用户名: 密码: 验证码:
在役桥桩病害导波无损检测的数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为桥梁支撑结构的桥梁基桩,是桥梁结构的重要组成部分,对桥梁的安全运行与稳固至关重要。桥梁桩基属于隐蔽工程,因受到多种因素影响,可能出现断裂、缩颈、扩径及空穴等病害缺陷,威胁着桥梁运行安全,近年来的一些事故案例昭示着在役桥梁安全形势严峻。为保证桥梁运行安全,在役桥梁基桩病害缺陷的检测受到广泛关注,探索有效的在役桥梁基桩病害缺陷无损检测方法成为行业热点之一。
     但是,在役桥梁基桩无损检测所面临的条件比自由基桩无损检测复杂得多。在实际应用中发现,一是由于桩径较大,桩长桩径比不能满足一维波动理论和振动理论;二是在役桥梁基桩连接有上部结构,如墩柱、横梁、承台等,对应力波反射构成强烈干扰,导致获得检测信号较为复杂,给分析判断造成困难。因而在役桥梁基桩病害无损检测仍属于业内技术难题。本文分析了在役桥梁基桩应力波的特点和传播规律,通过数值模拟和实验分析了影响因素及减小或克服途径,提出了墩柱一侧布设激振点和多道接收检测系统,结合多次激振信号加权融合实现在役桥梁基桩病害检测的技术方法,经实验检验证明该方法具有较高实用性和良好的应用前景。本文的主要研究内容和结论如下:
     (1)总结了在役桥梁基桩及病害类型。基于导波理论和基桩动测思路,分析了在役桥梁基桩检测所面临的问题。通过模型实验发现,在役桥梁基桩检测与桩顶自由时相比存在着明显差别。桩径较大、桩顶连有上部结构、基桩隐埋于地下(水下)以及难以直接验证检测结果等,对反射波法检测的实施构成挑战。
     (2)通过数值模拟,认识了基桩应力波波场特征。由于难以或无法在桩顶激振接收信号,采用墩柱一侧布设激振点和同侧布设多道检测系统,进行在役桥梁基桩反射波无损检测,利于信号识别与对比。基桩上部结构界面以及下部基桩内部病害缺陷和桩底界成为二次振源向四周辐射,墩柱侧面激振获得的信号中包含上部结构面和下部结构面(包含缺陷界面)的信号,虽致获得的信号更为复杂,但波的传播规律明显。
     (3)利用模拟和实际案例对比结果,总结分析了在役桥桩反射波法动测三维效应的影响,并通过实验,分析提出了减小或克服三维效应的有效途径。减小或克服三维效应对于提高在役桥梁基桩病害检测结果的可靠性具有重要意义。激振和接收因素以及观测条件对检测产生明显影响,在役桥梁基桩反射波法无损检测有效信号受干扰严重。
     (4)通过分析在役桥梁基桩反射波法检测信号的特点,首次提出引入数据加权融合技术,处理在役桥梁基桩反射波法检测信号,对于有效信号的识别与判断效果显著,实验结果证明,墩柱一侧布设激振点和直线多道布设接收检测系统,采用多道对比和多次激振信号加权融合处理方法,可以实现在役桥梁基桩病害无损检测,方法操作简便易行,具有推广前景。
As support structures, piles are an important part of bridge structures, and are crucial for thebridge safe operation and its stability. Necking, fracture, expanding or hole defects may occur ina hidden bridge pile which was influenced by many factors. In recent years, some accidentsshow that existing bridge safety situation is seriousness. In order to ensure the safe operation ofthe bridge, detecting disease(s)(defect(s)) in a pile is widely concerned, and developing theeffective diseases (defects) nondestructive test method for existing bridge piles has become afocus.
