用户名: 密码: 验证码:
断圈聚油机理及含油气性预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在充分利用地质、地震、测井及各种分析资料基础上,结合区域地质背景,系统分析了珠江口盆地东部2个断圈富油区(番禺4洼和惠州凹陷)构造特征和断裂形成演化历史,划分断裂系统,在断圈含油气特征及油水分柿特征的基础上,剖析断圈成藏机理及断圈聚油能力,总结断圈油成藏的主要控制因素,最终对目标断圈进行评价优选。研究认为,珠江口盆地在剖面上由基底构造层,断陷盆地构造层及坳陷盆地构造层3个构造层次构成;断裂的形成与演化经历了文昌组时期、恩平组时期、珠海组-珠江组-韩江组时期、粤海组-第四系时期4个构造变形,发育早期伸展断裂系统(Ⅰ型)、中期弱伸展断裂系统(Ⅱ型)、晚期张扭断裂系统(Ⅲ型)和早期伸展晚期张扭断裂系统(Ⅰ-Ⅲ型)4套断裂系统。目的层由中期弱伸展断裂系统、晚期张扭断裂系统、早期伸展晚期张扭断裂系统构成。圈闭的主要形成时期应该在粤海组沉积时期。圈闭往往形成于断裂变形的局部挤压区,包括单条断层的末端(Ⅰ类型)、单条断层左阶式弯曲部位(Ⅱ类型)、两条(或多条)断层左阶式分布的岩桥区(Ⅲ类型)、两条(或多条)断层聚敛式交叉部位(Ⅳ类型)。番禺4洼地区的断圈主要有Ⅱ类型和Ⅲ类型,均是比较富油气的圈闭类型;惠州凹陷的断层圈闭类型主要有Ⅱ类型、Ⅲ类型和Ⅳ类型,其中Ⅳ类型圈闭是相对最好的圈闭类型。油气的充注条件控制着断圈的含油气性,首先源岩区内位于主力生烃洼槽内和源岩区外5km范围内的断圈,源岩的供烃能力强;而根据断层两盘地层的翘倾方向不同,油气进入储层圈闭的方式可以分为“垂向正注”(有利)和“垂向倒注”(不利)两种,决定了油气沿断裂垂向注入储层的难易程度不同。控圈断层侧向封闭性决定了断圈的聚油能力,研究区断裂侧向封闭类型分为断层岩封闭和岩性对接封闭2种类型,研究区内仅番禺4洼的PY5-1、PY11-5(T35-T41)断圈为对接封闭类型,其余断圈均属于断层岩封闭类型。对于对接封闭类型的断圈由于受砂泥薄互层地层特征的影响,对接封闭的烃柱高度较小,圈闭能否聚集大量油气主要受背斜幅度大小的控制,断层岩封闭类型的断圈利用断裂带SGR值求取的方法进行评价,同时利用断—储排替压力差法进行验证,证实研究区内断层均具有一定的封闭能力,但是预测的烃柱高度一般都小于圈闭的幅度,表明圈闭的充满程度与断层的侧向封闭性息息相关;预测的烃柱高度又都大于现今烃柱高度,即实际烃柱高度没有达到断层侧向封闭的理论烃柱高度,表明断层侧向封闭性除了受断裂带SGR影响外,还要受到断层后期破坏强度的影响。通过对研究区未获成功断圈原因分析可知,源岩的供烃能力,油气注入的难易程度;断层侧向封闭能力及断层后期破坏强度是断层圈闭油气成藏的主要控制因素。在此基础上对目标断圈评价优选认为,番禺4洼PY11-9圈闭、PY4-4圈闭和PY10-5圈闭,惠州凹陷的XJ24-1S圈闭和HZ19-6圈闭成藏综合评价值大于3,具备成功断圈油气成藏的条件,可为下步勘探的首选目标断圈。
Based on full use of geology, seismic, logging and analysis of various data, and combining with regional geological background, this paper makes systematic analysis on structural characteristics, formation and evolution of fractures in the two reservoirs enrichment -Panyu 4 sag and Huizhou sag in Pearl River Mouth basin, and then divides the fracture systems. Through the study on petroliferous features and oil-water distribution of fault traps, firstly, this paper analyses mechanism of reservoir forming and ability of hydrocarbon accumulation, secondly, it summarizes the main factors controlling oil accumulation of fault traps, and finally, it makes evaluation and optimization on the target traps. We can get conclusions on studies as follows:In profile, Pearl River Mouth basin consists of three tectonospheres, including basement structure, downfaulted basin structure and depression basin structure. The formation and evolution of fractures has experienced four tectonic deformation, respectively are Wenchang Formation, Enping Formation, Zhuhai-Zhujiang~Hanjiang Formation and Yuehai Formation~Quaternary period. Four sets of fault system have developed in Pearl River Mouth basin, that is, the extensional faults in early stage (typeⅠ), the weak extensional faults in metaphase (typeⅡ), the tense-shearing faults in later period (typeⅢ) and faults which are early extensional and late tense-shearing (typeⅠ-Ⅲ). The target layers of Zhujiang Formation consist of three types of fault system, namely, typeⅡ, typeⅢand typeⅠ-Ⅲ.Moreover, traps are mainly formed during the period of Yuehai Formation, and often distributed in the local compression areas of fault deformation, including terminal area of a single fault (typeⅠ), left-stepping bending part of a single fault (typeⅡ), strata bridge areas with left-stepping distribution of two or more faults (typeⅢ) and cross sites when two or more faults converge(typeⅣ). There are mainly typeⅡandⅢfault traps which are all rich in oil in Panyu 4 sag, while in Huizhou sag, there are mainly typeⅡ,ⅢandⅣfault traps among which typeⅣones are relatively the best. The petroliferous ability of fault traps is under the control of charging conditions, firstly, if the range of fault traps inside