用户名: 密码: 验证码:
福建省基性岩的年代学和地球化学:晚生代以来国东南部地幔演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国东南部地处太平洋板块与欧亚板块的接合部位,其独特的地理位置和构造运动长期以来引起了地质学家的广泛关注。自印支运动以来,板内构造演化复杂而多样。最引人注目的无疑是燕山期广泛而强烈的构造-岩浆热事件。近年来随着研究的深入,逐渐凸显出两个重要的地质问题需要解决:(1) 国东南部晚生代构造属性的转变时间及地球动力学演化过程;(2) 多金属成矿作用与岩石圈伸展减薄及地壳拉张的关系。基于此,本文以国东南部福建省的基性脉岩、岩体为研究对象,运用系统的矿物学、岩石学、岩石地球化学、同位素地球化学及同位素年代学证据,详细论述了晚生代国东南部板块俯冲、地幔演化、壳幔相互作用及岩石圈伸展减薄的地球动力学过程,探讨了地壳拉张期次在福建省区域构造上的响应。本研究主要获得以下几点认识:
     1、岱前山辉长岩体沿福建长乐—南澳大断裂带分布,侵位于沿海的绿片岩相和角闪岩相的变质岩及内陆的生代火山岩。岩体的微量元素特征表现为与俯冲作用有关的岛弧特点。岱前山岩体由低程度部分熔融形成(约7%),伴有角闪石、单斜辉石的分离结晶作用和斜长石的堆晶作用。时间上与古太平洋板块低角度—歪斜俯冲、晚生代的变质事件、平潭—东山变质带抬升和长乐—南澳剪切带运动在时间上基本一致。岩体是受俯冲流体交代的上地幔,经部分熔融沿长乐—南澳断裂—应力转换带侵入。它与国东南部出露的其它基性岩同源,但未受到地壳的混染作用。
     2、闽南茅坪-晒鞍角基性侵入体具独特的地球化学属性,表现为高Al_2O_3、Ca_O、MnO,低FeO_T、MgO、TiO_2含量,富集轻稀土元素(LREE)和大离子亲石元素(LILE),并具正的Pb异常和负的Ti异常;Sr-Nd-Pb同位素结果显示,该基性岩有EM2组分的参与。模拟计算表明,该基性岩墙群是尖晶石二辉橄榄岩地幔5-15%部分熔融的产物;微量元素配分模式及理论模拟表明茅坪—晒鞍角基性岩体的地幔源区在熔融前曾受到1%俯冲沉积物熔体的源区混染和5%流体交代作用。基性岩浆在上升过程还受到10%左右的地壳物质的混染作用,导致该区基性岩富放射成因Sr、Pb同位素。
     3、福建省晚生代基性脉岩富Al_2O_3(14.0-20.4wt%)、CaO(4.09-12.7wt%)。按地球化学特征可分为两组:第一组脉岩具较低稀土总量(53.8-145.5μg/g)和平缓的稀土配分模式[(La/Yb)_n=1.68-4.65],而第二组脉岩的稀土总量较高(63-247μg/g),且轻稀土富集[(La/Yb)_n=4.63-19]。在原始地幔标准化图解上,第一组脉岩显示Pb的正异常
    
     和Ti负异常,无Nb、Ta异常,而第二组脉岩显示明显的Nb一几.Ti负异常和Pb正
     异常。两组脉岩经历了不同的源区混合和陆壳混染过程,第一组脉岩显示了以陆壳
     混染为主的地球化学过程,不具有岛弧特点的微量元素配分模式表明该类基性岩的
     地慢源区可能未受俯冲作用过程影响,第二组脉岩的岛弧地球化学特点暗示该类基
     性岩地慢源区是经俯冲作用改造过的富集岩石圈地慢。第一组基性脉岩来源于石榴
     石一尖晶石二辉橄榄岩地慢,而第二组脉岩来源于尖晶石或尖晶石一斜长石二辉橄
     榄岩地慢。地球化学数据显示,不同类型的地慢存在不均一性,反映了不同程度的
     交代作用或不同量俯冲沉积物的加入。福建省晚生代基性脉岩产生于拉张构造背
     景,与岩石圈的伸展减薄及软流圈的上涌紧密联系;
    4、福建省基性脉岩的同位素特征显示,第一组脉岩具较高的’43N创4的d,第二组脉岩
     的’43N出,科Nd较低;ThiNd、B拢a比值及理论模拟结果表明,第二组脉岩可能受到
     流体交代和俯冲沉积物的源区混合作用,而第一组脉岩基本未受俯冲组分(沉积物
     +流体)的改造。地壳混染对两组脉岩可能起着重要的作用。EC一AFC理论模拟表明,
     福建省基性脉岩在上升过程受到前寒武纪变质岩的影响,这种混染作用在一定程
     度上改变了同位素组成。因此,福建省晚生代基性脉岩的地球化学特点是太平洋
     板块俯冲与壳慢相互作用共同作用的结果;
    5、K一Ar年龄结果表明,出露于福建省的基性脉岩年龄具周期性分布,表现为五个周期:
     70一75Ma士,85 Ma士,105一110Ma,125Ma士和135一140Ma。这与前人的研究结果
     基本一致,表明福建省与国东南部区域上有相似的地壳拉张期次。K一Ar年龄主要
     集分布在14OMa--65Ma之间,这表明:①140Ma限定了国东南部岩石圈伸展
     作用开始的下限,也就是说国东南部晚生代的岩石圈伸展至少开始于14OMa左
     右,而并非90Ma;②标志着国东南部大规模拉张作用的开始,表明构造属性由
     挤压为主转变为以拉张作用为主。
The southeastern China locates at the joint of the Pacific plate and Eurasian plate. The special geological location and structural movements have received considerable attention by geologists. The area has experienced complicated and various structural movements since the Indosinian stage, of which the most important thing is the massive Yanshanian structural-magmatic event. Recently, two important things need to be further addressed: (1) The time of the transition from compressional to extensional setting, and the geodynamics processes in SE China; (2) The relationship between polymetallic mineralization and lithospheric thinning and crustal extension. Thus, the paper focuses on mineralogy, petrology, petrogeochemistry, isotopic chorology, and Sr-Nd-Pb isotopes of the mafic intrusions and dikes in Fujian province, SE China. In addition, we also discussed the process of the plate subduction, mantle evolution, crust-mantle interaction, lithospheric thinning and extension, and the reaction for crustal extensi
    on in Fujian province, SE China.
    (1) Daiqianshan mafic intrusion is situated along the Changle-Nanao fault, which intruded in the metamorphic rocks. The metamorphic rocks are composed of biotite geniss, amphibole schist, sillmanite schist and Mesozoic volcanic rocks. This paper indicates that the island affinity of the intrusion is related to subduction. However, the age of the rock closely approximates the timing of low-angle oblique subduction of an ancient Pacific plate, high-pressure metamorphic event, uplift of the Pingtan-Dongshan metamorphic belt and movement along the Changle-Nanao shear zone. The intrusion was formed by low-degree partial melting of the upper mantle. Thus, the formation of the rock is related to lithospheric extension or collision events, which was derived from upper mantle and intruded along Changle-nanao frature zone. The Daiqianshan intrusion has the same source with other mafic rocks exposed in southeastern China, which had been experienced metasomatism before emplacement. But the former has not been subjected
    to significant crustal assimilation.
    (2) Major- and trace-element, as well as Sr-Nd-Pb isotopic data of the Mesozoic Maopin and Shaianjiao mafic intrusions, exposed in Nanjin region, Fujian province, provide an insight into the nature of their mantle source and the secular evolution of the lithospheric mantle beneath the Cathaysian Block, SE China. They are characterized by higher Al2O3, CaO and MnO contents, and lower FeOT, MgO, TiO2 and K2O+Na2O contents than those of the
    
