. Improvement of bacterial blight resistance of 'Minghui 63', an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci,2000,40:239-244
    34. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J,2006,46:794-804
    35. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell,2002,14:559-574
    36. Chern M, Canlas PE, Fitzgerald HA, Ronald PC. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J,2005b,43: 623-635
    37. Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact,2005a,18:511-520
    38. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet,2005,37:225-232.
    39. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature,2007,448:497-500
    40. Chu Z, Peng K, Zhang L, Zhou B, Wei J, Wang S. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chinese Sci Bull,2003, 48:229-235
    41. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S. Promoter mutantions of an essential gene for pollen development result in disease resistance in rice. Genes Dev,2006,20:1250-1255
    42. Collins A, Milbourne D, Ramsay L, Meyer R, Chatot-Balandras C, Oberhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed,1999,5: 387-398
    43. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature,2001,411:826-833
    44. Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell,2005,17: 1292-1305
    45. Dean JD, Goodwin PH, Hsiang T. Induction of glutathione s-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot,2005,56:1525-1533
    46. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance. Science,1994,266:1247-1250
    47. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham MH, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA,2003,100:8024-8029
    48. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell, 2008,20:228-240
    49. Dixon MS, Golstein C, Thomas CM, van der Biezen EA, Jones DG. Genetic complexity of pathogen perception by plants:The example of Rcr3, a tomato gene required specifically by Cf-2. Proc Natl Acad Sci USA,2000,97:8807-8814
    50. Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell,1998,10:1915-1925
    51. Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell,1996,84:451-459
    52. Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1998,1:316-323
    53. Dunning FM, Sun W, Jansen KL, Helft L, Bent AF. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell,2007,19:3297-3313
    54. Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J,2002,32:927-934
    55. Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol,2004,42: 185-209
    56. Eulgem T, Weigman VJ, Chang HS, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl JL. Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol,2004,135: 1129-1144
    57. Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA,1999,96:3292-3297
    58. Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J,1999,18:265-276
    59. Felix G, Boller T. Molecular sensing of bacteria in plants:The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem,2003,278:6201-6208
    60. Fitzgerald HA, Canlas PE, Chern MS, Ronald PC. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. Plant J,2005, 43:335-347
    61. Gabriel DW, Rolfe BG. Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopathol,1990,28:365-391
    62. Gendron JM, Wang ZY. Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol,2007,10:436-441
    63. Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S. Curr Biol,2008,18:1824-1832.
    64. Gomez-Gomez L, Boller T. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Aracidopsis. Mol Cell,2000,5: 1003-1011
    65. Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol,2006,60: 425-449
    66. Gu K, Sangha JS, Li Y, Yin Z. High-resolution genetic mapping of bacterial blight resistance gene Xa10. Theor Appl Genet,2008,116:155-163
    67. Gu K, Tian D, Yang F, Wu L, Sreekala C, Wang D, Wang G L, Yin Z. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryzae sativa L. Theor Appl Genet,2004,108:800-807
    68. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF, Yin Z. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature,2005,435:1122-1125
    69. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Gotz F, Glawischnig E, Lee J, Felix G, Nurnberger T. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. JBiol Chem,2007,282:32338-32348
    70. Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J,2001,25:335-348
    71. Hammond-Kosack KE, Jones DA, Jones J. Identification of Two Genes Required in Tomato for Full Cf-9-Dependent Resistance to Cladosporium fulvum. Plant Cell, 1994,6:361-374
    72. Hammond-Kosack KE, Parker JE. Deciphering plant-pathogen communication:fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol,2003,14: 177-193
    73. Harmer SL, Kay SA. Microarrays:determining the balance of cellular transcription. Plant Cell,2001,12:613-615
    74. Hauck P, Thilmony R, He SY. A Pseudomo-nas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA,2003,100:8577-8582
    75. He SY. Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol,1998,36:363-392
    76. He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 2000,288:2360-2363
    77. Hopkins CM, White FF, Choi SH, Guo A, Leach JE. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact, 1992,5:451-459
    78. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA,2006,103:12987-12992
    79. Hu K, Qiu D, Shen X, Li X, Wang S. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant,2008,1: 786-793
    80. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100:2574-2579
    81. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet,1997,95: 313-320
    82. Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006,62:579-591
    83. Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K. MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem,2006,281:36969-36976
    84. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:793-800
    85. Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact,2004,17:1348-1354
    86. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000,19:4004-4014
    87. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA,1999,96:13583-13588
    88. Johal GS, Briggs SP. Reductase activity encoded by the Hml disease resistance gene in maize. Science,1992,258:985-987
    89. Jones JD, Dangl JL. The plant immune system. Nature,2006,444:323-329
    90. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep,1973, 57:537-541
    91. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA,2001,98: 6511-6515
    92. Kazan K, Schenk PM, Wilson I, Manners JM. DNA microarrays:new tools in the analysis of plant defence responses. Mol Plant Pathol,2003,3:177-185
    93. Kim MG, da Cunha L, McFall AJ, Belkhadir Y, Debroy S, Dangl JL, Mackey D. Two Pseudomonas syringae type Ⅲ effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell,2005,121:749-759.
