用户名: 密码: 验证码:
小檗碱与氟康唑协同抗耐药白念珠菌的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白念珠菌对氟康唑(FLC)的耐药性是临床抗真菌治疗失败的主要原因。本课题组前期的研究结果显示小檗碱(BBR)与FLC合用对耐药白念珠菌具有显著的协同抑菌作用。在本研究中,我们利用蛋白质二维电泳分析了临床耐药白念珠菌0304103、01010在FLC和BBR单用及合用前后的蛋白表达谱,所得结果经real-time RT-PCR验证,得到一批与能量代谢、氧化应激及其他功能相关的差异表达蛋白。此外,我们通过线粒体膜电位测定、细胞内ATP浓度测定、ATP合酶活性测定、内源性活性氧生成量测定、棋盘式微量液基稀释法考察还原剂的加入对两药协同效果的影响等实验进一步研究了BBR和FLC协同抗耐药白念珠菌的机制,结果显示两药合用后线粒体有氧呼吸增强,ATP生成量减少,ATP合酶活性受到抑制,内源性活性氧(ROS)生成大量增加,我们推断FLC与BBR合用是通过增强耐药白念珠菌的三羧酸循环、抑制ATP合酶活性使细胞内ROS生成大量增多,ROS通过氧化损伤作用杀伤耐药白念珠菌。这一“活性氧机制”可能是FLC与BBR协同抗耐药白念珠菌的重要分子机制之一。
     为深入研究BBR与FLC协同抗耐药白念珠菌的分子机制,我们利用cDNA芯片技术比较了临床耐药白念珠菌(0304103、01010、632)在FLC与BBR单用及合用前后的差异表达基因。通过对3株菌两药合用前后各自的差异表达基因取交集,共得到70个共同差异表达基因。所得差异表达基因均通过real-time RT-PCR进行验证。我们将70个共同差异基因进行了生物信息学分析及文献调研,发现两药合用后的差异表达基因主要与能量代谢、基因信息传递(复制、转录、翻译)及空泡形成三种生物学功能有关。其中,能量代谢相关基因的表达趋势与蛋白质组结果一致。根据芯片结果,我们推测:两药合用最终杀伤真菌细胞的核心机制可能是BBR的DNA损伤作用;白念珠菌可通过将BBR转运至其空泡内贮存从而起到对BBR的天然耐药作用。
     为探索“FLC + BBR”协同的关键环节,发现可能的“活性氧前”机制,根据蛋白质组及基因芯片结果提示,我们利用电镜及激光共聚焦显微镜观察BBR在白念珠菌细胞内的定位情况,发现BBR确实能贮存于空泡中并使空泡变大。通过琼脂点板实验,棋盘式微量液基稀释法及real-time RT-PCR等实验的结果提示,我们提出如下假说:白念珠菌可通过“囊泡运输”机制以胞吞的形式将BBR转运至空泡中贮存从而对其产生耐药现象;当合用FLC后,由于FLC的破膜作用可将空泡膜破坏从而释放出BBR,BBR的细胞毒作用导致胞内ROS生成大量增多,同时导致DNA损伤,进而而发挥抗耐药白念珠菌作用,该“空泡”机制可能是“FLC + BBR”协同抗耐药的关键环节。本课题为抗耐药白念珠菌的研究提供了新的思路。
Multidrug resistance aggravates treatment failure of invasive infections with Candida albicans (C. albicans), a most common Candida pathogen. Our previous study showed that concomitant use of berberine (BBR) and fluconazole (FLC) provided a synergistic action against FLC-resistant C. albicans clinical strains in vitro. To clarify the mechanism underlying this action, we performed a comparative proteomic study in untreated control cells and cells treated with FLC and/or BBR in 2 clinical strains of C. albicans resistant to FLC (0304103, 01010) and the results were confirmed by real-time RT-PCR. Our analyses identified 16 differentially expressed proteins, most of which were related to energy metabolisms (e.g., Gap1, Adh1, and Aco1). Functional analyses revealed that FLC+BBR treatment increased mitochondrial membrane potential, decreased intracellular ATP level, inhibited ATP-synthase activity, and increased generation of endogenous reactive oxygen species (ROS) in FLC-resistant strains. In addition, checkerboard microdilution assay showed that addition of anti-oxidant ascorbic acid or reduced glutathione reduced the synergistic antifungal activity of FLC+BBR significantly. These results suggest that mitochondrial aerobic respiration shift and endogenous ROS augmentation contribute to the synergistic action of FLC + BBR against FLC-resistant C. albicans.