    
    
    Cenozoic basalts. Those rocks are enriched in LILE and LREE, and relatively low HFSE, with positive Pb and negative Ti anomalies. The mafic rocks have high (87Sr/86Sr )j (0.7046-0.7077) and 207Pb/204Pb (15.47-15.67), but relatively low in (143Nd/144Nd)i (0.5125-0.5127) and 206Pb/204Pb (18.26-18.52). The negative correlation between 143Nd/144Nd and 206Pb/204Pb and the positive relationship between 87Sr/86Sr-206Pb/204Pb suggest a mixing of a depleted mantle source and an EM2 component in the study area. Calculation reveals that the Maopin-Shaianjiao mafic rocks are formed by 5-15% degree of partial melting of an LREE-riched spinel Iherzolite. The high Nb and Zr contents, as well as EM2 signature, may have been resulted from addition about 1% melts derived from subducted sediments. Their island arc characteristics suggest that the fluid derived from subducted slab still played important role in the magma genesis. The degree of the crustal contamination is about 10%, which significantly influenced their Sr and Pb isotopes.
    (3) The mafic dikes in Fujian province are alkali to subalkali in compositions and are characterized by higher A12O3 (14.0-20.4 wt%) and moderate CaO (4.09-12.7 wt%) compared with the Cenozoic basalts in the same region. They are divided into two types based on their REE contents. Type 1 has low total REE (53.8-145.5 g/g) concentration with relatively flat chondrite-normalized patterns [(La/Yb)n=l.68-4.65], whereas type 2 has much higher total REE (63-247 g/g) concentrat
引文
1.陈国达,1956.国地台“活化区”的实例并着重讨论“华夏古陆”问题.地质学报,36(3):239-272.
    2.陈培荣,华仁民,章邦桐,等,2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.国科学,32(4):279-289.
    3.陈荣,周金城,1999.浙东早白垩世复合岩流和岩墙蕴含的壳幔作用信息.地质论评,45(增刊),784-795.
    4.董传万,周新民,李惠民,等,1997.闽东南晚生代的壳幔混合作用;平潭火成岩的同位素证据.科学通报,42(9):960.
    5.董传万,李武显,陈小明,等,1998.闽东南晚生代岩浆混合作用:平潭火成杂岩的岩石学证据.自然科学进展,8(5):581-586.
    6.付树超,陈觉民,林文生,1991.福建建宁西部上太古界天井坪组(Ar2t)地质特征.福建地质,10(2):103-113.
    7.福建省地质矿产区.福建省区域地质志.北京:地质出版志,1985,1-617.
    8.甘晓春,李惠民,孙大,等,1995.浙西南古元古代花岗质岩石的年代.岩石矿物学杂志,14(1):1-8.
    9.甘晓春,赵凤清,金文山,等,1996.华南火成岩捕获锆石的早元古代—太古宙U-Pb年龄信息.地球化学,25(2):112-119.
    10.甘晓春,李惠民,孙大,等,1993.闽北前寒纪基底的地质年代学研究.福建地质,12(1):17-31.
    11.葛小月,李献华,周汉文,2003.琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究.地球化学,32(1):11-20.
    12.郝天珧,刘伊克,段昶,1997.国东部及其邻域地球物理场特征与大地构造意义.地球物理学报,40(5):677-690.
    13.胡雄健,1994.浙西南下元古界八里群的地质年代学.地球化学,23(增刊):18-24.
    14.胡雄健,许金坤,童朝旭,等,1991.浙西南前寒纪地质,北京,地质出版社,1-278.
    15.胡恭仁,章邦桐,1998.赣变质基底的Nd同位素组成和物质来源.岩石矿物学杂志,17(1):35-39.
    16.胡圣标,汪集阳,汪屹华,1994.泉州—黑水地学断面东段深部温度与岩石层厚度.地球物理学报,37(3):330-337.
    17.黄汲清,1977.国大地构造基本轮廓.地质学报,51(2):117-135.
    18.黄萱,孙世华,Depaolo D.J.,等,1986.福建白垩纪岩浆岩Nd,Sr同位素研究.岩石学报,2(2):50-63.
    19.李献华,1998.闽浙古元古代斜长角闪岩的离子探针锆石U—Pb年代学.地球化学,27(4):327-334
    