    94. Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell,2000,12:2339-2350
    95. Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell,1999,4:21-33
    96. Kliebenstein DJ, Rowe HC, Denby KJ. Secondary metabolites influence ArabidopsislBotrytis interactions:variation in host production and pathogen sensitivity. Plant J,2005,44:25-36
    97. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell,2004,16:3496-3507
    98. Lee SW, Han SW, Bartley LE, Ronald PC. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA,2006,103:18395-18400
    99. Li P, Long J, Huang Y, Zhang Y, Wang J. AvrXa3:a novel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function. Prog Nat Sci,2004, 14:774-780
    100.Li Q, Chen F, Sun L, Zhang Z, Yang Y, He Z. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiol Mol Plant Pathol,2006a,68:695-708
    101.Li Z, Pinson SRM, Park WD, Paterson AH, Stansel JW. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics,1997,145:453-465
    102.Li ZK, Arif M, Zhong DB, Fu BY, Xu JL, Domingo-Rey J, Ali J, Vijayakumar CH, Yu SB, Khush GS. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006b,103:7994-7999.
    103.Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS. A "defeated" rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet,1999, 261:58-63
    104.Li ZK, Sanchez A, Angeles E, Singh S, Domingo J, Huang N, Khush GS. Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics,2001,159:757-65
    105.Liao CY, Wu P, Hu B, Yi KK. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001,103:104-111
    106.Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report. Whitehead Institute, Cambridge, Massachusetts, USA,1992
    107.Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell,2003,112:379-389
    108.Mackey D, Holt III BF, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell,2002,108:743-754
    109.Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,2000,26:403-410
    110.Matin GB, Brommonschenkel SH, Chunwongse J. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science,1993,262:1432-1436
    111.McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res,2002,9:199-207
    112.McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J,2000, 22:523-529
    113.Mew TW, Vera Cruz CM, Reyes RC. Characterization of resistance in rice to bacterial blight.1980, IRRI, Los Banos, Lagura Philippines
    114.Navarro L, Zipfer C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD. The transcriptional innate immune response to flg22, interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol,2004,135: 1113-1128
    115.Nawrath C, Metraux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell,1999,11:1393-1404
    116.Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J,2002,29:487-495
    117.Nomura K, Melotto M, He SY. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol,2005,8:361-368
    118.Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science,2006,313: 220-223
    119.Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals:striking similarities and obvious differences. Immunol Rev,2004,198: 249-266
    120.Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ,2005,39:275-287
    121.Oelschlaeger T A, Hacker J. Impact of pathogenicity islands in bacterial diagnostics. APMIS,2004,112:930-936
    122.Ogawa T, Lin L, Tabien RE, Khush GS. A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newsl,1987,4:98-100
    123.Ogawa T, Yamamoto T, Khush GS, Mew TW. Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. Oryzae). Japan J Breed,1991,41:523-529
    124.Ou SH, Nuque FL, Bandong JM. Relationship between qualitative and quantitative resistance in rice blast. Phytopathology,1975,65:1315-1316
    125.Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE, Ronald PC. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol,2008,6:1910-1926
    126.Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan R, Patrick EC, Ronald PC. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant,2008,1:446-458
    127.Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H, Lacy M, Austin M, Parker J. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell,2000,103:1111-1120
    128.Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell,1998,10:1571-1580
    129.Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray:the world of quantitative disease resistance. Trends Plant Sci,2009,14:21-29
    130.Ponciano G, Yoshikawa M, Lee JL, Ronald PC, Whalen MC. Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol,2006, 69:131-139
    131.Porter BW, Chittoor JM, Yano M, Sasaki T, White FF. Development and Mapping of Markers Linked to the Rice Bacterial Blight Resistance Gene Xa7. Crop Sci,2003,43: 1484-1492
    132.Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. Mol Plant Microbe Interact,2007,20:492-499
    133.Qiu D, Xiao J, Xie W, Cheng H, Li X, Wang S. Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol,2009.