the main hydrocarbon-generating sub sags and outside the source rock is less than 5km, hydrocarbon supplying ability of source rock is better, moreover, according to different warping directions of strata on two walls of fault, the way of hydrocarbon injecting into traps are divided into two types, i.e., vertically upward injection which is favorable to hydrocarbon accumulation and vertically downward injection which is adverse, and the way determines the difficulty degree of hydrocarbon injecting vertically into reservoir along fractures. It is the lateral sealing ability of faults controlling traps that determines hydrocarbon accumulation ability of fault traps, and in the region, this paper has divided lateral sealing into fault rock sealing and lithology juxtaposition sealing, there, the sealing way of Trap PY5-1 and PY11-5(T35-T41) in Panyu 4 sag belongs to lithology juxtaposition sealing type, while the others are types of fault rock sealing. However, due to influence of thin multilateral sand and shale on Trap PY5-1 and PYll-5(T35-T41), the hydrocarbon column height of juxtaposition sealing is shorter, so, whether traps can gather much hydrocarbon or not depends on the size of anticline amplitude. And when referring to traps of fault rock sealing, firstly, this paper uses SGR in fault zones to evaluate the sealing ability, and then checks it with difference of displacement pressure between fault zone and reservoir, finally, it proves that faults in the study area are all with certain sealing ability, however, the predicted hydrocarbon column height is generally shorter than trap amplitude, this phenomenon indicates that the filling extent of traps is closely related to the lateral sealing ability of faults. The predicted hydrocarbon column height is all taller than that of nowadays, that is, the actual hydrocarbon column height has not reached that of lateral sealing, and from this, we can conclude that fault lateral sealing ability is not only affected by SGR in fault zones but also by late damage degree of fault rocks. Through the analyzing the causes of loss traps in the study areas, it is considered that the hydrocarbon supplying ability of source rock, the difficulty degree of hydrocarbon injection, the lateral sealing ability of faults and the damage degree of faults are the main controlling factors of hydrocarbon accumulation in the region. And on the basis of evaluating and optimizing target fault traps, it is considered that only when the value of comprehensive evaluation is greater than 3.0, can fault traps become successful ones and have conditions of hydrocarbon accumulation, in the region, Trap PY11-9, PY4-4 and PY10-5 in Panyu 4 sag, Trap XJ24-1S and HZ 19-6 in Huizhou sag are the successful ones, and they are the preferred target traps for the next drilling step.
引文
[1]罗群,姜振学,庞雄奇,等断裂控藏机理与模式(M).北京:石油工业出版社,2007.
    [2]罗群,白新华,信荃鳞.断裂控烃理论与实践—断裂活动与油气聚集研究(M).武汉:中国地质大学出版社,1998.
    [3]刘池阳.盆地构造研究中的两个薄弱环节—古构造和剪切平移构造(A).何明喜,刘池阳.盆地走滑变形与古构造分析(C).西安:西北大学出版社,1994.
    [4]郭占谦,萧德铭,唐金生.深大断裂在油气藏形成中的作用(J).石油学报,1996,17(3):27-32.
    [5]张功成.渤海海域构造格局与富生烃凹陷分布(J).中国海上油气(地质),2000,14(2):93-99.
    [6]许世红,钟建华,徐佑德,等.郯庐断裂带两侧坳陷、烃源岩及成烃演化的差异性(J).成都理工大学学报(自然科学版),2007,34(5):505-510.
    [7]童亨茂,张生根,胡远清.断层作用热模型及其对烃源岩热演化的影响(J).地质力学学报,2006,12(4):445-453.
    [8]达江,宋岩,赵孟军,等.前陆盆地冲断推覆作用与烃源岩演化(J).天然气工业,2007,27(3):17-19.
    [9]Yehuda Ben-zion,Charles G.S. Characterization of fault zone. In Yehuda Ben-zion,eds.Pure and Applied geophisics:seismic waves and fault zone structure. Springer,2003,160:677-715.