     To further reveal the specific synergistic mechanism of the combination of FLC and BBR against FLC-resistant C. albicans clinical strains, in this study, we performed a cDNA microarray analysis in untreated control cells and cells treated with FLC and/or BBR in 3 clinical strains of C. albicans resistant to FLC (0304103, 01010 and 632) and the results were confirmed by real-time RT-PCR. By taking overlap of differentially expressed genes identified in 3 clinical strains treated with or without FLC and/or BBR, our analyses identified 70 differentially expressed genes, 26 of which were function-unknown genes; 35 of which were related to multiple biochemical functions such as transcription regulator activity, translation regulator activity, RNA bingding, protein binding, cell cycle, cellular homeostasis, organelle organization, filamentous growth, transporter activity and multiple enzyme activity. After bioinformatics analysis and reading pertinent literature, we found that these function-known genes differentially expressed after the combnation treatment of FLC + BBR were mainly involved in 3 kinds of biochemical function: energy metabolisms, DNA damage and vacuolation. The expressed tendency of energy metabolisms-related genes were consistent with the results of the proteomic study performed previously. According the cDNA chip results, we speculated that the final mechanism to kill the Candida cells with the combination treatment of FLC + BBR is the DNA damage caused by BBR and there might be a natural BBR-resistant mechanism in C. albicans by storing BBR up in the vacuole.
     To explore the key mechanism of the synergistic action of FLC + BBR and to find the potential“ex-ROS”mechanism, based on the results of the proteomic and cDNA chip studies performed previously, we observed the location of BBR in C. albicans cells by uesing electron microscope and laser confocal microscopy. The results showed that the BBR was stored up in the vacuole and the vacuole were magnified after BBR treatment. In addition, further experiments including spot assay, checkerboard microdilution assay and real-time RT-PCR were performed. Based on the results of these experiments, we raised the hypothesis that C. albicans cells could store BBR up in the vacuole according to the“vesicle trafficing”mechanism, which caused the BBR-resistance in C. albicans. When combined with FLC to against C. albicans, BBR could released from the vacuole by the vacuolar membrane-disruptive effect of FLC and the cells were killed by the augmentation of ROS and DNA damage. This research provides a new direction to study multidrug-resistance in C. albicans.
引文
[1]廖万清,深部真菌感染治疗进展,中国麻风皮肤病杂志,2003;19:597-600
    [2] Fridkin,S.K.,and W.R.Jarvis.Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 1996;9:499-511
    [3] Pfaller MA,Nosocomial candidiasis:emerging species,reservoirs,and modes of transmission.Clin Infect Dis 1996;22(Suppl 2):S89-94
    [4] Pfaller MA,Jones RN,Doern GV,et al.Bloodstream infections due to Candida species:SENTRY antimicrobial surveillance program in North America and Latin America,1997-1998. Antimicrob Agents Chemother 2000;44:747-751.
    [5] Gudlaugsson,O.,S.Gillespie,K.Lee,J.et al.Attributable mortality of candidemia, revisited.Clin.Infect.Dis.2003;37:1172-1177
    [6] Wilson,L.S.,C.M.Reyes,M.Stolpman,J.Speckman,K.Allen,J.Beney.The direct cost and incidence of systemic fungal infections.Value Health 2002;5:26-34
    [7] D.G.Maki and P.A.Tambyah,Engineering out the risk of infection with urinary catheters.Emerg.Infect.Dis.2001;7:1-6
    [8] Blumberg HM,Jarvis WR,Soucie JM, et al.Risk factors for candidal bloodstream infections in surgical intensive care unit patients:the NEMIS prospective multicenter study.Clin.Infect.Dis. 2001;33:177-186.
    [9] Hajjeh,R.A.,A.N.Sofair,L.H.Harrison,G.M.Lyon,B.A.Arthington-Skaggs,et al. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program.J.Clin.Microbiol.2004;42:1519-1527.