    
    20.李献华,赵振华,桂训唐,等,1992.华南前武寒纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约.地球化学,20(3):255-263.
    21.李献华,1993.华南地壳增长和构造演化的年代学格架与同位素体系制约.矿物岩学地球化学通讯,3:111-115.
    22.李献华,胡瑞忠,饶冰,1997.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,26(2):14-31.
    23.李武显,董传万,周新民,1999.平潭和漳州深成杂岩斜长石捕虏晶与岩浆混合作用.岩石学报,15(2):286-290.
    24.李武显,周新民,2000.浙闽沿海晚生代火成岩成因的地球化学制约.自然科学进展,10(7):630~647.
    25.林洋,蔡文伯,陈学波等主编,1992.青海门漂至福建宁德地学断面,CGT14.北京,地震出版社.
    26.刘国栋,1994.国大陆岩石圈结构与动力学.地球物理学报,37(增刊):64-81.
    27.任纪舜,1964.国东南部泥盆纪前几个大地构造问题的初步探讨.地质学报,44(4):418-430.
    28.沈渭洲,凌宏飞,李武显,等,1999.国东南部花岗岩类Nd-Sr同位素研究.高校地质学报,5(1):22-32.
    29.水涛,《国浙闽变质基底地质》,科学出版社.
    30.滕吉文,郑晔,张杰,等,1994.国东南大陆及近海地带岩石圈结构与动力学,祝贺方俊院士90寿辰论文集.北京,测绘出版社,131-145.
    31.谢窦克,马荣生,张禹慎,等,1996.华南大陆地壳生长过程与地幔柱构造,北京,地质出版社.
    32.于津生,桂训唐,黄琳,1991.广东罗定泗纶混合岩同位素组成特征.广东地质,6(3):73-82.
    33.袁宗信,吴良士,张宗清,等,1991.闽北麻源群Sm-Nd,Rb-Sr同位素年龄研究.岩石矿物学杂志,10(2):127-131.
    34.王德滋,周金城,1999.我国花岗岩研究的回顾与展望.岩石学报,15(2):161-169.
    35.王强,赵振华,简平,等,2003.武夷山洋坊霓辉石正长岩的锆石SHRIMP U-Pb年龄及其构造意义.科学通报,48(14):1582-1588.
    36.王志洪,卢华复,1999.福建沿海堆晶辉长岩的Sm-Nd年龄及意义.地质论评,45(4):408—411.
    37.吴福元,孙德有,1999.国东部生代岩浆作用与岩石圈减薄.长春科技大学学报,29(4):313-318.
    38.谢家荣,1961.国大地构造问题.地质学报,41(2):218-239
    39.谢窦克,商玉强,1989.东南大陆岩石圈板块地体构造.国地质科学院南京地质矿主研究所所刊,10(4):1-12
    40.谢桂青,胡瑞忠,贾大成,2002.赣西北基性岩脉的地质地球化学特征及其意义.地球化学,31(4):329-337.
    41.徐夕生,周新民,王德滋,1999.壳幔作用与花岗岩成因—以国东南沿海为例.高校地质学报,
    
    5(3):241-250.
    42.杨祝良,沈渭洲,陶奎元,等,1999.浙闽沿海早白垩世幺武岩锶、钕、铅同位素特征—古老富集型地幔的证据.地质科学,34(1):59-68.
    43.袁宗信,吴良士,张宗清,1989.闽北麻源群Sm-Nd,Rb-Sr同位素年龄及其地质意义.科学通报,34(16):1243-1245.
    44.袁忠信,张宗清,1992.南岭花岗岩类岩石Sm,Nd同位素特征及岩石成因探讨.地质论评,38(1),1-14.
    45.赵振华,包志伟,张伯友,1998.湘南生代玄武岩类地球化学特征.国科学(D辑),28(增刊):7~14.
    46.周新民,朱云,国东南部晚元古代碰撞造山带与地缝合带的岩石学证据.见李继亮主编:东南大陆岩石圈结构与地壳地质演化.
    47.周新民,李武显,2000.国东南部晚生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模式.自然科学进展,10(3):240-247.
    48.周金城,张海进,俞云文,1994.浙江新昌早白垩世复合岩流的岩浆混合作用.岩石学报,10(3):236-246.
    49.周金城,张进海,俞云文,1999.浙江新昌早白垩世复合岩流岩浆混合作用.岩石学报,15(2):217-223.
    50.周金城,陈荣,2000.浙闽沿海晚生代壳幔作用研究.自然科学进展,10(6):571~574.
    51.周新华,朱炳泉,1992.国东部新生代玄武岩同位素体系和地幔化学区划,见:刘若新主编,国新生代火山岩年代学与地球化学.北京,地震出版社,366-391
    52.周旬若,吴克隆,1994.漳州I-A型花岗岩.北京:科学出版社,
    53.张文佑,1959.国大地构造纲要.北京,科学出版社,1-320
    54.郑永飞,1994.华南存在老于30亿年的太古宙地壳基底.矿物岩石地球化学通讯,(4):182-183.
    55.朱云鹤,1 998.一条正在发育的、新生代裂谷带.火山地质与矿,19(1):37-39.
    56.张理刚,王可法,陈振胜,等,1994a.论“华夏古大陆”—铅同位素研究证据.地质论评,40(3):200-208.
    57.张理刚,王可法,陈振胜,等,1994b.华南南扬子省与南岭省生代含钨锡华岗岩长石铅同位素组成及其地质意义.矿物学报,14(1):15-21.
    58.张理刚,王可法,陈振胜,等,1993.国东部生代花岗岩长石铅同位素组成及铅同位素省划分.科学通报,38(3):254-257.
    59. Anderson, D.L., 1982. Isotopic evolution of the mantle: a model. Earth Planet. Sci. Lett. 57, 13-14.
    60. Andrey, A. Gurenko, Marc, C., 1995. Enriched and depleted primitive melts included in olivine from Icelandic tholeiites: Origin by continuous melting of a single mantle column. Geochim. Cosmochim. Acta. 59(14), 2905~2917.
    61. Andreas, S., Anton, P., Le, R., et al., 2001. Plume-lithosphere interaction and the origin of continental
    
