用户名: 密码: 验证码:
EDAG调控造血细胞分化的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红系分化相关基因EDAG (Erythroid Differentiation-Associated Gene)是一种特异表达于造血组织和细胞,对造血系统的发育及分化起重要调控作用的基因。目前对EDAG的作用机制尚缺乏深入的了解。本论文从基因调控、功能结构域、相互作用蛋白质三个方面对EDAG发挥作用的分子机制进行初步探讨。
     第一,EDAG调控造血细胞分化的分子机制研究。在小鼠髓系前体细胞32D细胞中过表达EDAG导致红系和巨核系表型的出现。利用小鼠全基因组芯片分析基因表达变化,发现过表达EDAG可导致32D细胞的332个基因表达下调,288个基因表达上调。其中红系/巨核系转录因子GATA-1及其靶基因EKLF、hemoglobin、NF-E2、Gfi-1b等基因的表达明显上调,而肥大细胞表面标记GP49A和单核细胞特异标记CD14等则表现为下调表达。在K562细胞中采用RNAi敲低EDAG水平,GATA-1及其靶基因NF-E2、Gfi-1b、HBB、EKLF和EPX的mRNA表达水平均显著下调。这些结果表明EDAG的高表达可促进32D细胞向红系/巨核系分化,转录因子GATA-1可能在此过程中起重要作用。
     第二,EDAG蛋白质功能与结构的研究。通过双荧光素酶报告基因检测,发现Gal4DBD-EDAG融合蛋白质在哺乳动物细胞中表现出转录抑制活性,但EDAG的124-184aa和384-484aa这两段区域具有较强的转录激活活性。转录抑制因子CtBP1可抑制124-184aa和384-484aa的转录激活活性。EDAG在PMA刺激的条件下,第123位和381位的丝氨酸磷酸化水平上调,但这两个磷酸化位点的突变并不影响EDAG的转录调节活性。提示EDAG同时具有转录激活和转录抑制活性,其调控基因表达的机制可能非常复杂。
     第三,EDAG与NPM相互作用的初步研究。通过Co-IP验证EDAG与NPM存在生理性相互作用,EDAG通过其N末端(1-124aa)与NPM的N末端(1-187aa)相互作用。在PMA诱导的K562巨核分化过程中,过表达EDAG可稳定NPM蛋白质,而下调表达EDAG则加速NPM蛋白质的下调。EDAG对NPM稳定性的影响可能参与EDAG对造血细胞分化、增殖、存活的调控过程。
Erythroid differentiation-associated gene (EDAG), a hematopoietic tissue-specific transcription regulator, plays a key role in maintaining the homeostasis of hematopoietic lineage commitment. However, the mechanism and genes regulated by EDAG remain unknown. In this study, we investigate the function and molecular mechanism of EDAG through three aspects.
     First, we studied the molecular mechanism of EDAG in hematopoietic cell differentiation by identifying genes regulated by overexpressing EDAG in a myeloid cell line 32D. Overexpression of EDAG in 32D cells led to an erythroid/ megakaryocytic phenotype. Using a genome-wide microarray analysis and a two-fold change cutoff, we identified 332 genes with reduced expression and 288 genes with increased expression. Among up-regulation genes, transcription factor GATA-1 and its target genes including EKLF, hemoglobin, NF-E2, Gfi-lb etc. were increased. While monocyte differentiation antigen CD 14 and mast cell surface glycoprotein GP49A were decreased. Silencing of EDAG by RNA interference in K562 cells resulted in down-regulation of GATA-1 and its target genes. These results suggested that EDAG functions as a positive regulator of erythroid/megakaryocytic differentiation in 32D cells associated with the induction of GATA-1 and its target genes.
     Second, we focused on indentifying the function and structure of EDAG. Using the dual-luciferase reporter assay, Gal4DBD-EDAG fusion protein was found as a transcriptional repressor in different mammalian cells. However, two transactivation domains (124-184aa and 384-484aa) was characterized and showed significant transcriptional activation activity. Co-expression of transcriptional repressor CtBP1 repressed the transactivaiton activity of two transactivation domains. Furthermore, two serine sites (S123 and S381) can be phosphorylated under treatment with PMA, but mutation of these amino acids had no effect on the activity of EDAG. These results indicated that EDAG both has transactivation and repression activity, and the mechanism by which it regulates gene expression is more complicated.