    [10]周庆华.从断裂带内部结构探讨断层封闭性(J)大庆石油地质与开发,2005,24(6):1-3.
    [11]付晓飞,方德庆,吕延防,等.从断裂带内部出发评价断层垂向封闭性的方法(J)地球科学,2005,30(3):328-336.
    [12]张西娟,曾庆利,马寅生.断裂带中的流体活动及其作用(J).西北地震学报,2006,28(3):274-279.
    [13]宋胜浩.从断裂带内部结构剖析油气沿断层运移规律(J).大庆石油学院学报,2006,30(3):17-20.
    [14]高君,吕延防,田庆丰.断裂带内部结构与油气运移及封闭(J).大庆石油学院学报,2006,31(2):4-7.
    [15]何绍勇,马凤良.断裂带结构特征及其封堵性(J).西部矿探工程,2009,1:51-57.
    [16]邱贻博,王永诗,刘伟.断裂带内部结构及其输导作用(J).油气地质与采收率,2010,17(4):1-3.
    [17]Caine. Fault zone architecture and permeability structure (J).Geology,1996,24: 1025-1028.
    [18]吴智平,陈伟,薛雁,等.断裂带的结构特征及其对油气的输导和封堵性(J).地质学报,2010,84(4):570-578.
    [19]陈伟,吴智平,侯峰,等.断裂带内部结构特征及其与油气运聚关系(J).石油学报,2010,31(5):774-780.
    [20]武红岭,张利容.断层周围的弹塑性区及其地质意义(J).地球学报,2002,23(1):11-16.
    [21]杜春国,郝芳,邹华耀,等.断裂输导体系研究现状及存在问题(J).地质科技情报,2007,26(1):51-56.
    [22]Levorsen A I. Geology of petroleum (M).2nd edition San Francisco:Freeman,1967:724.
    [23]庞雄奇,金之钧,姜振学.油气成藏定量模拟(M).北京:石油工学出版社,2003.
    [24]李明诚.石油与天然气运移研究综述(J).石油勘探与开发,2000,27(4):3-9
    [25]Sibson R H,Moorre J M, Rankin AH.Seismic pumping:a hy-drothermal fluid transport mechanism (J) Journal of Geolog-ical Society,1975,131:653-659.
    [26]Hooper E C D.Fluid migration along growth fault in compac-ting sediments [J] Journal of Petroleum Geology,1991,14:161-180.
    [27]华保钦.构造应力场、地震泵与油气运移(J).沉积学报,1995,13(2):77-85.
    [28]孙永河,付晓飞,吕延防,等.地震泵抽吸与油气运聚成藏物理模拟(J).吉林大学学报(地球科学版).2007,37(1):98-104.
    [29]阎福礼,贾东,卢华复,等.东营凹陷油气运移的地震泵作用(J).石油与天然气地质,1999,20(4):295-298.
    [30]郝芳,邹华耀,杨旭升,等.油气幕式成藏及其驱动机制和识别标志(J).地质科学,2003,38(3):403-409.
    [31]Anderson R N, Billeaud L B, Flemings P B, et al.Results of the Pathfinder Drilling Program into a Major Growth Fault (M). [s.l.]:LDEO Press,1995.23-60.
    [32]Hu Wenxuan, Jin Zhijun, Qiu Nansheng, et al. Boiling process of low temperature formation water in petroleum system, Qaidam Basin(M).Chinese Science Bulletin,1999, 44(Suppl):77-78.
    [33]曹剑,胡文瑄,姚素平,等.准噶尔盆地油气运移基本方式与机理探讨(J).地学前缘,2007,14(4):143-150.
    [34]邱楠生,金之钧.油气成藏的脉动式探讨(J).地学前缘,2000,7(4):561-567.
    [35]郝芳,邹华耀,方勇,等.断—压双控流体流动与油气幕式快速成藏(J).石油学报,2004,25(6):38-43.
    [36]郝芳,李思田.莺歌海盆地底辟发育机理与流体幕式充注(J).中国科学:D 辑,2001,31(6):471-476.
    [37]郝芳,邹华耀,曾溅辉,等.超压盆地生烃作用动力学与油气成藏机理(M).北京:科学出版社,2005
    [38]Aydin A.Fractures, faults, and hydrocarbon entrapment, mi-gration and flow (J).Marine and Petroleum Geology,2000,17(5):797-814.
    [39]罗群,庞雄奇,姜振学.一种有效追踪油气运移轨迹的新方法—断面优势运移通道的提出及其应用(J).地质论评,2005,51(2):156-162.
    [40]Hindle A D. Petroleum migration pathways and charge concentration:a three—dimensional model. AAPG Buletin.1997,81 (9):1451-1481.
