用户名: 密码: 验证码:
α-synuclein A53T转基因帕金森小鼠模型DNA甲基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease, PD),又叫震颤麻痹(paralysis agitans),是中老年人群中一种常见的神经系统变性疾病,随着人口的老龄化,其发病率呈逐渐上升趋势,大于65岁人群的发病率约为1%,成为继阿尔茨海默病之后的第二大退行性疾病。DNA甲基化是哺乳动物研究最深入的表观遗传学改变,它与疾病的关系已逐渐成为医学研究的新热点之一。研究发现,DNA甲基化水平异常在PD发病过程中起重要作用,但目前的研究多集中在检测某一个或几个基因启动子区域甲基化改变,尚缺乏在全基因组水平上的甲基化改变研究。
     目的:探讨a-synuclein A53T转基因PD小鼠模型基因组水平的甲基化改变,了解发生甲基化改变基因涉及的通路。寻找PD致病位点PARK1-18中哪些基因发生了甲基化改变,研究这些基因的转录水平改变。
     方法:解剖获得转基因PD小鼠模型和正常对照小鼠脑组织黑质,提取基因组DNA和RNA。利用DNA甲基化芯片(Roche Nimbleg)从全基因组水平寻找存在甲基化差异的基因并进行基因通路分析;重亚硫酸盐测序(Bisulfite PCR Sequencing, BSP)技术研究目的基因甲基化水平;实时荧光定量PCR (RT-PCR)研究目的基因的转录改变。
     结果:DNA甲基化芯片共比对了全基因组12535个基因的启动子区,两组小鼠存在甲基化水平差异的基因共有3572个,其中转基因组较对照组甲基化水平降低的基因有2031个,甲基化水平升高的有1541个。通路及聚类分析显示甲基化差异基因涉及的通路包括SNARE介导的囊泡转运,甘氨酸、丝氨酸、苏氨酸代谢,内质网蛋白合成,P53信号通路,泛素蛋白酶通路,WNT信号通路,NOTCH信号通路等在内的二十余条信号通路。其中,SNARE介导的囊泡转运,泛素蛋白酶通路,WNT信号通路与PD关系最密切。差异基因中,RARK5(Uchl1)和PARK15(Fbxo7)启动子在转基因小鼠中甲基化水平明显下降,有统计学意义(Uchl1p=0.012*;Fbxo7p=0.002*). Uchll基因在转基因小鼠黑质部位表达明显升高(p=0.017*),Fbxo7基因在两组小鼠黑质表达无明显差异(p=0.472)。
     结论:1.在国内外首次利用α-synuclein A53T转基因小鼠PD模型进行DNA甲基化研究。α-synuclein A53T转基因小鼠PD模型黑质部位DNA存在甲基化修饰异常。异常基因涉及多条信号通路
     2.证实甲基化免疫共沉淀技术结合DNA芯片技术(MeDIP-Chip)是在基因组水平上筛选存在甲基化修饰异常基因的有效方法。α-synuclein A53T转基因小鼠PD模型黑质部位筛选出的PD相关甲基化修饰异常的基因可作为下一步研究的靶基因
     3.α-synuclein A53T转基因小鼠PD模型黑质部位PARK5(Uchl1)和PARK15(Fbxo7)基因存在低甲基化,且Uchl1基因转录水平明显升高
     4.Uchl1基因表达受启动子区CpG岛甲基化水平调控
Parkinson's disease (PD), also know as paralysis agitans, is a common neurodegenerative disease of old people. The prevalence is more than1%of the population over65years old, and it has become the second top neurodegenerative disease after Alzheimer's disease. With the aging of population, the incidence rate shows an increasing trend. DNA methylation is the most important and deeply understood epigenetic modification in mammal. Mounting studies have shown a pivotal role that methylation plays in PD etiology and development. However, those researches mainly focus on one or several special genes and test their methylation status at promoter regions, lacking of genomic level studies.
     Objective To test the methylation status alternations of a-synuclein A53T transgenic PD mouse model at genomic level and summary the involved signal pathways. Investigate methylation changes among the PD causative loci PARK1-18, and study those genes' expression level.
     Methods Extract DNA and RNA from substantial nigral of24transgenic and24normal control mice. Use5-methylcytosine antibody immunoprecipitation method combines with high-density microarray hybridization (MeDIP-Chip) to depict the global changes in DNA methylation between the two groups, and analysize the pathways involved in the altered genes. Use Bisulfite Sequencing PCR (BSP) technology to test the methylation levels of interesting genes. Utilize RT-PCR method to study gene's expression level.