     Third, we characterized NPM as a physiological binding partner of EDAG. EDAG was shown to interact with the N-terminal (1-187aa) of NPM through its N-terminal (1-124aa) region, and stabilized NPM protein. During PMA-induced K562 megakaryocytic differentiation, overexpression of EDAG prevented the down-regulation of NPM proteins, while knockdown of EDAG enhanced the degradation of NPM.
引文
[1]M. Kondo, A.J. Wagers, M.G. Manz, et al. Biology of hematopoietic stem cells and progenitors:implications for clinical application. Annu Rev Immunol,2003, 21:759-806.
    [2]C. Pina, G. May, S. Soneji, et al. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem Cell,2008,2(3):264-273.
    [3]Y. Yu, C. Zhang, G. Zhou, et al. Gene expression profiling in human fetal liver and identification of tissue-and developmental-stage-specific genes through compiled expression profiles and efficient cloning of full-length cDNAs. Genome Res,2001, 11(8):1392-1403.
    [4]许望翔,魏汉东,汪思应.用表达性差异显示分析技术分离人胎肝组织选择性表达基因.中国应用生理学杂志,2001,17(2):192-194.
    [5]J. Lu, W.X. Xu, S.Y. Wang, et al. Isolation and Characterization of EDAG-1, A Novel Gene Related to Regulation in Hematopoietic System. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2001,33(6):641-646.
    [6]J. Lu, W.X. Xu, S.Y. Wang, et al. Overexpression of EDAG-1 in NIH3T3 cells leads to malignant transformation. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2002,34(1):95-98.
    [7]L.V. Yang, R.H. Nicholson, J. Kaplan, et al. Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech Dev,2001,104(1-2):105-111.
    [8]C.Y. Li, Y.Q. Zhan, C.W. Xu, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-kappa B. Cell Death Differ,2004, 11(12):1299-1308.
    [9]L.V. Yang, J. Wan, Y. Ge, et al. The GATA site-dependent hemogen promoter is transcriptionally regulated by GATA1 in hematopoietic and leukemia cells. Leukemia,2006,20(3):417-425.
    [10]C.Y. Li, F. Fang, W.X. Xu, et al. Suppression of EDAG gene expression by phorbol 12-myristate 13-acetate is mediated through down-regulation of GATA-1. BiochimBiophysActa,2008,1779(10):606-615.
    [11]L.L. An, G. Li, K.F. Wu, et al. High expression of EDAG and its significance in AML. Leukemia,2005,19(8):1499-1502.
    [12]许望翔,周颖,郑红.EDAG-1在白血病和淋巴瘤细胞株中的表达.癌症,2004,39(3):173-177.
    [13]M. Yoshida, R. Furumai, M. Nishiyama, et al. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol,2001,48 Suppl 1:S20-26.
    [14]Y. Shi, J.O. Thomas. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol,1992, 12(5):2186-2192.
    [15]J.A. Ribeil, Y. Zermati, J. Vandekerckhove, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature,2007, 445(7123):102-105.
    [1]C. Kroegel, T. Yukawa, G. Dent, et al. Stimulation of degranulation from human eosinophils by platelet-activating factor. J Immunol,1989,142(10):3518-3526.
    [2]C. Nerlov, E. Querfurth, H. Kulessa, et al. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood, 2000,95(8):2543-2551.
    [3]A.B. Cantor, S.H. Orkin. Transcriptional regulation of erythropoiesis:an affair involving multiple partners. Oncogene,2002,21(21):3368-3376.
    [4]F. Bose, G. Fugazza, M. Casalgrandi, et al. Functional interaction of CP2 with GATA-1 in the regulation of erythroid promoters. Mol Cell Biol,2006, 26(10):3942-3954.