    [41]姜素华,曾溅辉,李涛,等.断面形态对中浅层石油运移影响的模拟实验研究(J)中国海洋大学学报,2005,35(2):245-249.
    [42]姜振学,庞雄奇,曾溅辉,等.油气优势运移通道的类型及其物理模拟实验研究(J).地学前缘,2005,12(4):505-515.
    [43]邓运华.断裂—砂体形成油气运移的“中转站”模式(J).中国石油勘探,2005,10(6):14-17.
    [44]罗晓容.油气初次运移的动力学背景与条件(J).石油学报,2001,22(6):24-29.
    [45]赵孟军,王招明,张水昌,等.库车前陆盆地天然气成藏过程及聚集特征(J).地质学报,2005,79(3):414-422.
    [46]董焕忠.海拉尔盆地乌尔逊凹陷南部大磨拐河组油气来源及成藏机制(J).石油学报,2011,32(1):62-69.
    [47]孙永河,吕延防,付广,等.断裂输导体系输导天然气效率评价方法及其应用(J)天然气地球科学,2006,17(1):73-77.
    [48]于翠玲,曾溅辉.断层幕式活动期和间歇期流体运移与油气成藏特征(J).石油实验地质,2005,27(2):129-133.
    [49]付广,王国民,黄劲松.断裂静止期有无输导油气能力的判别方法(J).沉积学报,2008,26(5):850-856.
    [50]石波.乌尔逊凹陷不同构造活动时期断裂输导油气能力评价(J).大庆石油学院学报,2008,32(4):5-8.
    [51]付广,吕延防,付晓飞.天然气沿断裂运移规律的物理及数值模拟(J).天然气地球科学,2004,15(3):222-226.
    [52]付广,吕延防,于丹,等.气藏天然气输导效率研究(J).石油学报,2006,27(3):32-36.
    [53]柳广弟,吴孔友,查明.断裂带作为油气散失通道的输导能力(J).石油大学学报(自然科学版),2002,26(1):16-17.
    [54]孙永河,吕延防,付晓飞,等.准噶尔盆地南缘褶皱冲断带断裂输导石油效率评价(J). 吉林大学学报(地球科学版),2008,38(3):430-436.
    [55]付广,孙永河,吕延防,等.库车坳陷北带断裂输导天然气效率评价(J).大庆石油地质与开发,2007,26(1):26-31.
    [56]柳广弟,孙明亮,吕延防,等.库车坳陷天然气成藏过程有效性评价(J).中国科学D辑:地球科学,2008,38(增刊):103-109.
    [57]付广,吕延防,于丹.我国不同类型盆地高效大中型气田形成的主控因素(J).地球科学,2007,32(1):82-88.
    [58]周广胜,张立含,张秀丽.前陆盆地高效大中型气田形成的断裂输导条件(J).大庆石油学院学报,2007,31(3):132-135.
    [59]李凤君,姜振学,付广,等.裂谷盆地高效大中型气田形成的断裂输导条件(J).中国石油大学学报(自然科学版),2009,33(1):28-32.
    [60]Bradley J S, Powley D E. Pressure compartments in sedimentary basins:A review, in Basin compartments and seals (J), AAPG memoir 61,3-26.
    [61]张照录,王华,杨红.含油气盆地的输导体系研究(J).石油与天然气地质,2000,21(2):133-135.
    [62]赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析(J).石油实验地质,2002,24(6):527-536.
    [63]杜金虎,赵贤正,张以明,等.中国东部裂谷盆地地层岩性油气藏(M).北京:地质出版社,2007,203-218.
    [64]付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制(J).新疆石油地质,2001,22(1):24-26.
    [65]邓运华.张—扭断裂与油气运移分析—以渤海湾油区为例(J).中国石油勘探,2004,2:33-37.
    [66]张卫海,查明,曲秀江.油气输导体系的类型及配置关系(J).新疆石油地质,2003,24(2):118-120.
    [67]赵文智.石油地质理论与方法进展(M).北京:石油工业出版社,2006.
    [68]何登发.断裂—岩性体油气藏特征(J).石油学报,2007,28(2):22-28.
    [69]Suppe J.Geometry and kinematics of fault-bend folding (J).Amer.Jour.Sci.,1983,283:684-721.
    [70]孙永河,漆家福,吕延防,等.渤中坳陷断裂构造特征及其对油气的控制(J).石油学报,2008,29(5):669-675.
    [71]龚再升,蔡东升,张功成.郯庐断裂对渤海海域东部油气成藏的控制作用(J).石油学报,2007,28(4):37-41.
    [72]李明刚,漆家福,童亨茂,等.辽河西部凹陷新生代断裂构造特征与油气成藏(J)石油勘探与开发,2010,37(3):281-288.
    [73]张善文,隋风贵,王永诗.济阳坳陷下第三系陡岸沉积模式(J).沉积学报,2001,19(2):119-223.