    rift-related aldaline volcanism—the Chyulu Hills Volcanic Province, Southern Kenya. J. Petrol.42(4), 765~787.
    62. Blundy, J., Dalton, J., 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate ystems, and implications for mantle metasomatism. Contib. Mineral. Petro. 139, 356-371.
    63. Bohrson, W.A., Spera, F.J., 2001. Energy-constrained open-system magmatic processes Ⅱ: application of Energy constrained assimilation-fractional crystallization(EC-AFC)model to magmatic systems. J. Petrol. 42(5), 1019-1041.
    64. Brenan, J.M., Shaw, H.F., Phinney D.L., et al., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet. Sci. Lett. 128, 327-339.
    65. Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., 1995a. Experimental determination of trace element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet. Sci. Lett. 135, 1-11.
    66. Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., 1995b. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2.0 GPa: constraints on the trace element geochemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta. 59, 3331-3350.
    67. Calson, R.W., Hart, W.K., 1988. Flood basalt volcanism in the Northern United States. In: Macdougall J.D. (Ed), Continental Flood Basalts. Kluwer Academic Publications, pp. 35-61.
    68. Cao, R., Zhu, S., 1990. Studies on the Mesozoic marginal arc system of the southeast coast and Taiwan in China. Science in China(Ser. b)33,980-992.
    69. Cervantes P., Wallace P.J., 2003, Role or H_2O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts form central Mexico. Geology, 31(3), 235-238.
    70. Charvet, J., Lapierre, H., Yu, Y., 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China. J. Southeast As. Earth Sci. 9(4), 387-396.
    71. Chen, C.H., Lin, Y., Lu, H.Y., et al., 2000. Cretaceous fractionated Ⅰ-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism. Trans. Royal Soc. Edinburgh: Earth Sciences 91, 195-205.
    72. Chen, P.R., Hua, R.M., Zhang B.T., et al., 2002. Early Yanshanian post-orogenic granitoids in the Nanling region—Petrological constraints and geodynamic settings. Sci in China(Series D)45, 755-766.
    73. Chen Q., Dickinson W., 1986. Contrasting nature of petroliferous Mesozoic-Cenozoic Basins in eastern and western China. American Association of Petroleum Geologists Bulletin, 70, 263-275.
    74. Chen, W.S., Yang, H.C., Wang, X., et al., 2002. Tectonic setting and exhumation history of the Pingtan-Dongshan Metamorphic Belt along the coastal area, Fujian Province, Southeast China. J.
    
    Asian Earth Sci. 20, 829-840.
    75. Chung, S.L., Sun, S.S., 1992. A new genetic model for the East Taiwan Ophiolite adn its implications for Dupal domains in the northern hemisphere. Earth Planet. Sci. Lett., 109, 133-145.
    76. Chung, S.L., Sun, S.S., Tu, K., et al., 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol. 112, 1-20.
    77. Danyushevski, L.V., Sobolev, A.V., Falloon, T.J., 1995. North Tongan high-Ca boninite petrogenesis: the role of Samoan plume and subduction zone-transform fault transition. J Geodynamics 20(3), 219-241.
    78. Defant, M.J., Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. Eos 82, 62-69.
    79. Depaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 53, 189-202.
    80. Depaolo, D. J., 1983. Rev. Geophys. Space Phys. 21(6), 1347-1358.
    81. Dong, C.W., Zhou, X.M., Li, H.M., et al., 1997. Late Mesozoic crust-mantle interaction in southeastern Fijian-isotopic evidence from the Pingtan igneous complex. Chin Sci Bull 42(6), 495-498.
    82. Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting,: Archean to modem comparsions. J. Geophys. Res. 95, 21503-21521.
    83. Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., et al., 1994. The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser complex, east Java, Indonesia. J. Petrol. 35: 1557-1595.
    84. Eillot, T., Plank, T., Zindler, A., et al., 1997. Element transport from subducted slab to volcanic front at the Mariana arc. J Geophys. Res. 102(B7), 14991-15019.
    85. Emerman, S.H., Marrett, R., 1990. Why dikes? Geology 18, 231-233,
    86. Fan, Q.C., Hooper, P.R., 1991. The Cenozoic basaltic rocks of Eastern China: petrology and chemical composition. J. Petrol. 32, 755-810.
    87. Faure, M., 1989. Pre-Eocene synmetamorphic structure in the MindoroRomblon-Palawan area, west Philippine, and implications for the history of Southeast Asia. Tectonics 8(5), 963-979.
    88. Fletcher, C.J.N., Fitches, W.R., Rundle, C.C., et al., 1995. Geological and isotopic constraints on the timing of movement in the Tan-Lu fault zone, northeastern China. J. SE Asian Earth Sci. 11, 15-22.
    89. Flower, M.F.J., Zhang, M., Chen, C.Y., et al., 1992. Magmatism in the South China Basin2. Post-spreading Quaternary basalts from Hainan Island, south China. Chem. Geol. 97, 65-87.
    90. Gao, S., Luo,T.C., Zhang, B.R., et al., 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta. 62(11), 1959-1975.
    91. George, R. M., Rogers, N.W., 2002. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basaits of southern Ethiopia. Contrib. Mineral. Petrol. 144, 286-304.
    