    [5]G Migliaccio, A.R. Migliaccio, B.L. Kreider, et al. Selection of lineage-restricted cell lines immortalized at different stages of hematopoietic differentiation from the murine cell line 32D. J Cell Biol,1989,109(2):833-841.
    [6]L.V. Yang, R.H. Nicholson, J. Kaplan, et al. Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech Dev,2001,104(1-2):105-111.
    [7]C.Y. Li, Y.Q. Zhan, W. Li, et al. Overexpression of a hematopoietic transcriptional regulator EDAG induces myelopoiesis and suppresses lymphopoiesis in transgenic mice. Leukemia,2007,21(11):2277-2286.
    [8]L.S. Bastian, M. Yagi, C. Chan, et al. Analysis of the megakaryocyte glycoprotein IX promoter identifies positive and negative regulatory domains and functional GATA and Ets sites. J Biol Chem,1996,271(31):18554-18560.
    [9]R. Ferreira, K. Ohneda, M. Yamamoto, et al. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol,2005,25(4):1215-1227.
    [10]M.E. Layon, C.J. Ackley, R.J. West, et al. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression. J Mol Biol, 2007,366(3):737-744.
    [11]H. Kulessa, J. Frampton, T. Graf. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev,1995, 9(10):1250-1262.
    [12]Y. Yamaguchi, L.I. Zon, S.J. Ackerman, et al. Forced GATA-1 expression in the murine myeloid cell line Ml:induction of c-MpL expression and megakaryocytic/erythroid differentiation. Blood,1998,91(2):450-457.
    [13]C.Y. Li, Y.Q. Zhan, C.W. Xu, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-kappa B. Cell Death Differ,2004,11(12):1299-1308.
    [14]N.S. Patel, J.L. Li, D. Generali, et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res,2005,65(19):8690-8697.
    [15]C.K. Williams, J.L. Li, M. Murga, et al. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood,2006, 107(3):931-939.
    [16]T. Iso, Y. Hamamori, L. Kedes. Notch signaling in vascular development. Arterioscler Thromb Vase Biol,2003,23(4):543-553.
    [17]C. Cayrol, C. Lacroix, C. Mathe, et al. The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood,2007,109(2):584-594.
    [18]A.R. Green, E. DeLuca, C.G. Begley. Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562.EMBOJ,1991,10(13):4153-4158.
    [19]M. Valtieri, A. Tocci, M. Gabbianelli, et al. Enforced TAL-1 expression stimulates primitive, erythroid and megakaryocytic progenitors but blocks the granulopoietic differentiation program. Cancer Res,1998,58(3):562-569.
    [20]J. Lu, W.X. Xu, S.Y. Wang, et al. [Overexpression of EDAG-1 in NIH3T3 cells leads to malignant transformation]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2002,34(1):95-98.
    [21]M. Rylski, J.J. Welch, Y.Y. Chen, et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol,2003,23(14):5031-5042.
    [22]K. Brecht, M. Simonen, J. Heim. Upregulation of alpha globin promotes apoptotic cell death in the hematopoietic cell line FL5.12. Apoptosis,2005, 10(5):1043-1062.
    [1]R.H. Wright, E.S. Doman, M.M. Donaldson, et al. TopBP1 contains a transcriptional activation domain suppressed by two adjacent BRCT domains. Biochem J,2006,400(3):573-582.
    [2]M.L. Privalsky, M. Sharif, K.R. Yamamoto. The viral erbA oncogene protein, a constitutive repressor in animal cells, is a hormone-regulated activator in yeast. Cell,1990,63(6):1277-1286.
    [3]R.H. Chen, J.S. Lipsick. Differential transcriptional activation by v-myb and c-myb in animal cells and Saccharomyces cerevisiae. Mol Cell Biol,1993, 13(7):4423-4431.
    [4]M. Roussigne, S. Kossida, A.C. Lavigne, et al. The THAP domain:a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci,2003,28(2):66-69.
    [5]T. Macfarlan, S. Kutney, B. Altman, et al. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J Biol Chem, 2005,280(8):7346-7358.