    [74]肖焕钦,王宝言,陈玉宁,等.济阳坳陷陡坡带断裂控砂模式(J).油气地质与采收率,2002,9(5):20-22.
    [75]宗国红,冯有良,刘承华,等.同沉积断裂带砂岩体隐蔽油藏研究—以东营凹陷胜北断裂带为例(J).石油实验地质,2003,25(3):274-280.
    [76]钱水华,朱军,汪之印.同沉积断裂对油气成藏的控制作用(J).承德石油高等专科学校学报,2009,11(1):1-4.
    [77]郭涛,辛仁臣,刘豪,等.同沉积断裂构造对沉积相展布的控制—以黄河口凹陷沙三段中亚段沉积相研究为例(J).沉积与特提斯地质,2008,28(1):14-19.
    [78]叶兴树、王伟峰,陈世悦,等.东营凹陷断裂活动特征及其对沉积的控制作用(J)西安石油大学学报(自然科学版),2006,21(5):29-33.
    [79]姜华,王华,刘军,等.珠江口盆地珠三坳陷神狐组—恩平组沉积时期南断裂活动性对沉积的控制作用(J).地质科技情报,2009,28(2):49-53.
    [80]王永诗,鲜本忠.车镇凹陷北部断裂带结构及其对沉积和成藏的控制(J).油气地质与采收率,2006,13(6):5-8.
    [81]易士威.断陷盆地岩性地层油藏分布特征(J).石油学报,2005,26(1):38-41.
    [82]林畅松,潘元林,肖建新,等.构造坡折带—断陷盆地层序分析和油气预测的重要概念(J).地球科学(中国地质大学学报),2000,25(3):260-265.
    [83]张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏(J).石油勘探与开发,2003,30(3):5-7.
    [84]王英民,金武弟.断陷湖盆多级坡折带的成因类型、展布及其勘探意义(J).石油与天然气地质,2003,24(3):199-203.
    [85]冯友良,徐秀生.同沉积构造坡折带对岩性油气藏富集带的控制作用—以渤海湾盆地古近系为例(J).石油勘探与开发,2006,33(1):22-25.
    [86]Dahlstrom C D A. Structural geology in the easten margin of the Canadian Rocky mountains[J]. Bull of Canadian Petroleum Geology 1970,187:332-406.
    [87]Morley C K, Nelson RA, Patton TL, et al. Transfer zones in East African rift system and their relevance to hydrocarbon exploration in rifts (J).AAPG Bull,1990,74(8): 1234-1253.
    [88]陈发景,贾庆素,张洪年.传递带及其在砂体发育中的作用(J).石油与天然气地质,2004,25(2):144-148.
    [89]王家豪,王华,肖敦清,等.伸展构造体系中传递带的控砂作用(J).石油与天然气地质,2008,29(1):19-21.
    [90]刘剑平,汪新文,周章保,等.伸展地区变换构造研究进展(J).地质科技情 报,2000,19(3):27-32.
    [91]宋国齐,刘克奇.断层两盘裂缝发育特征及其石油地质意义(J).油气地质与采收率,2009,16(4):1-3.
    [92]张琴,朱筱敏,钟大康,等.山东东营凹陷古近系碎屑岩储层特征及控制因素(J)古地理学报,2004,6(4):493-502.
    [93]宋守德.碎屑岩储层物性的主要控制因素(J).内蒙古石油化工,2008,13:61-63.
    [94]李振宏,贾建恒.浅析断裂活动与油气运聚的时空配置关系(J).特种油气藏,2004,11(3):9-11.
    [95]谢晓安,吴奇之,高岩,等.塔里木盆地压扭断裂带构造特征与油气聚集(J).石油学报,1997,18(2):13-17.
    [96]吕修祥,杨宁,周新源,等.塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响(J)中国科学D辑:地球科学,2008,28(增刊1):48-54.
    [97]吕修祥,李建交,汪伟光.海相碳酸盐岩储层对断层活动的响应(J).地质科技情报,2009,28(3):1-5.
    [98]苏劲,张水昌,杨海军,等.断裂系统对碳酸盐有效储层的控制及其成藏规律(J)石油学报,2010,31(2):196-203.
    [99]Luczaj J A, William B, Harrison 11, et al. Fractured hydro-thermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin (J).AAPG Bulletin,2006, 90(11):1787-1801.
    [100]Smith L B, Davies G R. Structurally controlled hydrothermal alteration of carbonate reservoirs:Introduction (J).AAPG Bulletin,2006,90(11):1635-1640.
    [101]Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview (J).AAPG Bulletin,2006,90(11):1641-1690.
    [102]Smith L B. Origin and reservoir characteristics of Upper Ordo-vician Trenton-Black River hydrothermal dolomite reservoirs in New York (J).AAPG Bulletin,2006, 90(11):1691-1718.