    [10] Rees JR,Pinner RW,Hajjeh RA,et al.The epidemiologic features of invasive mycotic infection in the San Francisco Bay Area, 1992-1993:results of a population-based laboratory active surveillance.Clin.Infect.Dis.1998;27:1138- 1147.
    [11] Walsh,T.J.,A.Groll,J.Hiemenz,R.Flemming,E.Roilides,and E.Anaissie. Infec- tions due to emerging and uncommon medically important fungal pathogens.Clin.Microbiol.Infect.2004;10(Suppl.1):48-66.
    [12] Lortholary O,Dupont B.Antifungal prophylaxis during neutropenia and immunodeficiency.Clin Microbiol Rev 1997;10:477-504.
    [13]斯崇文,贾辅忠,李家泰,深部真菌感染的治疗.感染病学.北京:人民卫生出版社,2004,1531-1539. - 82 -
    [14] Kontoyiannis,D.P.,and Lewis,R.E.(2002)Antifungal drug resistance of pathogenic fungi.Lancet 359:1135-1144.
    [15] Kelly,S.L.,A.Arnoldi,and D.E,Kelly.Molecular genetic analysis of azole antifungal mode of action. Biochem.Soc.Trans.1993;21:1034-1038.
    [16] Vanden Bossche,H.Biochemical targets for anifungal azole deriva-tives: hypothesis on the mode of action.Curr.Top.Med.Mycol.1985; 1:313-351.
    [17] Vanden Bossche,H.,G.Willemsens,and P.Marichal.Anti-Candida drugs-the biochemical basis for their activity.Crit.Rev.Microbiol.1987;15:57-72.
    [18] Fromitling RA.Micafungin Sodium(FK63).Drug Foday,2002;38:245-257.
    [19] Edwards,J.E.,Jr.International conference for the development of a consensus on the management and prevention of severe candidal infections.Clin.Infect.Dis. 1997;25:43-59.
    [20] Brammer,K.W.,P.R.Farrow,and J.K.Faulkner.Pharmacokinetics and tissue penetration of fluconazole in humans.Rev.Infect.Dis.1990;12(Suppl. 3):318-326.
    [21] Lortholary,O.,and B.Dupont.Antifungal prophylaxis during neutropenia and immunodeficiency.Clin.Microbiol.Rev.1997;10:477-504.
    [22] Rex,J.H.,J.E.Bennett,A.M.Sugar,P.G.Pappas,C.M.van der Horst,et al.A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia.N.Engl.J.Med.1994; 331: 1325-1330.
    [23] Graybill,J.R.Editorial response:can we agree on the treatment of candidiasis? Clin.Infect.Dis.1997;25:60-62.
    [24] Rex,J.H.,T.J.Walsh,J.Sobel,S.G.Filler,P.G.Pappas,W.E.Dismukes,and J.E. Edwards,Jr.Practice guidelines for the treatment of candidiasis.Clin.Infect.Dis. 2000;30:662-678.
    [25] White TC,Marr KA,Bowden RA.Clinical,cellular,and molecular factors that contribute to antifungal drug resistance.Clin.Microbiol.Rev.1998;11:382-402.
    [26] Boken,D.,S.Swindells,and M.Rinaldi.Fluconazole resistance in Candida albicans.Clin.Infect.Dis.1993;17:1018-1021.
    [27] Ng,T.T.,and D.W.Denning.Fluconazole resistance in Candida in patients with AIDS:a therapeutic approach.J.Infect.1993;26L:117-125.
    [28] White,T.C.Increased mRNA levels of ERG16,CDR,and MDR1 correlate with with human immunodeficiency virus.Antimicrob.Agents Chemother. 1997;41:1482-1487.
    [29] Perea S,et al.Prevalence of molecular mechanisms of resistance to azoleantifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency patients.Antimicrob Agents Chemother 2001;45:2676
    [30] Barchiesi,F.,A.L.Colombo,D.A.McGough,A.W.Fothergill,and M. G. Rinaldi.In Vitro activity of itraconazole against fluconazole-susceptible and resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus.Antimicrob.Agents Chemother. 1994; 38: 1530- 1533.
    [31] Johnson,E.M.,M.D.Richardson,and D.W.Warnock.In vitro resistance to imidazole antifungals in Candida albicans. J. Antimicrob. Chemother. 1984; 13:547-558.