    [6]C.Y. Zhu, C.Y. Li, Y. Li, et al. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc. Cell Death Differ,2009,16(3):395-405.
    [7]M. Dejosez, J.S. Krumenacker, L.J. Zitur, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell,2008, 133(7):1162-1174.
    [8]G. Chinnadurai. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell,2002,9(2):213-224.
    [9]S.C. Kim, Y.S. Kim, A.M. Jetten. Kruppel-like zinc finger protein Gli-similar 2 (Glis2) represses transcription through interaction with C-terminal binding protein 1 (CtBP1). Nucleic Acids Res,2005,33(21):6805-6815.
    [10]G. Liu, H. Zheng, W. Ai. C-terminal binding proteins (CtBPs) attenuate KLF4-mediated transcriptional activation. FEBS Lett,2009,583(19):3127-3132.
    [11]M. Crossley, S.H. Orkin. Phosphorylation of the erythroid transcription factor GATA-1. J Biol Chem,1994,269(24):16589-16596.
    [12]M. Towatari, M. Ciro, S. Ottolenghi, et al. Involvement of mitogen-activated protein kinase in the cytokine-regulated phosphorylation of transcription factor GATA-1. Hematol J,2004,5(3):262-272.
    [13]Y.L. Yu, Y.J. Chiang, Y.C. Chen, et al. MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. J Biol Chem,2005, 280(33):29533-29542.
    [14]W. Zhao, C. Kitidis, M.D. Fleming, et al. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood,2006,107(3):907-915.
    [15]J. Boyes, P. Byfield, Y. Nakatani, et al. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature,1998,396(6711):594-598.
    [16]G.A. Blobel, T. Nakajima, R. Eckner, et al. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA,1998,95(5):2061-2066.
    [17]K. Watamoto, M. Towatari, Y. Ozawa, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene,2003,22(57):9176-9184.
    [18]Y.S. Kim, G. Nakanishi, M. Lewandoski, et al. GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res,2003,31(19):5513-5525.
    [19]R. Ferreira, K. Ohneda, M. Yamamoto, et al. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol,2005,25(4):1215-1227.
    [1]J. Xiao, Z. Zhang, G.G. Chen, et al. Nucleophosmin/B23 interacts with p21WAFl/CIP1 and contributes to its stability. Cell Cycle,2009,8(6):889-895.
    [2]M. Okuwaki. The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem,2008,143(4):441-448.
    [3]S. Grisendi, R. Bernardi, M. Rossi, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature,2005,437(7055):147-153.
    [4]B. Falini, I. Nicoletti, N. Bolli, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica, 2007,92(4):519-532.
    [5]N. Meani, M. Alcalay. Role of nucleophosmin in acute myeloid leukemia. Expert Rev Anticancer Ther,2009,9(9):1283-1294.
    [6]J. Lu, W.X. Xu, S.Y. Wang, et al. [Overexpression of EDAG-1 in NIH3T3 cells leads to malignant transformation]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2002,34(1):95-98.
    [7]C.Y. Li, Y.Q. Zhan, C.W. Xu, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-kappa B. Cell Death Differ,2004,11(12):1299-1308.
    [8]T. Kondo, N. Minamino, T. Nagamura-Inoue, et al. Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene,1997, 15(11):1275-1281.
    [9]C.Y. Hsu, B.Y. Yung. Down-regulation of nucleophosmin/B23 during retinoic acid-induced differentiation of human promyelocytic leukemia HL-60 cells. Oncogene,1998,16(7):915-923.
    [10]C.Y. Hsu, B.Y. Yung. Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. Int J Cancer,2000,88(3):392-400.
    [11]C.Y. Hsu, B.Y. Yung. Involvement of nucleophosmin/B23 in TPA-induced megakaryocytic differentiation of K562 cells. Br J Cancer,2003, 89(7):1320-1326.
    [12]Z. Li, D. Boone, S.R. Hann. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc Natl Acad Sci USA,2008,105(48):18794-18799.
    [13]C.J. Inouye, E. Seto. Relief of YY1-induced transcriptional repression by protein-protein interaction with the nucleolar phosphoprotein B23. J Biol Chem, 1994,269(9)16506-6510.