    [103]Sagan J A, Hart B S. Three-dimensional seismic-based defini-tion of fault-related porosity development:Trenton-Black River interval, Saybrook, Ohio (J).AAPG Bulletin,2006,90(11):1763-1785.
    [104]Katz D A, Eberli G P, Swart P K, et al. Tectonic-hydrother-mal brecciation associated with calcite precipitation and perme-ability destruction in Mississippian carbonate reservoirs, Mon-tana and Wyoming (J).AAPG Bulletin,2006,90(11):1803-1841.
    [105]李荣,焦养泉,吴立群,等.构造热液白云岩—一种国际碳酸盐岩领域的新模式(J)地质科技情报,2008,27(3):35-40.
    [106]Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview:Reply (J).AAPG Bulletin,2007,91(9):1342-1344.
    [107]Perez R J, Boles J R. Mineralization, fluid flow, and sealing properties associated with an active thrust fault:Sa2n Joaquin basin, California[J].AAPG Bulletin, 2004,88(9):1295-1314.
    [108]Faerseth R B. Shale smear along large faults:Continuity of smear and the fault seal capacity[J] Journalof the Geological Society,2006,163:741-751.
    [109]Smith D A. Theoratical consideration of sealing and non-sealing faults (J).AAPG,1966, 50:363-371.
    [110]Engelde J T. Cataclasis and the generation of fault gouge (J).Geological society of America bulletin,1974,85 (3):1515-1522.
    [111]Weber K J, Mandl G, Pilaar W F, et al. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures (C). Society of petroleum engineers,10th Annual offshore technology conference proceedings,1978:2643-2653.
    [112]Smith D A. sealing and nonsealing faults in Louisiana gulf coast salt basin (J).AAPG Bulletin,1980,64:145-172.
    [113]Bouvier J D, Kaars-sijpesteijn C H, Vanderpal R C. Three-dimensional seismic interpretation and fault seismic interpretation and fault sealing investigations, nun river field, nigeria (J).AAPG Bulletin,1989,73 (11):1394-1414.
    [114]Allan U S. Model for hydrocarbon migration and entrapment with in faulted structures (J).AAPG Bulletin,1989,73 (4):803-811.
    [115]Lindsay N G, Murphy F C, Walsh J J, et al. Outcrop studies of shale smears on fault surfaces. In:The geological modeling of hydrocarbon reservoirs and outcrop analogues (C)//flint S, Bryant I D. special publication of the international association of sedimentologists 15,1993:113-123.
    [116]Yielding G, Freeman B, Needham D T. Quantitative fault seal prediction (J).AAPG Bulletion,1997,81:897-917.
    [117]Knipe R J, Jones G J, Fisher Q J. Faulting and fault sealing in hydrocarbon reservoirs introduction (A). In:Faulting and fault sealing in hydrocarbon reservoirs (C). Geological society, London. Special publication,1998,147.
    [118]吕延防,王帅.断层封闭性定量评价(J).大庆石油学院学报,2010,34(5):35-41.
    [119]曹瑞成,陈章明.早期探区断层封闭性评价方法(J).石油学报,1992,13(1):19-22.
    [120]张树林,田世澄.不同溢出类型的差异聚集作用与断层封闭性分析(J).现代地质,1993,7(2):235-243.
    [121]鲁兵,孔宪政,黎兵,等.断块构造与断块封闭溅的关系(J).石油勘探与开发,1999,26(4):14-17.
    [122]吕延防,陈章明.非线性映射分析判断断层封闭(J).石油学报,1995,16(2):33-37.
    [123]吕延防,李国会,王跃文,等.断层封闭性的定量研究方法(J).1996,17(3):39-45.
    [124]Knipe R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs (J).AAPG Bulletin,1997,81(2):187-195.
    [125]童亨茂.断层开启与封闭的定量分析(J).石油与天然气地质,1998,19(3):215-220.
    [126]刘泽荣,张晋仁.油藏评价和预测(M).北京:石油工业出版社,1998.
    [127]吕延防,张发强,吴春霞,等.断层涂抹层分布规律的物理模拟实验研究(J).石油勘探与开发,2001,28(1):30-32.
    [128]Kim J, Berg R R. Trapping capacity of faults in the Eocene yegua formation, east sour Lakefield, southeast texas (J).AAPGBulletin,2003,87 (3):415-425.
    [129]Doughty P T. Clay smear seals and fault sealing potential of an exhumed growth fault, riogrande rift, New mexico (J). AAPG Bulletin,2003,87 (3):427-444.
    [130]Koledoye A K, Atilla A, Eric M. Methodology for analysis of shale smear along normal faults in the niger delta (J) AAPG Bulletin,2003,87 (3):445-463.
    [131]Bretan J, Peter, Peter B, B, Graham Y. Using calibrated shale gouge ratio to estimate hydrocarbon column heights (J).AAPG Bulletin,2003,87 (3):397-413.