    
    92. Ghiorso, M.S., 1997. Thermodynamic models of igneous processes. Annu Rev Earth Planet. Sci. 25, 221-241.
    93. Gilder S.A., Keller G.R., Luo M., Goodell P.C., 1991, Timing and spatial distribution of rifting in China. Tectonophysics 197, 225-243.
    94. Gilder, S.A., Gill, J., Coe, R.S., et al 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J. Geophys. Res. 101, 16137-16154.
    95. Gorring, M.L., Kay, S.M., 2001. Mantle processes and source of Neogene slab window magmas from southern Patagonia, Argentina: J. Petrol. 42(6), 1067-1094.
    96. Gurenko, A.A., Chaussidon, M., 1995. Enriched and depleted primitive melts included in olivine from Icelandic tholeiites: Origin by continuous melting of a single mantle column. Geochim. Cosmochim. Acta 59(14),: 2905-2917.
    97. Hanson, G.N., 1989. An approach to trace element modeling using a simple igneous system. Rev. Mineral. 21, 79-97.
    98. Hart, S.R., Dunn T., 1993. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 113, 1-8.
    99. Hart, S R., 1984. Large-scale isotope anomaly in the Southern Hemisphere. Nature 309, 753~757.
    100. Hawkesworth, C., Turner, S., Gallagher, K., et al., 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Region. J. Geophys Res. 100(B7), 10271-10286.
    101. Hawkesworth, C.J., Gallagher, K., Herot, J.M., et al., 1993. Mantle and slab contributions in arc magmas. Annu Rev. Earth Planet. Sci. 21,175-204.
    102. Hawkesworth, C.J., Kempton, P.D., Rogers, N.W., et al., 1990. Continental lithosphere, and shallow level enrichment processes in the Earth's mantle. Earth Planet Sci Lett. 96, 256-268.
    103. Hawkesworth, C.J., Turner, S.P., McDermott, F., et al., 1997. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276, 551-555.
    104. Hawkesworth,, C.J., Blake, S., Evans, P., et. al., 2000. Time scales of crystal fractionation in magma chambers-Integrating physical, isotopic and geochemical perspectives. J. Petrol. 41, 991-1006.
    105. Hauri, E.H., Wagner, T.P., Grove, T.L., 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 117, 149-166.
    106. Ho, K.S., Chen, J.C., Lo, C.H., et ai., 2003.~(40)Ar/~(39)Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fijian region, SE China: eruption ages, magma evolution and petrogenesis. Chem. Geol. 197, 287-318.
    107. Hofmann, A.W. and White, W.M., 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421-436.
    108. Hofmann, A.W., Jochum K.P., Seufert M., et al., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci. Lett. 79, 33-45.
    
    
    109. Hoogewerff, J.A., Van Bergen, M.J., Vroon, P.Z., et al., 1997. U-series, Sr-Nd-Pb isotope and trace-element systematics across in active island arc-continent collision zone: implications for element transfer at the slab-wedge interface. Geochim. Cosmochim. Acta. 61, 1057-1072.
    110. Hsu, K..J., 1981. Thin-skinned plate tectonic model for collision type orogenesis. Sci. in China 24, 100-110.
    111. Hsu, K., Sun, S., Li, J.L., et al., 1988. Mesozoic overthrust tectonics in south China. Geology 16, 418-421.
    112. Hsu, K.J., Li J., Chen, H., et al., 1990. Tectonics of South China: key to understanding West Pacific geology. Tectonophysics 183, 9-39.
    113. Hu, S.B., Wang, J.Y., 1993. Heat flow in southeast China and its tectonic implication. Memoir of lithospheric tectonic evolution research(1), 162-165. Seismology press, Beijing.
    114. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523-548.
    115. Ishikawa, T., Tera, F., 1997 Source, composition and distribution of the fluid in the Kurile mantle wedge: Constraints from across-arc variations of B/Nb and B isotopes. Earth Planet. Sci. Lett. 152, 123-138.
    116. Jahn, B.M., 1974. Mesozoic thermal events in southeast China. Nature 248, 480-483.
    117. Jahn, B.M., Chen, P.Y., Yen, T.P., 1976.. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geol. Soc. Am. Bull. 86, 763-776.
    118. Jahn B.M., 1986. Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contrib. Mineral. Petrol. 92, 194-206.
    119. Jahn, B.M., Zhou, X.H., Li, J.L., 1990. Formation and tectonic evolution of Southeast China and Taiwan: Isotopic and geochemical constraints. Tectonophysics 183, 145-160.
    120. Jenner, G.A., Dunning, G.R., Malpas, J., et al., 1991. Bay of Island and Little Port complexes revisited: Age, geochemical and isotopic evidence confirm supra-subducton zone origin. Can. J. Earth Sci. 28, 1635-1652.
    121. Jenner, G.A., Foley, S.F., Jackson, S.E., et al. 1994. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe inductively coupled plasmamass spectrometry(LAM-ICP-MS). Geochim. Cosmochim. Acta 58, 5099-5130.
    122. Jochum, K.P., Arndt, N.T., Hofmann, A.W., 1991. Nb-Th-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution. Earth Planet. Sci. Lett. 107, 272-289.
    123. Johnson, K.T.M., 1994. Experimental cpx/and garnet/melt partitioning of REE and other trace elements at high pressures: Petrogenetic implications. Mineral. Mag. 58A, 454-455.
    124. Johnson, K.T.M., 1998. Experimental determination of partition coefficients for rare earth and
    