    [14]H. Liu, B.C. Tan, K.H. Tseng, et al. Nucleophosmin acts as a novel AP2alpha-binding transcriptional corepressor during cell differentiation. EMBO Rep,2007,8(4):394-400.
    [15]S.K. Dhar, B.C. Lynn, C. Daosukho, et al. Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene. J Biol Chem, 2004,279(27):28209-28219.
    [16]S. Kurki, K. Peltonen, L. Latonen, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell,2004,5(5):465-475.
    [17]M. Gurumurthy, C.H. Tan, R. Ng, et al. Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase Ⅱ transcription. J Mol Biol,2008, 378(2):302-317.
    [1]M. Kondo, A.J. Wagers, M.G. Manz, et al. Biology of hematopoietic stem cells and progenitors:implications for clinical application. Annu Rev Immunol,2003, 21:759-806.
    [2]M. Crossley, M. Merika, S.H. Orkin. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol Cell Biol, 1995,15(5):2448-2456.
    [3]J.P. Mackay, K. Kowalski, A.H. Fox, et al. Involvement of the N-finger in the self-association of GATA-1. J Biol Chem,1998,273(46):30560-30567.
    [4]K. Nishikawa, M. Kobayashi, A. Masumi, et al. Self-association of Gatal enhances transcriptional activity in vivo in zebra fish embryos. Mol Cell Biol, 2003,23(22):8295-8305.
    [5]R. Shimizu, C.D. Trainor, K. Nishikawa, et al. GATA-1 self-association controls erythroid development in vivo. J Biol Chem,2007,282(21):15862-15871.
    [6]R. Ferreira, K. Ohneda, M. Yamamoto, et al. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol,2005,25(4):1215-1227.
    [7]W. Hong, M. Nakazawa, Y.Y. Chen, et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J,2005, 24(13):2367-2378.
    [8]J.D. Crispino, M.B. Lodish, J.P. MacKay, et al. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation:the GATA-1:FOG complex. Mol Cell,1999,3(2):219-228.
    [9]P. Rodriguez, E. Bonte, J. Krijgsveld, et al. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J,2005,24(13):2354-2366.
    [10]S. Saleque, J. Kim, H.M. Rooke, et al. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-lb is mediated by the cofactors CoREST and LSD1. Mol Cell,2007,27(4):562-572.
    [11]Y.Y. Kuo, Z.F. Chang. GATA-1 and Gfi-1B interplay to regulate Bcl-xL transcription. Mol Cell Biol,2007,27(12):4261-4272.
    [12]D.Y. Huang, Y.Y. Kuo, Z.F. Chang. GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells. Nucleic Acids Res,2005,33(16):5331-5342.
    [1.3]A.B. Cantor, S.H. Orkin. Transcriptional regulation of erythropoiesis:an affair involving multiple partners. Oncogene,2002,21(21):3368-3376.
    [14]I.A. Wadman, H. Osada, G.G. Grutz, et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J,1997, 16(11):3145-3157.
    [15]E. Anguita, J. Hughes, C. Heyworth, et al. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J,2004,23(14):2841-2852.
    [16]R. Lahlil, E. Lecuyer, S. Herblot, et al. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol,2004, 24(4):1439-1452.
    [17]T. Tripic, W. Deng, Y. Cheng, et al. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood,2008.
    [18]M. Eisbacher, M.L. Holmes, A. Newton, et al. Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Mol Cell Biol, 2003,23(10):3427-3441.
    [19]K.E. Elagib, A.N. Goldfarb. Regulation of RUNX1 transcriptional function by GATA-1. Crit Rev Eukaryot Gene Expr,2007,17(4):271-280.
    [20]P. Zhang, G. Behre, J. Pan, et al. Negative cross-talk between hematopoietic regulators:GATA proteins repress PU.1. Proc Natl Acad Sci USA,1999, 96(15):8705-8710.
    [21]T. Stopka, D.F. Amanatullah, M. Papetti, et al. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J,2005,24(21):3712-3723.