     Results The DNA Methylation Chip scanned12535genes'promoter regions in the two groups, and found3572genes had methylation alternations. Compare to normal control, transgenic mice had2031genes with hypomethylation status, and1541genes had increased methylation level. Pathway analysis showed that the involved genes relevant to over20signal pathways, including glycine, serine and threonine metabolism, proteasome, SNARE interactions in vesicular transport, P53signaling pathway, ubiquitin mediated proteolysis, WNT signaling pathway, NOTCH signaling pathway, etc. Among them, SNARE interactions in vesicular transport, ubiquitin mediated proteolysis and WNT signaling pathway were considered as closely related to PD. BSP result showed PARK5(Uchll) and PARK15(Fbxo7) were both with significant hypomethylation status in transgenic mice, with Uchll p=0.012*; Fbxo7p=0.002*. Uchll gene expressed significantly increased in transgenic mice (p=0.017*), but Fbxo7had no different expression level between the two groups (p=0.472).
     Conclusions
     1. This is the first research that uses a-synuclein A53T transgenic PD mice model to study DNA methylation alternations wordwild. They have abnormal methylation status, and several signaling pathways are involved
     2. MeDIP-Chip is an effective method for genome-wide analysis of DNA methylation changes. The involved genes can be further studied in future reaearches
     3. PARK5(Uchll) and PARK15(Fbxo7) are both significant hypomethylation in transgenic mice. Uchll gene's expression level is significantly increased in transgenic mice
     4. The transcription level of PARK5(Uchll) can be regulated by the CpG island methylation status of its promotor region
引文
[1]Lang, A. E.,Lozano, A. M., Parkinson's disease. First of two parts[J]. N Engl J Med, Oct 8,1998,339 (15),pp 1044-53.
    [2]Zhang, Z. X.,Roman, G. C.,Hong, Z., etc., Parkinson's disease in China:preva-lence in Beijing, Xian, and Shanghai[J]. Lancet, Feb 12-18,2005,365 (9459),pp 595-7.
    [3]Bertram, L.,Tanzi, R. E., The genetic epidemiology of neurodegenerative disease[J]. J Clin Invest, Jun,2005,115 (6),pp 1449-57.
    [4]Farrer, M. J., Genetics of Parkinson disease:paradigm shifts and future prospects[J]. Nat Rev Genet, Apr,2006,7 (4),pp 306-18.
    [5]Gray, F., [The neuropathology of Parkinson syndrome][J]. Rev Neurol (Paris), 1988,144 (4),pp 229-48.
    [6]Kwok, J. B., Role of epigenetics in Alzheimer's and Parkinson's disease[J]. Epigenomics, Oct,2010,2 (5),pp 671-82.
    [7]Tanner, C. M.,Ottman, R.,Goldman, S. M., etc., Parkinson disease in twins:an etiologic study[J]. JAMA, Jan 27,1999,281 (4),pp 341-6.
    [8]Dauer, W.,Przedborski, S., Parkinson's disease:mechanisms and models[J]. Neuron, Sep 11,2003,39 (6),pp 889-909.
    [9]Wolffe, A. P.,Matzke, M. A., Epigenetics:regulation through repression[J]. Science, Oct 15,1999,286 (5439),pp 481-6.
    [10]Bird, A., Perceptions of epigenetics[J]. Nature, May 24,2007,447 (7143),pp 396-8.
    [11]Santos, F.,Dean, W., Epigenetic reprogramming during early development in mammals[J]. Reproduction, Jun,2004,127 (6),pp 643-51.
    [12]Bird, A., DNA methylation patterns and epigenetic memory[J]. Genes Dev, Jan 1,2002,16 (1),pp 6-21.
    [13]Reik, W.,Dean, W.,Walter, J., Epigenetic reprogramming in mammalian development[J]. Science, Aug 10,2001,293 (5532),pp 1089-93.
    [14]Edwards, T. M.,Myers, J. P., Environmental exposures and gene regulation in disease etiology[J]. Environ Health Perspect, Sep,2007,115 (9),pp 1264-70.
    [15]Bestor, T. H., The DNA methyltransferases of mammals[J]. Hum Mol Genet, Oct,2000,9 (16),pp 2395-402.
    [16]Goll, M. G.,Bestor, T. H., Eukaryotic cytosine methyltransferases [J]. Annu Rev Biochem,2005,74 pp 481-514.
    [17]Chedin, F.,Lieber, M. R.,Hsieh, C. L., The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a[J]. Proc Natl Acad Sci U S A, Dec 24,2002,99 (26),pp 16916-21.
    [18]Fatemi, M.,Wade, P. A., MBD family proteins:reading the epigenetic code[J]. J Cell Sci, Aug 1,2006,119 (Pt 15),pp 3033-7.