    [32] Henry KW,et al.Antagonism of azole activity against Candida albicans following induction of multidrug resistance genes by selected antimicrobial agents.Antimicrob Agents Chemother,1999; 43(8): 1968.
    [33] Wirsching S,et al.Activation of the multiple resistance gene MDR1 in fluconazole-resistant,clinical Candida albicans strains is caused by mutations intrans-regulatory factor.J Bacteriol,2000,182(2):400.
    [34] Prasad R,et al.Molecular cloning and characterization of a novel gene of Candida albicans,CDR1,conferring multiple resistance to drugs and antifungal.Curr Genet,1995,27(4):320.
    [35] Sanglard D,et al.Cloning of Candida albicans genes conferring resistance to azole antifungal agents:characterization of CDR2,a new multidrug ABC transporter gene.Microbiology,1997,143(2):405.
    [36] Krishnamurthy S,Gupta V,Snehlata P,Prasad R.Characterisation of human steroid hormone transport mediated by Cdr1p,a multidrug transporter of Candida albicans,belonging to the ATP binding cassette super family.FEMS Microbiol Lett,1998;158(1):69.
    [37] Krishnamurthy S,Gupta V,Prasad R,Panwar SL.Expression of CDR1,a multidrug resistance gene of Candida albicans:transcriptional activation by heat shock,drugs and human steroid hormones.FEMS Microbiol Lett, 1998,160(2):191.
    [38] Yang HC,Mikami Y,Imai T,Taguchi H,et al.Extrusion of fluorescein diacetate by multidrug-resistant Candida albicans.Mycoses,2001,44(9-10): 368.
    [39] Maesaki S,Marichal P,Hossain MA,et al.Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albicans strains.J Antimicrob Chemother,1998,42(6):747.
    [40] Perea S.,J.L.Lopez-Ribot,W.R.Kirkpatrick,R.K.McAtee,R.A.Santillan, M. Martinez,D.Calabrese,D.Sanglard,and T.F.Patterson.Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazle resistance isolated from human immunodeficiency virus-infected patients.Antimicrob.Agents Chemother.2001;45:2676-2684.
    [41] Sanglard D,Ischer F,Koymans L,et al.Amino acid substitutions in thecyto-chrome P-450 lanosterol 14a-demethylase(CYP51)from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents.Antimicrob Agents Chemother,1998,42:241.
    [42] Henry KW,et al.Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother,2000, 44(10):2693.
    [43] Lamb DC,et al.The R467K amino acid substitution in Candida albicans sterol 14a-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother,2000,44:63.
    [44] Perea S,Lopez-Robit JL,Kirkpatrick WR,et al.Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from HIV-infected patients.Antimicrob Agents Chemother,2001,45:2676.
    [45] Chandra J,Kuhn DM,Mukherjee PK,et al.Biofilm formation by the fungal pathogen Candida albicans:development,architecture,and drug resistance.J Bacteriol,2001,183: 5385.
    [46] Baillie,G.S.,and L.J.Douglas.Candida biofilms and their susceptibility to antifungal agents.Methods Enzymol.1999;310:644-656.
    [47] Jyotsna C.,Duncan M.K.,Pranab K.M.,et al.Biofilm foremation by the fungal pathogen Candida albicans:development,architecture,and drug resistance.J Bacteriol.2001;183:5385-5394.
    [48] Hawser,S.P.,and L.J.Douglas.Resistance of Candida albicans biofilms to antifungal agents in vitro.Antimicrob.Agents Chemother,1995;39:2128-2131.
    [49] Douglas LJ.Candida biofilms and their role in infection.Trends Microbiol 2003;11:30-36.
    [50] Lupetti,A.,R.Danesi,M.Campa,M.Del Tacca,and S.Kelly.Molecular basis of resistance to azole antifungals.Trends Mol.Med.2002;8:76-81.
    [51] Henry KW,et al.Antagonism of azole activity against Candida albicansfollowing induction of multidrug resistance genes by selected antimicrobial agents.Antimicrob Agents Chemother,1999,43(8): 1968-1974.
    [52] Wirsching S,et al.Activation of the multiple drug resistance gene MDR1 in Fluconazole-resistant,clinical Candida albicans strains is caused by mutations in a trans-regulatory factor.J Bacteriol,2000,182(2):400-404.