    [22]S. Bottardi, J. Ross, V. Bourgoin, et al. Ikaros and GATA-1 combinatorial effect is required for silencing of human gamma-globin genes. Mol Cell Biol,2009, 29(6):1526-1537.
    [23]Y. Wu, X. Zhang, M. Salmon, et al. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells,2007, 12(8):905-918.
    [24]A.J. Woo, T.B. Moran, Y.L. Schindler, et al. Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development. Mol Cell Biol,2008,28(8):2675-2689.
    [25]C.J. Carter. Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes:relevance to pathological-signalling cascades. Neurochem Int,2008,52(6):920-934.
    [26]F. Bose, C. Fugazza, M. Casalgrandi, et al. Functional interaction of CP2 with GATA-1 in the regulation of erythroid promoters. Mol Cell Biol,2006, 26(10):3942-3954.
    [27]H.M. Bond, M. Mesuraca, N. Amodio, et al. Early hematopoietic zinc finger protein-zinc finger protein 521:a candidate regulator of diverse immature cells. Int J Biochem Cell Biol,2008,40(5):848-854.
    [28]E. Matsubara, I. Sakai, J. Yamanouchi, et al. The role of zinc finger protein 521/early hematopoietic zinc finger protein in erythroid cell differentiation. J Biol Chem,2009,284(6):3480-3487.
    [29]Z. Xu, X. Meng, Y. Cai, et al. Recruitment of the SWI/SNF protein Brgl by a multiprotein complex effects transcriptional repression in murine erythroid progenitors. Biochem J,2006,399(2):297-304.
    [30]K. Watamoto, M. Towatari, Y. Ozawa, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene,2003,22(57):9176-9184.
    [31]A. Hernandez-Hernandez, P. Ray, G. Litos, et al. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J,2006,25(14):3264-3274.
    [32]G.A. Blobel, T. Nakajima, R. Eckner, et al. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA,1998,95(5):2061-2066.
    [33]J. Boyes, P. Byfield, Y. Nakatani, et al. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature,1998,396(6711):594-598.
    [34]H.L. Hung, J. Lau, A.Y. Kim, et al. CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol CellBiol,1999,19(5):3496-3505.
    [35]I. Riz, S.S. Akimov, S.S. Eaker, et al. TLX1/HOX11-induced hematopoietic differentiation blockade. Oncogene,2007,26(28):4115-4123.
    [36]M. Li, Y. Zhao, Y. Li, et al. Upregulation of human with-no-lysine kinase-4 gene expression by GATA-1 acetylation. Int J Biochem Cell Biol,2009, 41(4):872-878.
    [37]M. Crossley, S.H. Orkin. Phosphorylation of the erythroid transcription factor GATA-1. J Biol Chem,1994,269(24):16589-16596.
    [38]M. Towatari, M. Ciro, S. Ottolenghi, et al. Involvement of mitogen-activated protein kinase in the cytokine-regulated phosphorylation of transcription factor GATA-1. Hematol J,2004,5(3):262-272.
    [39]Y.L. Yu, Y.J. Chiang, Y.C. Chen, et al. MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. J Biol Chem,2005, 280(33):29533-29542.
    [40]W. Zhao, C. Kitidis, M.D. Fleming, et al. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood,2006,107(3):907-915.
    [41]L. Collavin, M. Gostissa, F. Avolio, et al. Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci USA,2004, 101(24):8870-8875.
    [42]M. Stumpf, C. Waskow, M. Krotschel, et al. The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Medl/TRAP220. Proc Natl Acad Sci USA,2006,103(49):18504-18509.
    [43]K.E. Elagib, I.S. Mihaylov, L.L. Delehanty, et al. Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation. Blood,2008,112(13):4884-4894.
    [44]I. Hamlett, J. Draper, J. Strouboulis, et al. Characterization of megakaryocyte GATA1-interacting proteins:the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood,2008,112(7):2738-2749.
    [45]N. Ueki, L. Zhang, M.J. Hayman. Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol Cell Biol,2004, 24(23):10118-10125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700