    [132]万天丰,王明明,殷秀兰,等.渤海湾地区不同方向断裂带的封闭性(J).现代地质,2004,18(2):157-163.
    [133]徐东萍,周洪钟,李传明,等.垦利油田断块油藏封堵性研究(J).断块油气田,2004,11(4):22-24.
    [134]Lyon O B, Boult R R, Mildren S D. Sealing by shale gouge and subsequent seal breach by reactivation:a case study of the zema prospect (J). AAPG Hedberg series,2005 (2): 179-197.
    [135]吕延防,孙永河,付晓飞.逆断层中天然气运移特征的物理模拟(J).地质科学,2005,40(4):464-475.
    [136]侯读杰,朱俊章,唐友军,等.应用地球化学方法评价断层的封闭性(J).地球科学—中国地质大学学报,2005,30(1):97-101.
    [137]付广,梅丽.乌尔逊凹陷大一段垂直断裂垂向封闭性分析(J).大庆石油学院学报,2006,30(5):13-16.
    [138]Roald B F. Shale smear along large faults:continuity of smear and the fault seal capacity (J). Journal of the Geological society, London,2006,163:741-751.
    [139]吕延防,沙子萱,付晓飞,等.断层垂向封闭性定量评价方法及其应用(J).石油学报,2007,28(5):34-38.
    [140]张立宽,罗晓容,廖前进,等.断层连通概率定量评价断层的启闭性(J).石油与天然气地质,2007,28(2):181-190.
    [141]Childs C S, Moriya S, Morewood N. Calibrating fault seal using a hydrocarbon migration model of the oseberg syd area, viking graben (J).Marine and Petroleum Geology,2009 (26):764-774.
    [142]Childs C S, Moriya S, Manzocchi T, John J W. A geometric model of fault zone and fault rock thickness variations (J). Journal of Structural Geology,2009 (31):117-127.
    [143]吕延防,黄劲松,付广,等.砂泥岩互层段中断层封闭性的定量研究(J).石油学报,2009,30(6):824-829.
    [144]吴元燕,平俊彪,付建林,等.中国油气藏破坏类型及分布(J).地质论评,2002,48(4):377-383.
    [145]付广,付晓飞,薛永超,等.引起油气藏破坏与再分配的地质因素分析(J).天然气地球科学,2000,11(6):1-6.
    [146]吕延防,王振平.油气藏破坏机理研究(J).大庆石油学院学报,2001,25(3)5-10.
    [147]罗群,孙宏智.断裂活动与油气藏保存关系研究(J).石油实验地质,2000,22(3):225-231.
    [148]郝石生,陈章明,高辉斌,等.天然气藏形成与保存(M).北京:石油工业出版社,1995.
    [149]吕延防,付广,高大岭,等.油气藏封盖研究(M).北京:石油工业出版社,1996.
    [150]吕延防,被断层破坏的盖层封闭能力评价方法及其应用(J).地质科学,2008,43,(1):162-174.
    [151]黄学,付广,赖勇,等.断裂对盖层封闭性破坏程度定量研究(J).大庆石油地质与开发,2008,27(6):5-9.
    [152]刘安英,包丽.徐家围子断陷断裂对盖层及天然气分布的影响(J).天然气工业,2009,29(8):8-11.
    [153]张立国,付广,赵颖颖.被断裂破坏后盖层封闭能力的评价方法(J).大庆石油地质与开发,2009,28(4):15-18.
    [154]罗群.断裂控烃理论的概念、原理、模式及意义(J).石油勘探与开发,2010,37(3):316-324.
    [155]何家雄,陈胜红,刘士林,等.南海北缘珠江口盆地油气资源前景及有利勘探方向(J).新疆石油地质,2008,29(4):457-461.
    [156]何家雄,刘海龄,姚永坚,等.南海北部边缘盆地油气地质及资源前景(M).北京:石油工业出版社,2008.
    [157]龚再升,王善书,等.中国石油地质志(卷十六)沿海大陆架及毗邻海域油气区(下册)(M).北京:石油工业出版社,1992.
    [158]陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件(M)北京:科学出版社,2003.
    [159]龚再升,李思田.南海北部大陆边缘盆地油气成藏动力学研究(M).北京:科学出版社,2004.
    [160]孙珍,庞雄,钟志洪,等.珠江口盆地白云凹陷新生代构造演化动力学(J).地学前缘,2005,12(4):489-497.
    [161]龚再升,李思田,谢泰俊.南海北部大陆边缘盆地分析与油气聚集(M).北京:科学出版社,1997.
    [162]钟建强.珠江口盆地的构造特征与盆地演化(J).海洋湖沼通报,1994,(1):1—8.
    [163]邵磊,雷永昌,庞雄.珠江口盆地构造演化及对沉积环境的控制作用[J].同济大学学报,2005,33(9):1177-1181.