    [53] Lyons CN,et al.Transcriptional analyses of antifungal drug resistance in Candida albicans.Antimicrob Agents Chemother,2000;44(9):2296.
    [54] Sanglard D,Ischer F,Monod M,Bille J.Cloning of Candida albicans genes conferring resistance to azole antifungal agents:characterization of CDR2,a new multidrug ABC transporter gene.Microbiology,1997Feb;143 (Pt2):405-416.
    [55] Te Dorsthorst DT,Verweij PE,Meletiadis J,Bergervoet M,Punt NC,Meis JF,Mouton JW.In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty-five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach.Antimicrob Agents Chemother.2002;46:2982-2989.
    [56] Gil-Lamaignere C,Muller FM.Differential effects of the combination of caspofungin and terbinafine against Candida albicans,Candida dubliniensis and Candida kefyr.Int J Antimicrob Agents. 2004;23:520-523.
    [57] Barchiesi F,Falconi Di Francesco L,Scalise G.In vitro activities of terbinafine in combination with fluconazole and itraconazole against isolates of Candida albicans with reduced susceptibility to azoles.Antimicrob Agents Chemother.1997;41:1812-1814.
    [58] Weig M,Muller FM.Synergism of voriconazole and terbinafine against Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis.Antimicrob Agents Chemother.2001; 45:966-968.
    [59] Canton E,Peman J,Gobernado M,Viudes A,Espinel-Ingroff A.Synergistic activities of fluconazole and voriconazole with terbinafine against four Candida species determined by checkerboard,time-kill,and Etest methods. Antimicrob Agents Chemother.2005;49:1593-1596.
    [60] Maesaki S,Marichal P,Hossain MA,Sanglard D,Vanden Bossche H,Kohno S.Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albicans strains.J Antimicrob Chemother.1998;42:747-753.
    [61] Sasaki E,Maesaki S,Miyazaki Y,Yanagihara K,Tomono K,Tashiro T,Kohno S.Synergistic effect of ofloxacin and fluconazole against azole-resistant Candidaalbicans.J Infect Chemother.2000;6:151-154.
    [62] D’Auria FD,Tecca M,Strippoli R,Simonetti N.In vitro activity of propyl gallate-azole drug combination against fluconazole- and itraconazole-resistant Candida albicans strains.Lett Appl Microbiol.2001;3:220-223.
    [63] Smith WL,Edlind TD.Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals:correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother.2002; 46:3532-3539.
    [64] Simonetti G,Villa A,Simonetti N.Enhanced contact activity of fluconazole in association with antioxidants against fluconazole-resistant organisms.J Antimicrob Chemother.2002;50:257-259
    [65] Henry KW,Cruz MC,Katiyar SK,Edlind TD.Antagonism of azole activity against Candida albicans following induction of multidrug resistance genes by selected antimicrobial agents. Antimicrob Agents Chemother.1999;43: 1968-1974.
    [66] Edlind MP,Smith WL,Edlind TD.Effects of cetylpyridinium chloride resistance and treatment on fluconazole activity versus Candida albicans. Antimicrob Agents Chemother.2005;49:843-845.
    [67] Vazquez JA,Arganoza MT,Vaishampayan JK,Akins RA.In vitro interaction between amphotericin B and azoles in Candida albicans. Antimicrob Agents Chemother.1996;40: 2511 -2516.
    [68] Luo,L.J.Experience of berberine in the treatment of diarrhea.Chin.J.Med. 1995;41:452-45.
    [69] Akhter,M.H.,Sabir,M.,Bhide,N.K.Anti-inflammatory effect of berberine in rats injected locally with cholera toxin.Indian Journal of Medical Research. 1977;65:133-141.
    [70] Creasey,W.A.Biochemical effects of berberine.Biochem.Pharmacol.1979; 28:1081-1084.
    [71] Lee DU,Kang YJ,Park MK,Lee YS,Seo HG,Kim CH,Chang KC.Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-Ⅱ,TNF- alpha,iNOS,and IL-12 production in LPS-stimulated macrophages. Life Sci. 2003;73:1401-1412
    [72] Li XK,Motwani M,Tong W, Bornmann W,Schwartz GK.Huanglian,A Chinese herbal extract,inhibits cell growth by suppressing the expression of cyclin B1 and inhibiting CDC2 kinase activity in human cancer cells.Mol Pharmacol.2000Dec;58(6):1287- 1293.