    [19]Hung, M. S.,Shen, C. K., Eukaryotic methyl-CpG-binding domain proteins and chromatin modification[J]. Eukaryot Cell, Oct,2003,2 (5),pp 841-6.
    [20]Lopez-Serra, L.,Esteller, M., Proteins that bind methylated DNA and human cancer:reading the wrong words[J]. Br J Cancer, Jun 17,2008,98 (12),pp 1881-5.
    [21]Ai, S.,Shen, L.,Guo, J., etc., DNA methylation as a biomarker for neurop-sychiatric diseases[J]. Int J Neurosci, Apr,2012,122 (4),pp 165-76.
    [22]Baylin, S. B.,Herman, J. G,Graff, J. R., etc., Alterations in DNA methylation:a fundamental aspect of neoplasia[J]. Adv Cancer Res,1998,72 pp 141-96.
    [23]Jones, P. A.,Baylin, S. B., The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, Jun,2002,3 (6),pp 415-28.
    [24]Tsou, J. A.,Hagen, J. A.,Carpenter, C. L., etc., DNA methylation analysis:a powerful new tool for lung cancer diagnosis[J]. Oncogene, Aug 12,2002,21 (35),pp 5450-61.
    [25]Yideng, J.,Jianzhong, Z.,Ying, H., etc., Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs[J]. DNA Cell Biol, Aug,2007,26 (8),pp 603-11.
    [26]Kim, M.,Long, T. I.,Arakawa, K., etc., DNA methylation as a biomarker for cardiovascular disease risk[J]. PLoS One,2010,5 (3),p e9692.
    [27]Hiltunen, M. O.,Turunen, M. P.,Hakkinen, T. P., etc., DNA hypomethylation and methyltransferase expression in atherosclerotic lesions[J]. Vase Med, Feb,2002, 7(1),pp5-11.
    [28]Mastroeni, D.,Grover, A.,Delvaux, E., etc., Epigenetic changes in Alzheimer's disease:decrements in DNA methylation[J]. Neurobiol Aging, Dec,2010,31 (12),pp 2025-37.
    [29]Mastroeni, D.,McKee, A.,Grover, A., etc., Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease [J]. PLoS One,2009,4 (8),p e6617.
    [30]Lin, H. C.,Hsieh, H. M.,Chen, Y. H., etc., S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters[J]. Neurotoxicology, Jul,2009,30 (4),pp 622-627.
    [31]Tohgi, H.,Utsugisawa, K.,Nagane, Y, etc., Reduction with age in methylc-ytosine in the promoter region-224 approximately-101 of the amyloid precu-rsor protein gene in autopsy human cortex [J]. Brain Res Mol Brain Res, Jul 5, 1999,70 (2),pp 288-92.
    [32]Hellstrom-Lindahl, E.,Ravid, R.,Nordberg, A., Age-dependent decline of neprilysin in Alzheimer's disease and normal brain:inverse correlation with A beta levels[J]. Neurobiology of Aging, Feb,2008,29 (2),pp 210-21.
    [33]Wang, S.,Wang, R.,Chen, L., etc., Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer's brain[J]. J Neurochem, Oct,2010, 115 (1),pp 47-57.
    [34]Ishunina, T. A.,van Beurden, D.,van der Meulen, G, etc., Diminished aromatase immunoreactivity in the hypothalamus, but not in the basal forebrain nuclei in Alzheimer's disease[J]. Neurobiology of Aging, Feb,2005,26 (2),pp 173-194.
    [35]Yasojima, K.,Akiyama, H.,McGeer, E. G., etc., Reduced neprilysin in high plaque areas of Alzheimer brain:a possible relationship to deficient degradation of beta-amyloid peptide[J]. Neuroscience Letters, Jan 12,2001,297 (2),pp 97-100.
    [36]Chen, K. L.,Wang, S. S.,Yang, Y. Y, etc., The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells[J]. Biochem Biophys Res Commun, Jan 2,2009,378 (1),pp 57-61.
    [37]Uematsu, F.,Takahashi, M.,Yoshida, M., etc., Methylation of neutral endop-eptidase 24.11 promoter in rat hepatocellular carcinoma[J]. Cancer Sci, Jul, 2006,97 (7),pp 611-7.
    [38]Wolf, R.,Eamonn, R.,Patrick, J., Age at onset in Huntington's disease and methylation at D4S95[J]. J Med Genet,1993, (30),pp 185-188.
    [39]Oates, N.,Pamphlett, R., An epigenetic analysis of SOD1 and VEGF in ALS[J]. Amyotroph Lateral Scler, Apr,2007,8 (2),pp 83-6.