    [164]黄正吉.珠江口盆地陆相烃原岩与油气生成[J].中国海上油气(地质),1998,12(4):255-261.
    [165]崔莎莎,何家雄,陈胜红,等.珠江口盆地发育演化特征及其油气成藏地质条件(J).天然气地球科学,2009,20(3):384-391.
    [166]李平鲁.珠江口盆地构造特征与油气聚集[J].广东地质,1994,9(4):21-28.
    [167]何家雄,刘海龄,姚永坚,等.南海北部边缘海盆地油气地质及资源前景(M).北京:石油工业出版社,2008.
    [168]陈长民.珠江口盆地东部石油地质及油气藏形成条件初探(J).中国海上油气(地质).2000,14(2):73-83.
    [169]Zhou D Ru K, Chen H Z. Kinematics of Cenozoic extension on the south china sea continental margm and its imphcations for the tectonic evolution the region (J).Tectonophysics,1995.251 (1-4):161-177.
    [170]周蒂,陈汉宗,吴世敏,等.南海的右行陆缘裂解成因(J).地质学报,2002,76(2):180-188.
    [171]梁杏,王旭升,张人权,等.珠江口盆地东部第三纪沉积环境与古地下水流模式(J)地球科学—中国地质大学学报,2000,25(5):542-546.
    [172]邵磊,庞雄,乔培军,等.珠江口盆地的沉积充填与珠江的形成演变(J).沉积学报,2008,26(2):179-185.
    [173]董冬冬,王大伟,张功成,等.珠江口盆地深水区新生代构造沉积演化(J).中国石油大学学报(自然科学版),2009,33(5):17-29.
    [174]张志杰,于兴河,侯国伟,等.张性边缘海的成因演化特征及沉积充填模式—以珠江口盆地为例(J).现代地质,2004,18(3):284-289.
    [175]李思田,林畅松,张启明,等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件(J).科学通报,1998,43(8):797-810.
    [176]秦国权.珠江口盆地新生代地层问题探讨及综合柱状剖面图编制(J).中国海上油气(地质),2000,14(1):21-28.
    [177]赵中贤,周蒂,廖杰.珠江口盆地第三纪古地理及沉积演化(J).热带海洋学报,2009,28 (6):52-60.
    [178]Wernicke B, Burchfiel B C.Modes of Extensional Tectonics[J].Journal of Structural Geology,1982,16:845-851.
    [179]Bally A W, Bernoulli D, Davis G A, et al.Listric Normal faults[A].Oceanologica Acta.Proceeding 26th International Geological Congress[C].Geology of Continental Margins Symposium.Paris:1981,87-101.
    [180]漆家福,夏义平,杨桥.油区构造解析(M).石油工业出版社,2006,25-59.
    [181]Watterson J. Fault dimensions, Displacements and growth (J).Pure and Applied geophysics,1986,124:365-373.
    [182]李春光.中国东部盆地油气藏同生断层的定量研究(J).油气地质与采收率,2003,10(4):1-4.
    [183]Thorsen C E. Age of growth faulting in southeast Louisiana (J).Trans.gulf-goast.ass geol socs,1963,13 (2):103-110.
    [184]朱志澄,曾佐勋,樊光明.构造地质学(第三版),武汉:中国地质大学出版社,2008.
    [185]李友川,陶维祥,孙玉梅,等.珠江口盆地惠州凹陷及其邻区原油分类和分布特征(J).石油学报,2009,30(6):830-834.
    [186]李明诚.石油与天然气运移(M).北京:石油工业出版社,2004.
    [187]Fisher Q J,Knipe R J. The permeability of faults within siliciclastic petroleum reservoirs of the north sea and Norwegian continential shelf (J). Marine and petroleum Geology, 2001,18(10):1063-1081.
    [188]付晓飞,潘国强,贺向阳,等.大庆长垣南部黑帝庙浅层生物气的断层侧向封闭性(J).石油学报,2009,30(5):678-684.
    [189]张跃,邹寿平,宿芬.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992,146-160
    [190]汪培庄,韩立岩.应用模糊数学[M]北京:经济学院出版社,1989,160-167.
    [191]郭长春,金强,姚军.用模糊数学方法评价烃源岩[J].石油学报,2005,26(4):50-53.
    [192]程顶胜,刘松,吴培红..塔里木盆地石炭系生烃潜力的模糊数学综合评价[J].石油学报,2000,21(1):34-39
    [193]张守本,赵旭等,模糊数学方法对局部构造圈闭的评价[C].北京:《油气资源评价方法研究与应用》编委会,石油工业出版社,1988,226-232.
    [194]杨飞.应用模糊数学预测塔里木盆地有利圈闭[J].成都理工学院学报,1997,24(1):30-36.
    [195]杨昌明,王美丽,聂新坤.圈闭地质评价中模糊数学综合评判法的优势[J].西南石油学院学报,1999,21(2):41-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700