    134.Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, and Wang S. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant,2008,1:538-551
    135.Rosa GJ, de Leon N, Rosa AJ. Review of microarray experimental design strategies for genetical genomics studies. Physiol Genomics,2006,28:15-23
    136.Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature, 2007,448:370-374
    137.Roumen EC. In a strategy for accumulating genes for partial resistance to blast disease in rice within a conventional breeding program. In:Zeigler RS, Leong SA, Teng PS eds., Rice Blast Disease. Cambrige:CAB International,1994,245-265
    138.Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. Systemic acquired resistance. Plant Cell,1996,8:1809-1819
    139.Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA,2000,97:11655-11660
    140.Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science,1996,274:2063-2065
    141.Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe,2008, 4:17-27
    142.Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. Cleavage of Arabidopsis PBS1 by a bacterial type Ⅲ effector. Science,2003,301:1230-1233
    143.Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lubberstedt T. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. BMC Genomics,2007,8:22-37
    144.Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell,1999,99:355-366
    145.Shirasu K, Schulze-Lefert P. Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci,2003,8: 252-258
    146.Sidhu GS, Khush GS, Mew TW. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, Oryzae sativa L. Theor Appl Genet,1978,53:105-111
    147.Sidhu GS, Khush GS, Mew TW. Genetic analysis of resistance to bacterial blight in seventy cultivars of rice, Oryzae sativa L., from Indonesia. Crop Improv,1979,6: 19-25
    148.Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science,1995,270:1772-1804
    149.Srinivasachary SH, Kumar KG, Shashidhar HE, Vaishali MG. Identification of quantitative trait loci associated with sheath rot resistance (Sarocladium oryzae) and panicle exsertion in rice (Oryza sativa L.). Curr Sci,2002,82:133-135
    150.StatSoft (1991) Statistica. StatSoft Incorporated, Tusla, Oklahoma
    151.Steffenson BJ, Hayes PM, Kleinhofs A. Genetics of seedling and adult plant resistance to net blotch(Pyrenophora teres f. Teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet,1996,92:552-558
    152.Sticher L, Mauch-Mani B, Metraux JP. Systemic acquired resistance. Annu Rev Phytopathol,1997,35:235-270
    153.Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ. MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol,2007,143:661-669
    154.Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet,2003, 106:683-687
    155.Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encoding a LRR receptor kinase-like protein. Plant J,2004,37:517-527
    156.Swiderski MR, Innes RW. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J,2001,26:101-112
    157.Takai R, Isogai A, Seiji S, Che FS. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact,2008,12:1635-1642
    158.Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science,1996, 274:2060-2063
    159.Temnykh S, Park WD, Ayres N, Cartihour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:697-712
    160.Temnykh S, Declerck G, Luashova A, Lipovich L, Cartinhour S, McCouch SR. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res,2001,11:1441-1452
    161.Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA,2001, 98:9437-9442
    162.Thatcher LF, Anderson JP, Singh KB. Plant defence responses:what have we learnt from Arabidopsis? Functional Plant Biology,2006,32:1-19
    163.Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JD. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell,1997,9:2209-2224
    164.Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones JD, Holub EB. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol,2004,135:1100-1112
    165.van der Biezen EA, Jones JD. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci,1998,23:454-456
    166.Van der Plank JE. Disease resistance in plants. London:Academic Press,1968
    167.Van Poecke RM, Sato M, Lenarz-Wyatt L, Weisberg S, Katagiri F. Natural variation in RPS2-mediated resistance among Arabidopsis accessions:correlation between gene expression profiles and phenotypic responses. Plant Cell,2007,19:4046-4060
    168.Vergne E, Ballini E, Droc G, Tharreau D, Notteghem JL, Morel JB. ARCHIPELAGO: a dedicated resource for exploiting past, present, and future genomic data on disease resistance regulation in rice. Mol Plant Microbe Interact,2008,21:869-878
    169.Walkey DGA, Ward CM, Phelps K. Studies on lettuce mosaic virus resistance in commercial lettuce cultivars. Plant Pathol,1985,34:545-551
    170.Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell,2008,20:471-481.