    [40]Hauke, J.,Riessland, M.,Lunke, S., etc., Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition[J]. Hum Mol Genet, Jan 15,2009,18 (2),pp 304-17.
    [41]Matsumoto, L.,Takuma, H.,Tamaoka, A., etc., CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease[J]. PLoS One,2010,5 (11),p e15522.
    [42]Jowaed, A.,Schmitt, I.,Kaut, O., etc., Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients'brains[J]. J Neurosci, May 5,2010,30 (18),pp 6355-9.
    [43]Maeda, T.,Guan, J. Z.,Koyanagi, M., etc., Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson's disease[J]. J Neurogenet, Jun,2012,26 (2),pp 245-51.
    [44]Polymeropoulos, M. H.,Lavedan, C.,Leroy, E., etc., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease [J]. Science, Jun 27,1997,276 (5321),pp 2045-7.
    [45]Ostrerova-Golts, N.,Petrucelli, L.,Hardy, J., etc., The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity[J]. J Neurosci, Aug 15,2000,20 (16),pp 6048-54.
    [46]Narhi, L.,Wood, S. J.,Steavenson, S., etc., Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation[J]. J Biol Chem, Apr 2,1999, 274 (14),pp 9843-6.
    [47]Bennett, M. C.,Bishop, J. F.,Leng, Y., etc., Degradation of alpha-synuclein by proteasome[J]. J Biol Chem, Nov 26,1999,274 (48),pp 33855-8.
    [48]van der Putten, H.,Wiederhold, K. H.,Probst, A., etc., Neuropathology in mice expressing human alpha-synuclein[J]. J Neurosci, Aug 15,2000,20 (16),pp 6021-9.
    [49]Daher, J. P.,Pletnikova, O.,Biskup, S., etc., Neurodegenerative phenotypes in an A53T alpha-synuclein transgenic mouse model are independent of LRRK2[J]. Hum Mol Genet, Jun 1,2012,21 (11),pp 2420-31.
    [50]Lin, X.,Parisiadou, L.,Sgobio, C, etc., Conditional expression of Parkinson's disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1 [J]. J Neurosci, Jul 4,2012,32 (27),pp 9248-64.
    [51]Gispert, S.,Del Turco, D.,Garrett, L., etc., Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation[J]. Mol Cell Neurosci, Oct,2003,24 (2),pp 419-29.
    [52]Richter, J.,Appenzeller, S.,Ammerpohl, O., etc., No evidence for differential methylation of alpha-synuclein in leukocyte DNA of Parkinson's disease patients[J]. Mov Disord, Apr,2012,27 (4),pp 590-1.
    [53]Pieper, H. C.,Evert, B. O.,Kaut, O., etc., Different methylation of the TNF-alpha promoter in cortex and substantia nigra:Implications for selective neuronal vulnerability[J]. Neurobiology of Disease, Dec,2008,32 (3),pp 521-7.
    [54]Cai, M.,Tian, J.,Zhao, G. H., etc., Study of methylation levels of parkin gene promoter in Parkinson's disease patients[J]. Int J Neurosci, Sep,2011,121 (9),pp 497-502.
    [55]Karunakaran, S.,Diwakar, L.,Saeed, U., etc., Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson's disease: protection by alpha-lipoic acid[J]. Faseb Journal, Jul,2007,21 (9),pp 2226-2236.
    [56]Wyatt, G. R., Occurrence of 5-methylcytosine in nucleic acids[J]. Nature, Aug 5, 1950,166 (4214),pp 237-8.
    [57]Holliday, R.,Pugh, J. E., DNA modification mechanisms and gene activity during development[J]. Science, Jan 24,1975,187 (4173),pp 226-32.
    [58]Riggs, A. D., X inactivation, differentiation, and DNA methylation[J]. Cytogenet Cell Genet,1975,14 (1),pp 9-25.
    [59]Kriaucionis, S.,Heintz, N., The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain[J]. Science, May 15,2009,324 (5929),pp 929-30.
    [60]Tahiliani, M.,Koh, K. P.,Shen, Y., etc., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, May 15,2009,324 (5929),pp 930-5.
    [61]Tardy-Planechaud, S.,Fujimoto, J.,Lin, S. S., etc., Solid phase synthesis and restriction endonuclease cleavage of oligodeoxynucleotides containing 5-(hydroxymethyl)-cytosine[J]. Nucleic Acids Res, Feb 1,1997,25 (3),pp 553-9.
    [62]Hayatsu, H.,Shiragami, M., Reaction of bisulfite with the 5-hydroxymethyl group in pyrimidines and in phage DNAs[J]. Biochemistry, Feb 20,1979,18 (4),pp 632-7.