    [73] Lin JP,Yang JS,Lee JH,Hsieh WT,Chung JG.Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line.World J Gastroenterol.2006 Jan 7;12(1):21-28.
    [74] Mantena SK,Sharma SD,Katiyar SK.Berberine inhibits growth,induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade,disruption of mitochondrial membrane potential and cleavage of caspase-3 and PARP.Carcinogenesis.2006 Apr 18[Epub ahead of print]
    [75] Mantena SK,Sharma SD,Katiyar SK.Berberine,a natural product,induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells.Mol.Cancer Ther.2006;5:296-308.
    [76] Jatova S,Cipak L,Cernakova M,Kost’alova D.Effect of berberine on proliferation,cell cycle and apoptosis in Hela and L1210 cells.J Pharm Pharmacol.2003;55:1143-1149.
    [77] Yin J,Hu R M,Tang J F,et al.Glucose-lowering effect of berberine in vitro.Acta Univ Med Second Shanghai,2001,21:425-427.
    [78] Kong W,Wei J,Abidi P,Lin M,Inaba S,Li C,Wang Y,Wang Z,Si S,Pan H,Wang S,Wu J,Wang Y,Li Z,Liu J,Jiang JD.Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.Nat Med.2004;10:1344-1351.
    [79] Mahajan VM,Sharma A,Rattan A.Antimycotic activity of berberine sulphate:an alkaloid from an India medicinal herb.Sabouraudia.1982;20(1): 79-81.
    [80] Nakamoto K,Sadamori S,Hamada T.Effects of crude drugs and berberine hydrochloride on the activities of fungi.J Prosthet Dent.1990;64(6):691-694.
    [81] Park KS,Kang KC,Kim JH,Adams DJ,Johng NT,Paik YK.Differential inhibitory effects of protoberberine on sterol and chitin biosyntheses in Candida albicans.Journal of Antimicrobial Chemotherapy.1999;43:667-674.
    [82] Vollekova A,Kost’alova D,Kettmann V,Toth J.Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids.Phytother Res.2003;17(7):834-837.
    [83] National.Committee for Clinical and Laboratory Standards.1997.Reference method for broth dilution antifungal susceptibility testing of yeasts,vol.17,no.9.Approved standard M27-A.National Committee for Clinical and Laboratory Standards,Villanova,Pa.
    [84]钱小红,贺福初.蛋白质组学-理论与方法.北京:科学出版社.2003,1-24.
    [85]吴绍熙.现代医学真菌检验手册[M].北京:北京医科大学、中国协和医科大学联合出版社.1998,332-356.
    [86]颜子颖,王海林译.精编分子生物学实验指南/(美)F.奥斯伯等著[M].北京:科学出版社.1998,700-701.
    [87] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem,1976,72:248-254.
    [88] Pitarch A, Sanchez M, Nombela C, et al. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteo- me[J]. Mol Cell Proteomics, 2002, 1(12):967-982.
    [89] Mark PM,Ben RH,Bradley JW,et al.Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis,1998,19:837-844.
    [90] Hernandez R, Nombela C, Diez-Orejas R, et al.Two-dimensional reference map of Candida albicans hyphal forms.Proteomics,2004,4:374-382.
    [91] Bruneau JM,Maillet I,Tagat E,et al.Drug induced proteome changes in Candida albicans:Comparison of the effect ofβ(1,3) glucan synthase inhibitors and two triazoles,fluconazole and itraconazole. Proteomics, 2003,3:325-336.
    [92] Pitarch A,Pardo M,Jimenez A,et al.Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electro phoresis,1999,20:1001-1010.
    [93] White TC,Marr KA,Bowden RA.Clinical,cellular,and molecular factors that contribute to antifungil drug resistance[J].Clinical Microbiology Reviews, 1998,11(2):382-402.
    [94] Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity[J]. Antimicrob Agents Chemother,2000,44(1):63-67.
    [95] Cash P,Argo E,Ford L,et al.A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae[J].Electrophoresis.1999;20(11):2259-2268.