    high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressure. Contrib. Mineral. Petrol. 133, 60-68.
    125. Johnson, M.C., Plank, T., 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosys 1: paper no. 1999GC0000.14.
    126. Kelemen, P.B., Johnson, K.T.M., Kinzler, R.J., et al., 1990. High-field strength element depletions in arc basalts due to mantle magma interaction. Nature 345, 521-524.
    127. Kelemen, P.B., 1990. Reaction between ultramafic rock and fractionating basaltic magma Ⅰ. Phase relations, the origin of calcalkaline magma series, and the formation of discordant dunite. J. Petro. 31, 51-98.
    128. Keppler, H., 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237-240.
    129. Kersting, A.B., Arculus, R.J., 1995. Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: Implications for magma genesis and crustal recycling in the Kamchatkan arc. Earth Planet. Sci. Lett. 136, 133-148.
    130. Kimura, J.I., Yoshida, T., 1999. Magma plumbing system beneath Ontake volcano, central Japan. Island Arc 8, 1-29.
    131. Klein, E.M., Karstern, J.L., 1995. Ocean ridge basalts with convergent margin geochemical affinities from the southern Chile Ridge. Nature 374, 52-57.
    132. Klemme, S., Blundy, J.D., Wood, B.J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite, Geochim. Cosmochim. Acta. 66(17), 3109-3123.
    133. Lan, C.Y., Chung, S.L., Mertzman, S.A., et al., 1995. Mafic dikes from Chinmen and Liehyu islands, off southeast China: Petrochemical characteristics and tectonic implications. J. Geol. Soc. China 38(3), 183-213.
    134. Lan, C.Y., Jahn, B.M., Mertzman, S.A., et al., 1996. Subduction-related granitic rocks of Taiwan. J. SE. Asian Earth Sci. 14, 11-28.
    135. Lapierre, H., Jahn, B.M., Charvet J., et al., 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics 274, 321-338.
    136. LaTourrette, T.L., Hervig, R.L., Holloway, J.R., 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet. Sci. Lett. 135, 13-30.
    137. Le Bas, M.J., Le Maitre, R.W., 1986. A chemical classification of volcanic rocks based on the total alkalic-silica diagram, J. Petrol. 27, 745-750.
    138. Li, H.M., Dong C.W., Xu X.S., et al. t995. Single zircon U-Pb chronological study on the gabbro from Quanzhou. Chinese Sci. Bull. 40, 158~160.
    139. Li, J. L., 1993. Tectonic framework and evolution of southeastern China. J SE Asian Earth Sci. 8,
    
    219-223.
    140. Li, J.W., Zhou, M.F., Li, X.F., et al., 2001. The Huanan-jiangxi strike-slip fault system in Southern China: Southern termination of the Tan-Lu fault. J. Geodynamics 32, 333-354.
    141. Li, X.H., 1997. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze Craton, SE China. Geochem J. 31,323-337.
    142. Li, X.H., 2000. Cretaceous magmatism and lithospheric extension in Southeast China, J. Asian Earth Sci. 18, 293-305.
    143. Li, X.H., McCulloch, M.T., 1998. Geochemical characteristics of Cretaceous medium-mafic dikes from northern Guangdong, SE China: Abe, origin and tectonic significance. Flower, M.F.J., Chung, S.L., Lo, C.H., et al., Mantle dynamics and plate interaction in East Asia, Washington: AGU. Geodynamics 27, 405-419.
    144. Liu, C. Q., Masuda, A., Xie, G.H., 1994. Major and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chem. Geol. 114, 19-42.
    145. Lo, C.H., Chen, C.H., Yang, H.C., et al., 1996. Exhumation of metamorphic complexes in East China—a consequence of late Mesozoic extension tectonics. In: International Symposium On Lithosphere Dynamics of East Asia, Program and Extended Abstract, 76-78.
    146. Lu, H.F, Jia, D., Wang, Z.H. et al., 1994. Tectonic evolution of the Dongshan Terrane, Fujian Province, China. J. South Amer. Ear. Sci. 7(3), 349-365.
    147. Lugmair, G.W., Marti, K., 1978. Lunar initial ~(143)Nd/~(144)Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci. Lett. 39, 349-357.
    148. Maalφe, S., 1994. Estimation of the degree of partial melting using concentration ratios. Geochim. Cosmochim. Acta 58, 2519-2525.
    149. Maalφe, S., Rolf, B., Pedersen., 2003. Two methods for estimating the degree of melting and trace element concentrations in the sources of primary magmas. Chem. Geol. 193, 155-166.
    150. Macpherson, C.G., Hall, R., 2001. Tectonic setting of Eocene boninite magmatism in the Izu-Bonin-Mariana forearc. Earth Planet Sci. Lett. 186, 215-230.
    151. Mahoney, J.J., Sinton, J.M., Kurz, M.D., et al., 1994. Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific rise, 13-23°S. Earth Planet Sci. Lett. 121,173-193.
    152. Martin, H., Bonin, B., Capdevila, R., et al., 1994. The Kuiqi peralkaline granitic complex(SE China): petrology and geochemistry. J. Petrol. 35, 983-1015.
    153. Ma, X., Wu, D., 1987. Cenozoic extensional tectonics in China. Tectonophysics 133, 243-255.
    154. McCulloch, M.T., Gamble, J.A., 1991. Geochemical and geodynamicai constraints on subduction zone magmatism. Earth Planet Sci. Lett. 102, 358-374.
    155. McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 101, 1-18.
    