    [63]Jin, S. G.,Kadam, S.,Pfeifer, G. P., Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxy-methylcytosine[J]. Nucleic Acids Res, Jun,2010,38 (11),p e125.
    [64]Frommer, M.,McDonald, L. E.,Millar, D. S., etc., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J]. Proc Natl Acad Sci U S A, Mar 1,1992,89 (5),pp 1827-31.
    [65]Long, E. M.,Long, M. A.,Tsirigotis, M., etc., Stimulation of the murine Uchll gene promoter by the B-Myb transcription factor[J]. Lung Cancer, Oct,2003,42 (1),pp9-21.
    [66]Larsen, K.,Bendixen, C., Characterization of the porcine FBX07 gene:the first step towards generation of a pig model for Parkinsonian pyramidal syndrome[J]. Mol Biol Rep, Feb,2012,39 (2),pp 1517-26.
    [67]Wilson, P.,Barber, P.,Hamid, Q., The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonalv antibodies[J]. J. Exp. Pathol,1988,69 pp 91-104.
    [68][68]. Wilkinson, K. D.,Lee, K. M.,Deshpande, S., etc., The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase[J]. Science, Nov 3, 1989,246 (4930),pp 670-3.
    [69]Osaka, H.,Wang, Y. L.,Takada, K., etc., Ubiquitin carboxy-terminal hydrolase LI binds to and stabilizes monoubiquitin in neuron[J]. Hum Mol Genet, Aug 15, 2003,12 (16),pp 1945-58.
    [70]Liu, Y.,Fallon, L.,Lashuel, H. A., etc., The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility [J]. Cell, Oct 18,2002,111 (2),pp 209-18.
    [71]Leroy, E.,Boyer, R.,Auburger, G., etc., The ubiquitin pathway in Parkinson's disease[J]. Nature, Oct 1,1998,395 (6701),pp 451-2.
    [72]Lansbury, P. T., Jr.,Brice, A., Genetics of Parkinson's disease and biochemical studies of implicated gene products[J]. Curr Opin Cell Biol, Oct,2002,14 (5),pp 653-60.
    [73]Setsuie, R.,Wang, Y. L.,Mochizuki, H., etc., Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant[J]. Neurochem Int, Jan,2007,50 (1),pp 119-29.
    [74]Cartier, A. E.,Ubhi, K.,Spencer, B., etc., Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy[J]. PLoS One,2012,7 (4),p e34713.
    [75]McNaught, K. S.,Olanow, C. W.,Halliwell, B., etc., Failure of the ubiquitin-proteasome system in Parkinson's disease [J]. Nat Rev Neurosci, Aug, 2001,2 (8),pp 589-94.
    [76]Pan, T.,Kondo, S.,Le, W., etc., The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease[J]. Brain, Aug,2008,131 (Pt 8),pp 1969-78.
    [77]Ravikumar, B.,Vacher, C.,Berger, Z., etc., Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease[J]. Nat Genet, Jun,2004,36 (6),pp 585-95.
    [78]Nixon, R. A.,Wegiel, J.,Kumar, A., etc., Extensive involvement of autophagy in Alzheimer disease:an immuno-electron microscopy study [J]. J Neuropathol Exp Neurol, Feb,2005,64 (2),pp 113-22.
    [79]Sarkar, S.,Perlstein, E. O.,Imarisio, S., etc., Small molecules enhance autophagy and reduce toxicity in Huntington's disease models [J]. Nat Chem Biol, Jun, 2007,3 (6),pp 331-8.
    [80]Cuervo, A. M.,Stefanis, L.,Fredenburg, R., etc., Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy [J]. Science, Aug 27,2004, 305 (5688),pp 1292-5.
    [81]Spencer, B.,Potkar, R.,Trejo, M., etc., Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases[J]. J Neurosci, Oct 28,2009,29 (43),pp 13578-88.
    [82]Xilouri, M.,Vogiatzi, T.,Vekrellis, K., etc., Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy[J]. PLoS One,2009,4 (5),p e5515.
    [83]Kabuta, T.,Furuta, A.,Aoki, S., etc., Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy[J]. J Biol Chem, Aug 29,2008,283 (35),pp 23731-8.
    [84]Saigoh, K.,Wang, Y. L.,Suh, J. G., etc., Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice[J]. Nat Genet, Sep,1999,23 (1),pp 47-51.
    [85]Shojaee, S.,Sina, F.,Banihosseini, S. S., etc., Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays[J]. Am J Hum Genet, Jun,2008,82 (6),pp 1375-84.