     However, in the existing bridge pile nondestructive test conditions are much morecomplicated than free pile nondestructive test. In practice, for a larger diameter pile, theone-dimensional wave theory and vibration theory are not satisfy, and the piles are connectedwith the upper structures, such as a pier column, beam, slab, the stress wave reflection form isdisturbed strongly, to obtain the detection signal is more complex, the analyzing and judgmentare difficult. Thus the existing bridge pile disease nondestructive detection is still one oftechnical problems. This dissertation analyzes the existing bridge pile stress wavecharacteristics and propagation, the impact factors and its decreasing or overcoming wereanalyed through numerical simulation and experiment, a existing bridge piles diseases detectiontechnique and method were advanced with simple point excitation and multichannel receivingsystem arranged in same side of pier, and multiple excitation and data weighted fusion.Theexperiment results proved that this method is practice and has good application prospect.
     (1)The existing bridge piles and disease types were summarized. Based on guided wavetheory and the piles dynamic testing ideas, the problems faced in the existing bridge pilefoundation inspection were analyzed. By model tests, there is a clear difference betweenexisting bridge pile test and free top pile test. Larger diameter, the uperstructure, hidden buriedunderground (underwater),and difficult to directly verify the test results pose a challenge to theimplementation of the reflection method.
     (2)Pile stress wave field characteristics were known through numerical simulation. Due to itis difficult or impossible to excite and receive signal at the top of the pile, point excitation andmultichannel detection system were arranged along in side the pier, and it is helpful to signalrecognition and comparison for exsiting bridge pile stress wave nondestructive testing. Whileincident wave is propagating, upper structure and the lower part of the pile foundation pileinterface of internal defects and pile bottom boundary would become a new source whichradiating to the surrounding, the received signal contains waves from upper structures and thelower structures surface (containing defects interface).Although the obtained signal is morecomplex, but the law of wave propagation is obvious.
     (3)Through the previous simulation results and actual case comparison,3D dynamic effect inthe existing bridge pile reflected wave method was summarized andanalyzed, effective ways ofdecreasing or overcoming the3D effect were also presented accoording to experiment.Decreasing or overcoming the3D effect had important significance to enhance reliability of theexisting bridge pile diseases detection.Exciting and receiving element and observationconditions on detection were serious influence to the existing bridge piles nondestructivedetection signals by reflected wave method.
     (4)Through analysis of the existing bridge piles reflected wave method test signal characteristics, the weighted data fusion technique was initial led in processing of existingbridge piles detect signal by reflected wave method, the effects to recognite and judge effectivesignal is obvious.The experimental results show that diseases in the existing bridge pilenondestructive test can be achieved acoording to arranging excitation point and line layout forreceiving multi-channel detection system in one side of pier with multichannel contrast andmultiple excitation signal fusion processing method.The mehod presented in this paper is veryeasy to operate, and its promotion prospect is broad.
引文
D.Royer,E.Dieulesaint.Elastic Waves in Solids I:Free and Guided Propagation.Berlin,Germany:Springer-Verlag,2000:16~23and261~331
    Tawhed Fouad, Waleed Mohamed Fouad.Assessment and prediction of damage in aged concrete bridgedeck using the impact-echo method [PhD Dissertation].University of South Carolina,2005
    J. S. Popovics. Some Theoretical and Experimental Aspects of the Use of Guided Waves for theNondestructive Evaluation of Concrete [PhD Dissertation].The Pennsylvania State University, UniversityPark, PA,1994
    Liu Zenghua,Wu Bin,He Cunfu,et al.A new transducer for torsional guided wave generation and defectdetection.Insight,2007,Vol.49(1):41~43
    Peter W,TSE and X.J.Wang.Application of Ultrasonic Guided Waves to Quantitative Characterization ofdefects in Pipeline.Book of Absracts and Full papers,The First International Conference on UtilityManagement and Safety,Hong Kong,2009.