    [96] Hooshdaran MZ,Barker KS,Rogers PD,et al.Proteomic Analysis of Azole Resistance in Candida albicans Clinical Isolates[J].Antimicrob Agents Chemother.2004;48(7):2733-2735.
    [97] Subhrajit B., Monideepa R. and Asis D. N-Acetylglucosamine-inducibleCaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans. Microbiology .2003; 149: 2597–2608.
    [98] Tatsuki S., Toshihiko W., Takeshi ., and Tatsuji M. Farnesol, a Morphogenetic Autoregulatory Substance in the Dimorphic Fungus Candida albicans, Inhibits Hyphae Growth through Suppression of a Mitogen-Activated Protein Kinase Cascade. Biol. Pharm. Bull.2004; 27(5): 751-752.
    [99] Bertram G,Swoboda RK,Gooday GW,et al.Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase[J].Yeast.1996;12(2):115-127.
    [100] Jong AY,Chen SH,Stins MF,et al.Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells[J].J Med Microbiol. 2003;52:615-622.
    [101] Yang YL,Chen HF,Kuo TJ,et al.Mutations on CaENO1 in Candida albicans inhibit cell growth in the presence of glucose[J].J Biomed Sci. 2006;13:313-21.
    [102] Alexandra R, Tim Y, Alistair J. P. B.Effects of Depleting the Essential Central Metabolic Enzyme Fructose-1,6-Bisphosphate Aldolase on the Growth and Viability of Candida albicans: Implications for Antifungal Drug Target Discovery. Eukaryotic Cell.2006;8:1371–1377.
    [103] Wang Y, Cao YY, Jia XM, Cao YB, Gao PH, Fu XP, Ying K, Chen WS, Jiang YY. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med. 2006, 40(7):1201-1209.
    [104] Yan L,Zhang JD,Cao YB,et al. Proteomic Analysis Reveals a Metabolism Shift in a Laboratory Fluconazole-Resistant Candida albicans Strain[J].J Proreome Res.2007;4(14): Epub ahead of print.
    [105] Uppuluri P,Sarmah B,Chaffin WL. Candida albicans SNO1 and SNZ1 expressed in stationary-phase planktonic yeast cells and base of biofilm.Microbiology. 2006 Jul;152(Pt 7):2031-2038.
    [106] R.Ivarsson,R.Quintens,S.Dejonghe,et al.Redox control of exocytosis: regulatory role of NADPH,thioredoxin,and glutaredoxin.Diabetes.2005;54: 2132-2142.
    [107] Kobayashi D,M Sasaki,N Watanabe.Caspase-3 activation down-stream from reactive oxygen species in heat-induced apoptosis of pancreatic carcinoma cells carrying a mutant p53 gene.Pancreas.2001:22:255.
    [108] Benhar M,I Dalyot,D Engelberg,et al.Enhanced ROS production in oncogenically transformed cells potentiates c-jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress.Mol.Cell.Biol.2001;21:6913-6926.
    [109] Feinendegen LE.Reactive oxygen species in cell responses to toxic agents.Hum.Exp.Toxieol.2002;21:85-90.
    [110] I.W.Dawes:Yeast stress responses.In:The Metabolism and Molecular Physiology of Saccharomyces cerevisiae(Richardson JR and Schweizer M,Eds.),2nd Edn.,CRC Press,Boca Raton,FL.2004;376-438.
    [111] N.Santoro and DJ Thiele:Oxidative stress responses in the yeast Saccharomyces cerevisiae In:Yeast Stress Responses(Hohmann,S.and Mager,P.W.H.,Eds.),R.G. Landes Co.,Austin,TX.1997;171-221.
    [112] DJ jamieson.Oxidative stress responses of the yeast Saccharomyces cerevisiae.Yeast.1998;14:1511-1527.
    [113] GL Wheeler and CM Grant.Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae.Physiol.Plant.2004;120:12-20.
    [114] Murphy JW.Mechanisms of natural resistance to human pathogenic fungi.Annu.Rev.Microbiol.1991;45:509-538.
    [115] Danley DL,and AE Hilger.Stimulation of oxidative metabolism in murine polymorphonuclear leukocytes by unopsonized fungal cells:evidence for a mannose-specific mechanism.J.Immunol.1981;127:551-556.