    [86]Deng, H.,Liang, H.,Jankovic, J., F-box only protein 7 gene in parkinsoni-an-pyramidal disease[J]. JAMA Neurol, Jan,2013,70 (1),pp 20-4.
    [87]Ho, M. S.,Ou, C.,Chan, Y. R., etc., The utility F-box for protein destruction[J]. Cell Mol Life Sci, Jul,2008,65 (13),pp 1977-2000.
    [88]Ilyin, G. P.,Rialland, M.,Pigeon, C., etc., cDNA cloning and expression analysis of new members of the mammalian F-box protein family [J]. Genomics, Jul 1, 2000,67 (1),pp 40-7.
    [89]Warner, T. T.,Schapira, A. H., Genetic and environmental factors in the cause of Parkinson's disease[J]. Ann Neurol,2003,53 Suppl 3 pp S16-23; discussion S23-5.
    [90]Zhao, T.,De Graaff, E.,Breedveld, G. J., etc., Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK15)[J]. PLoS One,2011,6 (2),p e16983.
    [91]Luo, L. Z.,Xu, Q.,Guo, J. F., etc., FBXO7 gene mutations may be rare in Chinese early-onset Parkinsonism patients[J]. Neurosci Lett, Sep 27,2010,482 (2),pp86-9.
    [92]Laman, H.,Funes, J. M.,Ye, H., etc., Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6[J]. EMBO J, Sep 7,2005,24 (17),pp 3104-16.
    [93]Meziane el, K.,Randle, S. J.,Nelson, D. E., etc., Knockdown of Fbxo7 reveals its regulatory role in proliferation and differentiation of haematopoietic precursor cells[J]. J Cell Sci, Jul 1,2011,124 (Pt 13),pp 2175-86.
    [94]Inzelberg, R.,Jankovic, J., Are Parkinson disease patients protected from some but not all cancers?[J]. Neurology, Oct 9,2007,69 (15),pp 1542-50.
    [95]Hussain, S.,Foreman, O.,Perkins, S. L., etc., The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling[J]. Leukemia, Sep,2010,24 (9),pp 1641-55.
    [1]Wolffe, A. P.,Matzke, M. A., Epigenetics:regulation through repression[J]. Science, Oct 15,1999,286 (5439),pp 481-6.
    [2]Bird, A., Perceptions of epigenetics [J]. Nature, May 24,2007,447 (7143),pp 396-8.
    [3]Narayan, P.,Dragunow, M., Pharmacology of epigenetics in brain disorders [J]. Br J Pharmacol, Jan 1,2010,159 (2),pp 285-303.
    [4]Bestor, T. H., The DNA methyltransferases of mammals[J]. Hum Mol Genet, Oct,2000,9 (16),pp 2395-402.
    [5]Esteller, M., Epigenetic gene silencing in cancer:the DNA hypermethylome[J]. Hum Mol Genet, Apr 15,2007,16 Spec No 1 pp R50-9.
    [6]Jaenisch, R.,Bird, A., Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals [J]. Nature Genetics, Mar,2003, 33 Suppl pp 245-54.
    [7]Chuang, L. S.,Ian, H. I.,Koh, T. W., etc., Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1[J]. Science, Sep 26, 1997,277 (5334),pp 1996-2000.
    [8]Bostick, M.,Kim, J. K.,Esteve, P. O., etc., UHRF1 plays a role in maintaining DNA methylation in mammalian cells[J]. Science, Sep 21,2007,317 (5845),pp 1760-4.
    [9]Fatemi, M.,Wade, P. A., MBD family proteins:reading the epigenetic code[J]. J Cell Sci, Aug 1,2006,119 (Pt 15),pp 3033-7.
    [10]Lokeshwar, V. B.,Gomez, P.,Kramer, M., etc., Epigenetic regulation of HYAL-1 hyaluronidase expression, identification of HYAL-1 promoter[J]. J Biol Chem, Oct 24,2008,283 (43),pp 29215-27.
    [11]Rai, K.,Huggins, I. J.,James, S. R., etc., DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45[J]. Cell, Dec 26,2008,135 (7),pp 1201-12.
    [12]Popp, C.,Dean, W.,Feng, S., etc., Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency [J]. Nature, Feb 25, 2010,463 (7284),pp 1101-5.
    [13]Tahiliani, M.,Koh, K. P.,Shen, Y, etc., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, May 15,2009,324 (5929),pp 930-5.
    [14]Ito, S.,D'Alessio, A. C.,Taranova, O. V., etc., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]. Nature, Aug 26,2010,466 (7310),pp 1129-33.