    
    156. Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 56, 207-218.
    157. Minster, J.F., Alle'gre, C.J., 1978. Systematic use of trace elements in igneous processes. Contrib. Mineral. Petrol. 68, 37-52.
    158. Morris, J.D., Leeman, W.P., Tera, F., 1990. The subducted component in island arc lavas: contrains form Be isotopes and B/Be systematics. Nature 344, 31-36.
    159. Mukasa, S.B., Fischer, G.M., Barr, S.M., 1996. The character of the subcontinentat mantle in Southeast Asia: isotopic and elemental compositions of extension-related Cenozoic basalts in Thailand. Am Geophys. Monogr. 95, 233-252.
    160. Muller, D., Rock, N.M.S., Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: a pilot study. Mineral. Petrol. 46(2), 259-289.
    161. Munder, C., 2000. The isotope and trace element budget of the Cambrian Devil River arc system, New Zealand: identification of four source components. J. Petrol. 41(6), 759-788.
    162. Naumann, T.R., Geist, D.J., 1999. Generation of alkalic basalt of crystal fractional of tholeiitic magma. Geology 27, 423-426.
    163. Nichols, G.T., Wyllie, P.J., Stern, C.R., 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371, 785-788.
    164. Orazio M.D., lnnocenti F., Manetti P., et al., 2003, The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes. J. South American Earth Sci.
    165. Othman, D.B., White, W.M., Patchett, J., 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 94, 1-21.
    166. Peacock, S.M., Rushmer, T., Thompson, A.B., 1994. Partial melting of subducting oceanic crust. Earth Planet Sci. Lett. 121,227-244.
    167. Pearce, J.A., Gale, G.H., 1977. Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geological Society of London Special Publication, 7, 14-24.
    168. Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33-47.
    169. Pearce, J.A, Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis, In: Prichard HM, Alabaster T, Harris NB, Neary CR(eds) Magmatic Processes and Plate Tectonics. Geol Soc Lond Spec. Publ., 76, 373-403.
    170. Pearce, J.W., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet. Sci. 23, 251-285.
    171. Peate, D.W., Pearce, J.A., Hawkesworth, C.J., et ai., 1997, Geochemical variations in Vanuatu arc
    
    lavas: the role of subducted material and a variable mantle wedge composition. J. Petrol. 38, 1331-1358.
    172. Pfnder, J.A., Jochum, K.P., Kozakov, I., et al., 2002. Coupled evolution of back-arc and island arc-like mafic crust in the late-Neoproterozoic Agardagh Tes-Chem ophiolites, Central Asia: evidence from trace element and Sr-Nd-Pb isotope data. Contrib. Mineral. Petrol. 143, 154-174.
    173. Plank, T., Langmuir C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325-394.
    174. Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507-513.
    175. Qiu, Y.X., Wu, Q.J., Ji X., et al., 1991. Meso-Cenozoic taphrogeny and dispersion in the continental margin of southeast China and adjacent seas. Tectonophysics 197, 257-269.
    176. Ringwood, A.E., 1962, J.Geophys. 67, 4005-4010.
    177. Qu, Q., Taylor, L.A., Zhou, X.M., 1994. Geochemistry and petrogenesis of three series of Cenozoic basalts from Southeastern China. Int. Geol. Rev. 36, 435-451.
    178. Regelous, M., Collerson, K.D., Ewart, A., et al., 1997. Trace element transport rates in subduction zones: evidence from Th, Sr and Pb isotope data for Tonga-Kermadec arc lavas. Earth Planet Sci. Lett. 150, 291-302.
    179. Ringwood, A.E., 1975. Composition and petrology of the earth's mantle, McGraw-Hill, New York.
    180. Salters, V.J.M., Shimizu, N., 1988. World-wide occurrence of HFSE-depleted mantle. Geochim Cosmochim. Acta. 52, 2177-2182.
    181. Sajona, F.G., Maury, R.C., Pubellier, M., et al., 2000. Magmatic source enrichment by slab-derived melts in a young post-collisional setting, central Mindanao(Philippines). Lithos 54, 173-206.
    182. Schmidt M.W., Poli S., 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett., 163, 361-379.
    183. Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta. 34, 237-243.
    184. Shibata, T., Nakamura, E., 1997. Across-arc variations of isotope and trace element compositions from Quaternary basaltic volcanic rocks in northeastern Japan: Implications for interaction between subducted oceanic crust and mantle wedge. J Geophys. Res. 102, 8051-8064.
    185. Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes Ⅰ: general model and energy-constrained assimilation and fractional crystallization(EC-AFC) formulation. J.prtrol. 42(5), 999-1018.
    186. Spera, F.J., Yuen, D.A., Kirschvink, S.J., 1982. Thermal boundary layer convection in silicic magma chambers: effects of temperature-dependent rheology and implications for thermogravitational chemical fractionation. J. Geophys. Res. 87, 8755-8767.
    
    
    187. Sparks, R.S.J., 1986. The role of curstal contamination in magma evolution throough geological time. Earth Planet. Sci. Lett. 78, 211-223.
    188. Staider, R., Foley, S.F., Brey, G.P., et al., 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1200℃ and 3.0-5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim. Cosmochim. Acta. 62(10), 1781-1801.
    189. Stanley, C.R., Russell, J.K., 1989. Petrologic hypothesis testing with pearce element ration diagrams: derivation of diagram axes: Contrib. Mineral. Petrol. 101, 78-89.
    190. Steiger, R.H., Jger, E., 1977. Subcommission on geochronology; convention on the use of decay constants in geochronology and cosmochronology. Earth Planet Sci. Lett. 36, 359-362.
    191. Stern, C.R., Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 123, 263-281.
    192. Stolz, A.J, Jochum, K.P., Spettel, R., et al. 1996. Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basaits. Geology 24970, 587~590.
    193. Sun, S.S,, McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: Saundem A D and Norry M J(eds.) Magmatism in the ocean basins. Geol. Soc. Spec. Publ. 42, 313~345.
    194. Tapponnier, P., Peltzer, G., Armiro, R., 1986. On the mechanics of the collision between India and Asia, in Coward, M. P., and Ries, A. C., eds. Collision tectonics: Geology Society of London Special Publication, 19, 115-157.
    195. Tatsumi Y., Eggins, S.M., 1995. Subduction Zone Magmatism, Blackwell. Cambridge. pp21
    196. Tatsumi, Y., Kogiso, T., 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 2, Origin of chemical and physical characteristics in arc magmatism. Earth Planet. Sci. Lett. 148, 207-221.
    197. Tatsumoto, M., Knight, R.J., Allegre, C.J., 1973. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 1279-1283.
    198. Treuil, M., Joron, J.L., 1975. Utilisation des'e'le'ments hydromagmatiphiles pour la simplification de la modelisation quantitative des processes magmatiques. Examples des L'Afar et de la Dorsale Me'dioatlantique. Soc. Ital. Mineral. Petrol. 31, 125-174.
    199. Turner, S., McDermott, E, Hawkesworth, C., et al., t998. A U-series study of lavas form Kamchatka and the Aleutians: constraints on source composition and melting processes. Contrib. Mineral. Petrol. 133, 217-234.
    200. Turner, S., Foden, J., 2001. U, Th, and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: Predominance of a subducted sediment component. Contrib. Mineral Petrol. 142, 43-57.
    