    Thomas.R Hay.Aspects of guided waves in structural health monitoring [MS Thesis].Pennsylvania StateUniversity,2004
    Abdul Azizi Hanifah.A theoretical evaluation of guided waves in deep foundations [MSThesis].Northwestern University,1999
    Hsiao-chou, Chao. An experimental model for non-destructive evaluation on pile foundations usingguided wave approach [MS Thesis].Northwestern University,2002
    E I Sharnouby, Bahaa Novak Milos,Static and low-frequecy response of pile groups,Canadiangeotechnical journal,1985,22(1):79~94
    Guoxi Wu,Finn W.D.L.Dynamic elastic analysis of pile foundations using finite element method in thefrequency domain,Canadian geotechnical journal,1997,34(1):34~43
    Wang Cheng,He Wen,Ning Jianguo,et al.Propagation properties of guided wave in the anchoragestructure of rock bolts.Journal of Applied Geophysics,2009,69(3-4):131~139
    Mu Jing,Rose,Joseph L.Guided wave propagation and mode differentiation in shollow cylinders withviscoelastic coatings.Journal of the Acoustical Society of America,2008,124(2):866~874
    LS-DYNA Keyword User’s Manual (Version970).Livermore Software Technology Corporation,2003
    Jhonson M, Rausche F.Low strain testing of pile utilizing two acceleration signals. Stress Wave,1996
    周正干,冯海伟.超声导波检测技术的研究进展.无损检测,2006,28(2):57~63
    何存富,王学浦,王秀彦,等.基于导波技术的高速公路护栏立柱埋深检测.中国公路学报,2008,21(6):37~42
    刘沐宇,袁卫国.桥梁无损检测技术的研究现状与发展.中外公路,2002,22(6):34~37
    潘长胜,赫广伟.桥梁检测技术及其发展趋势简述.黑龙江交通科技,2009,(4):106-108
    季峰.谈桥梁检测与监测的开发与应用状况.广东科技,2007,(10):269~270
    岳向红.基于三维导波理论的基桩和锚杆无损检测技术研究[博士论文].武汉:中国科学院武汉岩土力学研究所,2008
    杨永志.空心圆柱结构及板型结构中的导波检测理论研究[博士论文].武汉:中国科学院武汉岩土力学研究所,2009
    崔寒茵,师芳芳,籍顺心,等.沿均匀无限介质中固体杆传播的导播特性研究.声学学报,2010,35(4):446~454
    朱俊.桥梁基桩内部缺陷检测方法对比研究[硕士论文].成都:西南交通大学,2010
    高飞.既有结构下基桩完整性检测的桩侧激振接收法.中国港湾建设.2012(1):29~31
    万振凯,王占刚.基于神经网络的复合材料缺陷超声波检测研究.纺织学报,2010(2):54~59
    罗雄彪,陈铁群.基于神经网络的超声检测缺陷表征.华南理工大学学报(自然科学版),2005(4):8~13
    丰莉.基于伪随机信号的锚杆中应力波传播特征实验研究[硕士论文].青岛:山东科技大学,2009
    何存富,李隆涛,吴斌.空心圆柱体中的周向超声导波.机械工程学报,2004,40(8):7~12
    孙广开,焦阳,李光海,等.超声导波管道缺陷检测数值模拟.河北工业科技,2010,27(1):18~21