    171.Wang C, Tan M, Xu X, Wen G, Zhang D, Lin X. Localizing the Bacterial Blight Resistance Gene, Xa22(t), to a 100-Kilobase Bacterial Artificial Chromosome. Phytopathology,2003,93:1258-1262
    172. Wang G, Ding X, Yuan M, Qiu D, Li X, Xu C, Wang S. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol,2006a,60: 437-449
    173.Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics,1994,136:1421-1434
    174.Wang GL, Song WY, Ruan DL, Sideris S, Ronald P. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe Interact,1996,9:850-855
    175.Wang S, Zeng ZB. Windows QTL Cartographer V2.0. North Carolina State University, Raleigh, NC,2003. http://statgen.ncsu.edu/qtlcart/cartographer.html
    176.Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell,2006b,18: 3635-3646
    177.Wen N, Chu Z, Wang S. Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics, 2003,269,331-339
    178.Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ. Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics,2005,169:2277-2293
    179.Wu X, Li X, Xu C, Wang S. Fine genetic mapping of xa24, a recessive gene for resistance against Xanthomonas oryzae pv. oryzae in rice. Theor Appl Genet,2008, 118:185-191
    180.Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol,2008,18:74-80
    181.Xiang Y, Cao Y, Xu C, Li X, Wang S. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet,2006,113:1347-1355
    182.Xiao SY, Ellwood S, Calis O, Patrick E, Li TX, Coleman M, Turner JG. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science,2001,291:118-120
    183.Xiong M, Wang S, Zhang Q. Coincidence in map positions between pathogen-induced defensive-responsive genes and quantitative resistance loci in rice. Sci China Ser C,2002,45:518-526
    184.Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell,1991,3:809-818
    185.Yang Y, Gabrial DW. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant Microbe Ineract,1995,8: 627-631
    186.Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J,2004,40: 909-919
    187. Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet,2003,106:1467-1472
    188.Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol,1997,35:145-153
    189.Yoshimura A, Lei JX, Matsumoto T, Tsunematsu H, Yoshimura S. Analysis and pyramiding of bacterial blight resistance genes in rice by using DNA markers. In: Khush GS ed., Rice Genetics III, Proceedings of the Third International Rice Genetics Symposium. IRRI, Manila, Philippines,1996,577-581
    190.Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA,1998,95:1663-1668
    191.Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed,1995,1:375-387
    192.Young, N.D. QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol,1996,34:479-501
    193.Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231
    194.Yuan B, Shen X, Li X, Xu C, Wang S. Mitogen-activation protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta,2007,226: 953-960
    195.Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468
    196.Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe,2007,1:175-185
    197.Zhang Q, Mew TW. Adult plant resistance of rice cultivars to bacterial blight. Plant Disease,1985,69:896-898
    198.Zhao J, Fu J, Li X, Xu C, Wang S. Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor Appl Genet,2009,119:231-239
    199.Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J,2006,48: 592-605
    200.Zhou B, Peng K, Chu Z, Wang S, Zhang Q. The defense responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryzae sative L.). Sci China Ser C,2002,45:450-467
    201.Zhou J, Tang X, Martin GB. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J,1997,16:3207-3218
    202.Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H. Does function follow form? Principal QTLs for fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet,1999,99: 1221-1232
    203.Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature,2004,428: 764-767
    204.Zipfel C, Kunze G, Chinchilla D, Caniard A, JD, Boller T, Felix G. Perception of the bacterial MAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell,2006,125:749-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700