    
    201. Tu, K., Flower, M.F.J., 1991. Sr Nd and Pb isotopic compositions of Hainan basalts(South China): Implications for a subcontinental lithosphere Dupal source. Geology 19, 567-569.
    202. Ulmer, P., 2001, Partial melting in the mantle wedge-the role of H_2O in the genesis of mantle-derived 'arc-related' magmas. Phys Earth Planet Inter. 127, 215-232.
    203. Vargas, R.H., 1991. Isotope characteristics of submarine iavas form Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth Planet Sci. Lett. 107, 290-304.
    204. Vroon, P.Z., van Bergen, M.J., Klaver, G.J., et al., 1995. Strontium, neodymium, and lead isotopic and trac-element signatures of the East Indonesian sediments: Provenance and implications for Banda arc magma genesis. Geochim. Cosmochim. Acta. 59, 2573-2598.
    205. Wang, Z.H., 2002. The origin of the Cretaceous gabbros in the Fijian coastal region of SE China: implications for deformation-accompanied magmatism. Contrib. Mineral. Petrol. 144, 230-240.
    206. Wedepohl, K.H., 1995. The composition of the continental crust. Geoehim. Cosmochim. Acta. 59, p.1217~1232.
    207. Weinberg, R.F., Leitch, A.M., 1998. Mingling in maric magma chambers replenished by light felsic inputs: fluid dynamical experiments. Earth Planet. Sci. Lett. 157, 41-56.
    208. White, W. M., Hofmann, A.W., Puchelt, H., 1987. Isotope geochemistry of Pacific mid-ocean ridge basalt. J. Geophys. Res. 92, 4881-4893.
    209. Wilson, M., 1989. Igneous Petrogenesis. Harper Collins Academic, London. 466pp.
    210. Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20, 325-343.
    211. Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the mature of crustal contamination of basaltic iavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett. 50, 11-30.
    212. Woodhead, J.D., 1989. Geochemistry of the Mariana arc(western Pacific): Source composition and processes. Chem. Geol. 76, 1-24.
    213. Woodhead, J., Eggins, S., Gamble, J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 114, 491-504.
    214. Xie, X., Xu, X.S., Zou, H.B., et al., 2001. Trace element and Nd-Sr-Pb isotope studies of Mesozoic and Cenozoic basalts in coastal area of SE China. Acta Petrol Sinica 17, 617-628(in Chinese with English abstract).
    215. Xu, J.W., Zhu, G., Tong, W.X., et al., 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system; a major shear system to the northwest of the Pacific Ocean. Tectonophysics 134, 273-310.
    
    
    216. Xu, X.S., Dong, C.W., Li, W.X., et al., 1999. Late Mesozoic intrusive complexes in the coastal area of Fijian SE China: the significance of the gabbro-diorite-granite association. Lithos 46, 299-315.
    217. Yang, H.C., Chen, W.S., Lo, C.H., et al., 1997. ~(40)Ar/~(39)Ar thermochronology of granitoids from the Pingtan-Dongshan metamorphic belt and its tectonic implication. J. Geol. Soc. China 40(3), 559-585.
    218. Yin, A., Nie, S.Y., 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics 12, 801-813.
    219. Yoder, H.S.Jr, 1973. Conlemporaneous basaltic and rhyolitic magma. Am Mineral 58, 153.
    220. Yu, J.H., Xu, X.S., Zhou, X.M., 2003. Late Mesozoic crust-mantle interaction and lower crust components in South China: A geochemical study of marie granulite xenoliths from Cenozoic basalts. Sci in China(Series D)46(5), 447-460.
    221. Yui, T.F., Heaman, L., Lan, C.Y., 1996. U-Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen-Lieyu and their tectonic implications. Tectonophysics 263, 61-76.
    222. Zartman R. F., 1974. Lead isotopic province in the Cordillera in the Western United States and their geological significance. Econ. Geol. 69, 792-805.
    223. Zhang, H.F., Sun, M., 2002. Geochemistry of Mesozoic basalts and maric dikes, Southeastern North China Craton, and tectonic implications. Int. Geol. Rev. 44, 370-382.
    224. Zhang, M., Tu, K., Xie, G.H., et al., 1996. Subduction-modified subcontinental mantel in South China: trace element and isotope evidence in basalts from Hainan Island. Chin. J. Geochem. 15(1), 1-19.
    225. Zhu, B.Q, Wang, H.F., Chen, Y.W., et al., 2002. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia. Geochimica 31,213-221.
    226. Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493-571.
    227. Wedepohl, K.H., 1995. The composition of the continental crust. Geochim. Cosmochim. Acta. 59, 1217-1232.
    228. Zhou, X., Xu, X., Dong, C., et al., 1994. Mineralogical indicator of the active continental margin of southeastern China: anorthitic plagioclase. Chinese Sci. Bull. 39(16), 1362-1366.
    229. Zou, H.B., 1995. A mafic-ultramafic rock belt in the Fijian coastal area, southeastern China: a geochemical study. J. SE Asian Earth Sci. 12, 121-127.
    230. Zou, H.B., Zindler, A., 1996. Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim. Cosmochim. Acta. 60(4), 711-717.
    231. Zou, H.B., Zindler, A., Xu, X.S., et al., 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem. Geol. 171, 33-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700