    王泽林,张慧昕,胡富翔,等.基于低频超声导波技术的高速公路护栏立柱埋深检测的试验研究.公路,2010,(9):57~62
    何存富,王学浦,王秀彦,等.基于导波技术的高速公路护栏立柱埋深检测.中国公路学报,2008,(6):37~42
    季勇志.基于三维导波理论的码头桩基无损检测的综合研究[博士论文].天津:天津大学,2010
    任伟,宋一凡,赵小星.在役桥梁混凝土桩基安全性评价方法.中外公路,2008,28(2):129~132
    马晔,张理轻,杨宇.在役桥梁桩基础低应变反射波法检测试验研究.世界地震工程,2010,26(增刊):216~220
    姜卫方,王培军,李熹,孙晖.桩顶非自由端低应变动测法应用研究.工程地球物理学报,2006,3(1):16~21
    王永胜,陈春雷,宋力岩.自由边界固体圆柱中导波的频散与发射.东北林业大学学报,1998,26(2):56~60
    苗永红,刘松玉,顾建祖.侧向激振下桩身完整性试验新方法探讨.世界地震工程,2009,25(4):141~144
    陈建荣,高飞.现代桩基工程试验与检测.上海:上海科学技术出版社,2011:102~149
    柴华友,刘明贵,白世伟,等.应力波在承台-桩系统中传播数值分析.岩土工程学报,2003,25(5):624~628
    柴华友,刘明贵,李祺,等.应力波在平台-桩系统中传播的实验研究.岩土力学.2002,23(4):459~464
    刘明贵,岳向红,杨永波,等.基于Sym小波和BP神经网络的基桩缺陷智能化识别.岩石力学与工程学报,2007,26(增1):3484~3488
    邢心魁.反射波法桩基动测技术研究[博士论文].西安:西安建筑科技大学,2005
    翁友法,曹金宝,朱光裕.既有结构下基桩完整性检测技术及其应用.工业建筑,2010,40(增刊):644~647
    徐攸在,刘家林,刘杰.用小应变动测法测定码头桩完整性的初步探讨.港工技术,2001,(4):36~37
    黎正根,龚育龄.波在大直径桩中传播的三维效应现象.岩石力学与工程学报,1998,17(4):434~439
    陈凡,徐天平,等.建筑基桩检测技术规范(JGJ106-2003).北京:中国建筑工业出版社,2003
    张良均,王靖涛,李国成.小波变换在桩基完整性检测中的应用.岩石力学与工程学报,2002,21(11):1735~1738
    陈凡,徐天平,陈久照,等.基桩质量检测技术.北京:中国建筑工业出版社,2003,104~173
    刘世安,叶明亮.桩基动测技术研究现状及发展动向.资源环境与工程,2005,19(1):61~64
    彭志豪,高桩码头在役桩基完整性检测方法研究[硕士论文].天津:天津大学,2009
    刘屠梅,赵竹占,吴慧明.基桩检测技术及实例.北京:中国建筑工业出版社,2005:55~66
    黄理兴.桩身缺陷与动测波形典型特征.岩石力学与工程学报,1996,18(3):346~349
    陈宝珠,刘德友,郝健.高桩码头结构耐久性问题的探讨及应对方法浅议.中国港湾建设,2002,10(5):47~49
    张海峰,唐立宪.反射波法低应变桩基检测过程浅析.岩土工程学报,1998,20(1):90~92
    万小毛,赵淳生.桩身完整性检测技术综述.振动测试与诊断.1992,12(2):37~45
    柴华友.波动理论在基桩完整性定量分析中的应用.振动工程学报,1996,9(3):286~291
    张明启.基桩反射波法测试技术的应用研究[硕士论文].天津:天津大学,2006
    周光龙.桩基参数动测法.中国土木工程学会第三届土力学及基础工程学术会议论文集.北京:中国建筑工程出版社,1981
    江礼茂,寇绍全,陆岳屏.应力波理论在桩基工程中的应用.力学进展,1990,20(1):47~56
    刘东甲,王建国.均匀土中有限长桩瞬态横向动力响应.工程力学,2003,(6):160~165
    王雪峰,陈培,黄贻海,等.沿桩顶径向的动测三维效应分析.岩石力学与工程学报,2007,26(Suppl):3209~3214
    孙熙平,王元战,徐满意,等.高桩码头基桩完整性检测技术研究综述.港工技术,2010,47(2):50~53
    邢心魁,吴敏哲,谢异同.土对桩中波传播特性影响及小波分析研究.岩土力学与工程学报,2005,26(24):2532~2536
    程翠.应力波反射法基桩完整性检测结果影响因素及对策[硕士论文].大连:大连海事大学,2008
    刘世奇,潘冬子,陈静曦.小波分析在基桩浅部缺陷检测中的应用.无损检测,2005,27(4):195~198
    陈培.桩顶动测三维效应分析[硕士论文].武汉:华中科技大学,2006