    [116] Vazquez N,TJ Walsh,D Friedman,et al.Interleukin-15augments superoxide production and microbicidal activity of human monocytes against Candida albicans.Inefct.Immun.1998;66:145-150.
    [117] Lupetti A,Paulusma-Annema A,Senesi S,et al.Internal thiols and reactive oxygen species in candidacidal activity exerted by an N-terminal peptide of human lactoferrin.Antimicrob.Agents.Chemother.2002;46:1634-1639.
    [118] Brakebusch M,Wintergerst U,Petropoulou T,et al.Bromelain is an accelerator of phagocytosis,respiratory burst and killing of Candida albicans by human granulocytes and monocytes.Eur.J.Med.Res.2001;6:193-200.
    [119] AJ Phillips,I Sudbery and M Ramsdale.Apoptosis induced by environmental stresses and amphotericin B in Candida albicans.Proc Natl Acad Sci USA.2003;100:14327-14332.
    [120] Kobayashi D,Kondo K,Uehara N,et al.Endogenous reactive oxygen speciesis an important mediator of miconazole antifungal effect.Antimicrob.Agents. Chemother. 2002;46:3113-3117.
    [121]张文福,过氧化氢消毒研究进展,中国消毒学杂志.1992;9:17.
    [122] Brezova V,Dvoranova D,Kost’alova D.Oxygen activation by photoexcited protoberberinium alkaloids from Mahonia aquifolium.Phytother Res.2004; 18:640-646.
    [123] Hirakawa K,Kawanishi S,Hirano T.The mechanism of guanine specific photooxidation in the presence of berberine and palmatine:Activation of photosensitized singlet oxygen generation through DNA-binding interaction. Chem Res Toxicol.2005;18:1545-1552.
    [124] Ravanat JL,Di Mascio P,Martinez GR,et al.Singlet oxygen induces oxidation of cellular DNA.J.Biol.Chem.2000;275:40601-40604.
    [125] Ravanat JL,Martinez GR,Medeiros MH,et al.Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen.Arch.Biochem. Biophys.2004;423:23-30.
    1.廖万清,吴绍熙.真菌病研究进展.上海:第二军医大学出版社. 1998: 6
    2. Clark TA, Hajjeh RA. Recent trends in the epidemiology of invasive mycoses. Curr Opin Infect Dis 2002; 15(6): 569-574
    3. Weinberger M, Sweet S, Leibovici L, et al. Correlation between candiduria and departmental antibiotic use. J Hosp Infect 2003; 53(3): 183-186
    4.吴绍熙,廖万清.中国致病真菌10年动态流行病学研究.临床皮肤科杂志1999;28(1): 1-4
    5. Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000; 405(6788): 827-836
    6. Jones T, Federspiel NA, Chibana H, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 2004; 101(19): 7329-7334
    7. Song JL, Lyons CN, Holleman S, et al. Antifungal activity of fluconazole in combination with lovastatin and their effects on gene expression in the ergosterol and prenylation pathways in Candida albicans. Med Mycol 2003; 41(5): 417-425
    8. De Backer MD, Ilyina T, Ma XJ, et al. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 2001; 45(6): 1660-1670
    9. Kontoyiannis DP, Sagar N, Hirschi KD. et al. Overexpression of Ergl 1p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 1999; 43(11): 2798-2800
    10. Bammert GF, Fostel JM. Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 2000; 44(5): 1255-1263
    11. Care A, Vousden KA, Binley KM, et al. A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae. Genetics 2004; 166(2): 707-719
    12. Nakai D, Shimizu T, Nojiri H, et al. coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q. Aging Cell 2004; 3(5): 273-281
    13. Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 2000; 44(10): 2693-2700
    14. De Deken X, Raymond M. Constitutive activation of the PDR16 promoter in a Candida albicans azole-resistant clinical isolate overexpressing CDR1 and CDR2. Antimicrob Agents Chemother 2004; 48(7):2700-2703
    15. Venegas B, Gonzalez-Damian J, Celis H, et al. Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys J 2003; 85(4): 2323-2332
    16. Zhang L, Zhang Y, Zhou Y, et al. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother 2002; 49(6): 905-915
    17. Alexandre H, Ansanay-Galeote V, Dequin S, et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 2001; 498(1): 98-103
    18. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000; 46(2): 171-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700