    [15]Kriaucionis, S.,Heintz, N., The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain[J]. Science, May 15,2009,324 (5929),pp 929-30.
    [16]Ito, S.,Shen, L.,Dai, Q., etc., Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine[J]. Science, Sep 2,2011,333 (6047),pp 1300-3.
    [17]Guo, J. U.,Su, Y.,Zhong, C., etc., Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J], Cell, Apr 29,2011, 145 (3),pp 423-34.
    [18]Kouzarides, T., Chromatin modifications and their function[J]. Cell, Feb 23, 2007,128 (4),pp 693-705.
    [19]Leng, C.,Gries, M.,Ziegler, J., etc., Reduction of graft-versus-host disease by histone deacetylase inhibitor suberonylanilide hydroxamic acid is associated with modulation of inflammatory cytokine milieu and involves inhibition of STAT1[J]. Exp Hematol, Jun,2006,34 (6),pp 776-87.
    [20]Martinowich, K.,Hattori, D.,Wu, H., etc., DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation[J]. Science, Oct 31, 2003,302 (5646),pp 890-3.
    [21]Bernstein, B. E.,Meissner, A.,Lander, E. S., The mammalian epigenome[J]. Cell, Feb 23,2007,128 (4),pp 669-81.
    [22]Agger, K.,Christensen, J.,Cloos, P. A., etc., The emerging functions of histone demethylases[J]. Curr Opin Genet Dev, Apr,2008,18 (2),pp 159-68.
    [23]Sugars, K. L.,Rubinsztein, D. C., Transcriptional abnormalities in Huntington disease[J]. Trends Genet, May,2003,19 (5),pp 233-8.
    [24]Hodges, A.,Strand, A. D.,Aragaki, A. K., etc., Regional and cellular gene expression changes in human Huntington's disease brain[J]. Hum Mol Genet, Mar 15,2006,15 (6),pp 965-77.
    [25]Steffan, J. S.,Bodai, L.,Pallos, J., etc., Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila[J]. Nature, Oct 18, 2001,413 (6857),pp 739-43.
    [26]Pallos, J.,Bodai, L.,Lukacsovich, T., etc., Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease[J]. Hum Mol Genet, Dec 1,2008,17 (23),pp 3767-75.
    [27]Weintraub, D.,Comella, C. L.,Horn, S., Parkinson's disease-Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment J]. Am J Manag Care, Mar,2008,14 (2 Suppl),pp S40-8.
    [28]Kontopoulos, E.,Parvin, J. D.,Feany, M. B., Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity[J]. Hum Mol Genet, Oct 15,2006,15 (20),pp 3012-23.
    [29]Blennow, K.,de Leon, M. J.,Zetterberg, H., Alzheimer's disease[J]. Lancet, Jul 29,2006,368 (9533),pp 387-403.
    [30]Mastroeni, D.,Grover, A.,Delvaux, E., etc., Epigenetic changes in Alzheimer's disease:decrements in DNA methylation[J]. Neurobiol Aging, Dec,2010,31 (12),pp 2025-37.
    [31]Tohgi, H.,Utsugisawa, K.,Nagane, Y., etc., Reduction with age in methylcytosine in the promoter region-224 approximately-101 of the amyloid precursor protein gene in autopsy human cortex[J]. Brain Res Mol Brain Res, Jul 5,1999,70 (2),pp 288-92.
    [32]Zhuo, J. M.,Wang, H.,Pratico, D., Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? [J]. Trends Pharmacol Sci, Sep,2011,32 (9),pp 562-71.
    [33]Narayan, P. J.,Dragunow, M., High content analysis of histone acetylation in human cells and tissues [J]. J Neurosci Methods, Oct 30,2010,193 (1),pp 54-61.
    [34]Herrmann, N.,Lanctot, K. L.,Rothenburg, L. S., etc., A placebo-controlled trial of valproate for agitation and aggression in Alzheimer's disease[J]. Dement Geriatr Cogn Disord,2007,23 (2),pp 116-9.
    [35]Endres, M.,Meisel, A.,Biniszkiewicz, D., etc., DNA methyltransferase contributes to delayed ischemic brain injury [J]. J Neurosci, May 1,2000,20 (9),pp 3175-81.
    [36]Kohno, R.,Sawada, H.,Kawamoto, Y., etc., BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line[J]. Biochem Biophys Res Commun, May 21,2004,318 (1),pp 113-8.
    [37]Tariot, P. N.,Raman, R.,Jakimovich, L., etc., Divalproex sodium in nursing home residents with possible or probable Alzheimer Disease complicated by agitation:a randomized, controlled trial[J]. Am J Geriatr Psychiatry, Nov,2005, 13 (11),pp 942-9.