    李青锋,徐金海,吴宇.连续小波变换在基桩完整性检测分析中的应用.矿冶工程,2006,26(2):30~32
    魏建新,王椿镛.横波测桩技术的实验室研究.石油地球物理勘探,2003,38(6):630~635
    王雪峰.基桩完整性检测纵波扭剪波综合法研究[硕士论文].上海:同济大学,2003
    陈凡,王仁军.尺寸效应对基桩低应变完整性检测的影响.岩土土程学报,1998,20(5):92~96
    胡昌斌,王奎华,谢康和.桩土藕合纵向振动时桩顶频域响应积分变换解及应用.科技通报,2003,19(6):442~447
    王雪峰,吴世明.反射波法动测桩中的频响问题.工程质量,2000,(2):20~22
    林建生.桩基检测中反射波法频域曲线的分析与研究.华南地震,1997,17(3):73~80
    吴杏元.频率域中基桩完整性定量分析[硕士论文].天津:河北工业大学,2003
    田慧枫.频率域中桩基完整性定量分析研究[硕士论文].西安:长安大学,2006
    刘世奇,潘冬子,陈静曦.小波分析在基桩浅部缺陷中的应用.无损检测,2005,27(4):195~201
    郭建.基于小波分析的结构损伤识别方法研究[博士论文].杭州:浙江大学,2004
    蔡棋瑛,林建华.基于小波分析和神经网络的桩身缺陷诊断.振动与冲击,2002,2l(3):11~16
    叶伟.基于有限元与小波变换的桩身完整性分析[硕士论文].武汉:华中科技大学,2005
    邢心魁,吴敏哲,谢异同.样条小波在基桩完整性检测中的应用.西安:西安建筑科技大学学报(自然科学版),2004,36(1):25~28
    王雪峰,吴世明.基桩动测技术.北京:科学出版社,2001
    彭玉华.小波变换与工程应用.北京:科学出版社,2000
    程正兴.小波分析算法与应用.西安:西安交通大学出版社,2001
    黄理兴.动测桩身完整性的新理念.岩石力学与工程学报,2002,21(3):54~56
    林维芳,邓业灿,李毅臻,等.基桩倾斜测试信号的频率域特征.物探与化探,2007,31(3):274~278
    苗永红,顾建祖.反射波法检测桩身完整性影响因素分析.江苏大学学报(自然科学版),2003,24(3):88~90
    孙叔昱.复杂土中桩的纵向振动理论及其应用[硕士论文].杭州:浙江大学,2003
    尚晓江,苏建宇,王化锋,等.ANSYS/LS-DYNA动力分析方法与工程实例.北京:中国水利水电出版社,2006
    智胜英.时域内低应变基桩缺陷定量分析方法研究[博士论文].天津:天津大学,2008
    陈宝珠,刘德友,郝健.高桩码头结构耐久性问题的探讨及应对方法浅议.中国港湾建设,2002,10(5):47~49
    刘东甲,王建国.瞬态横向振动桩的Winkler参数.岩土力学,2003,24(6):922~926
    阀仁波.考虑土体三维波动效应时黏性阻尼土中桩的纵向振动特性及其应用研究.岩石力学与工程学报,2007,26(2):381~390
    王国才,王哲,陈龙珠,等.均质弹性地基中单桩的扭转振动特性研究.岩土力学,2008,29(11):3027~3031
    高飞,姜卫方.在役结构基桩完整性检测新技术.水运工程,2010(5):37~40,46
    韩亮.既有基础下基桩完整性双速度测试技术.建筑结构,2007,(S1):34~39
    季勇志,王元战.基于ANSYS/LS-DYNA的码头基桩完整性检测的数值模拟和方法研究.振动与冲击,2010,29(2):212~215
    王元战,季勇志,李珊珊.码头桩基的纵波检测和扭转波检测的对比研究.工程勘察,2010,38(9):90~94
    胡志坚,贾丽君,肖汝诚,等.既有桥梁技术状态评估研究现状与展望.国防交通工程与技术,2006,(2):1~5
    潘冬子.小波分析及其在基桩完整性检测中的应用研究[硕士学位论文].武汉:中国科学院岩土力学研究所,2003
    柴华友,吴慧明,张电击,等.弹性介质中的表面波理论及其在岩土工程中的应用.北京:科学出版社,2008
    李北海.管桩施工中的质量问题和检测方法的综合运用.四川建筑,2006,26(2):69~71
    刘兴录.桩基工程与动测技术200问.北京:中国建材工业出版社,2000
    丛爽.面向Matlab工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,2003
    李学军.提高浅层反射记录分辨力的谱白化滤波.物探与化探,1991,15(1):77~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700