    [38]Forester, B.,Vanelli, M.,Hyde, J., etc., Report on an open-label prospective study of divalproex sodium for the behavioral and psychological symptoms of dementia as monotherapy and in combination with second-generation antipsychotic medication[J]. Am J Geriatr Pharmacother, Sep,2007,5 (3),pp 209-17.
    [39]Farrer, M. J., Genetics of Parkinson disease:paradigm shifts and future prospects[J]. Nat Rev Genet, Apr,2006,7 (4),pp 306-18.
    [40]Gray, F., [The neuropathology of Parkinson syndrome][J]. Rev Neurol (Paris), 1988,144 (4),pp 229-48.
    [41]Jowaed, A.,Schmitt, I.,Kaut, O., etc., Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains [J]. J Neurosci, May 5,2010,30 (18),pp 6355-9.
    [42]Matsumoto, L.,Takuma, H.,Tamaoka, A., etc., CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease[J]. PLoS One,2010,5 (11),p e15522.
    [43]Zuccato, C.,Cattaneo, E., Brain-derived neurotrophic factor in neurodegenerative diseases[J]. Nat Rev Neurol, Jun,2009,5 (6),pp 311-22.
    [44]Outeiro, T. F.,Kontopoulos, E.,Altmann, S. M., etc., Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease[J]. Science, Jul 27,2007,317 (5837),pp 516-9.
    [45]Luthi-Carter, R.,Taylor, D. M.,Pallos, J., etc., SIRT2 inhibition achieves neurop-rotection by decreasing sterol biosynthesis[J]. Proc Natl Acad Sci U S A, Apr 27, 2010,107 (17),pp 7927-32.
    [46]Gardian, G.,Browne, S. E.,Choi, D. K., etc., Neuroprotective effects of phenylb-utyrate in the N171-82Q transgenic mouse model of Huntington's disease[J]. J Biol Chem, Jan 7,2005,280 (1),pp 556-63.
    [47]Ferrante, R. J.,Kubilus, J. K.,Lee, J., etc., Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice[J]. J Neurosci, Oct 15,2003,23 (28),pp 9418-27.
    [48]Thomas, E. A.,Coppola, G.,Desplats, P. A., etc., The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice[J]. Proc Natl Acad Sci U S A, Oct 7,2008, 105 (40),pp 15564-9.
    [49]Anderson, A. N.,Roncaroli, F.,Hodges, A., etc., Chromosomal profiles of gene expression in Huntington's disease[J]. Brain, Feb,2008,131 (Pt 2),pp 381-8.
    [50]Ryu, H.,Smith, K.,Camelo, S. I., etc., Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice[J]. J Neurochem, Jun,2005,93 (5),pp 1087-98.
    [51]Neumann, M.,Sampathu, D. M.,Kwong, L. K., etc., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Science, Oct 6,2006,314 (5796),pp 130-3.
    [52]Kwiatkowski, T. J., Jr.,Bosco, D. A.,Leclerc, A. L., etc., Mutations in the FUS/-TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis [J]. Science, Feb 27,2009,323 (5918),pp 1205-8.
    [53]Lagier-Tourenne, C.,Polymenidou, M.,Cleveland, D. W., TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration[J]. Hum Mol Genet, Apr 15,2010,19 (Rl),pp R46-64.
    [54]Okada, Y.,Yamagata, K.,Hong, K., etc., A role for the elongator complex in zygotic paternal genome demethylation[J]. Nature, Jan 28,2010,463 (7280),pp 554-8.
    [55]Simpson, C. L.,Lemmens, R.,Miskiewicz, K., etc., Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration[J]. Hum Mol Genet, Feb 1,2009,18 (3),pp 472-81.
    [56]Han, Q.,Lu, J.,Duan, J., etc., Gcn5-and Elp3-induced histone H3 acetylation regulates hsp70 gene transcription in yeast[J]. Biochem J, Feb 1,2008,409 (3),pp 779-88.
    [57]Koyama, S.,Arawaka, S.,Chang-Hong, R., etc., Alteration of familial ALS-linked mutant SOD1 solubility with disease progression:its modulation by the proteasome and Hsp70[J]. Biochem Biophys Res Commun, May 12,2006,343 (3),pp 719-30.
    [58]Patel, Y. J.,Payne Smith, M. D.,de Belleroche, J., etc., Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells [J]. Brain Res Mol Brain Res, Apr 4,2005,134 (2),pp 256-74.
    [59]Wang, X.,Arai, S.,Song, X., etc., Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J]. Nature, Jul 3,2008,454 (7200),pp 126-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700