用户名: 密码: 验证码:
平衡施肥对桑树产量与品质的影响及其施肥模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茧丝绸业是我国具有5000多年历史的传统优势产业,是为国民经济发展和出口创汇做出过重大贡献,并且在国际市场上处于垄断地位的优势产业。桑树是蚕丝产业重要的物质基础,单位面积桑园桑叶产量的高低、质量的优劣直接影响到家蚕的生长发育及茧丝、蚕种的产量和质量,进而影响到整个蚕桑行业的经济效益。桑树又是重要的多年生经济林木树种,具有很高的生态价值,同时,桑树营养价值高,适口性好,无采食障碍,消化率高,除了可以用作家蚕的饲料外,是目前最具开发潜力的木本饲用植物,可以用作畜禽的优质饲料开发。加之桑叶富含1-DNJ、黄酮等天然活性成分,具有显著的降血糖、抗氧化、防衰老的作用,因此,桑树在食品和医药领域的多用途开发也极具发展潜力。而单位面积桑园桑叶、枝条的产量、品质及其活性成分含量高低不仅与品种、修剪、灌溉有关外,与桑园养分管理及桑树营养特性密不可分。
     本文针对四川丘陵蚕桑主产区桑树施肥中存在的问题,采用现代肥料二次回归"3414”试验设计,通过田间试验,主要研究了氮磷钾对桑树生长发育及干物质积累、桑树光合特性、桑树保护酶活性及膜脂过氧化作用、养分吸收利用与分配、桑叶质量及活性成分含量的影响,揭示其生长发育规律、养分吸收与分配规律、品质形成规律、产量形成规律,对桑树施肥参数进行系统研究,构建桑树优质高效施肥模型,为本地区桑树的合理施肥提供科学依据。获得的主要结果如下:
     1.氮磷钾对桑树生长发育及其干物质积累的影响
     本研究以加促进桑树生长发育,提高单位面积桑园桑叶产量及其干物质积累量为目的,对夏伐式修剪、多年生试验桑园采用现代肥料二次回归“3414”试验设计方案,研究氮磷钾不同施肥处理对桑树不同生育期叶片、枝条、新梢、单株产叶量等生长发育指标及春秋两季干物质积累量的影响。试验结果表明,随着生长发育进程的推进,桑树主要生长发育指标呈逐渐增大的趋势,且前期生长发育旺盛、后期生长发育减慢,适量的氮磷钾肥能促进桑树的生长发育,肥料施用不足或过量施肥并不利于桑树正常的生长发育。春秋两季单株产叶量调查分析表明,全年单株产叶量秋季明显高于春季,随着氮磷钾肥施用量的增加,单株产叶量逐渐增加,且均在2水平时达到最大值,再增施肥料,单株产叶量反而降低,氮肥对单株产叶量的影响表现为N2>N3>N1>N0,磷肥和钾肥对单株产叶量的影响均表现为P2>P1>P3>P0、K2>K1>K3>K0。
     春秋两季干物质积累量分析表明,干物质积累量叶片>枝条>新梢,叶片中干物质积累量秋季>春季,枝条中干物质积累量春季>秋季;氮肥对桑叶干物质积累量的影响为N2>N3>N1>N0,对春季新梢干物质积累量的影响表现为N3>N2>N1>N0,对春季、秋季枝条干物质积累量的影响表现为N2>N1>NO>N3、N3>N2>N1>N0;磷肥对桑叶干物质积累量的影响表现为P2>P1>P3>P0,对春季新梢干物质积累量的影响表现为P2=P3>P1>P0,对春季、秋季枝条干物质积累量的影响表现为P2>P3>P1>P0、P3>P2>P1>P0;钾肥对桑叶干物质积累量的影响表现为K2>K1>K3>K0,对春季新梢干物质积累量的影响表现为K3>K1>K0>K2,对春季、秋季枝条干物质积累量的影响表现为K3>K2>K1>K0、K2>K1>K3>K0。
     通过建立以公顷桑干物质积累量为函数,氮、磷、钾施肥量为因子的肥料效应方程,桑叶干物质积累量、新梢干物质积累量、枝条干物质积累量与施肥量的肥料效应方程的P值<0.05,方程拟合成功,分别获得桑叶干物质积累量推荐施肥量为694.36Kg/hm2N、198.15Kg/hm2P2O5、274.26Kg/hm2K2O,最大值为8045.04Kg/hm2;枝条干物质积累量推荐施肥量为1000.05Kg/hm2N、242.04Kg/hm2P2O5、218.01Kg/hm2K2O,最大值为5969.05Kg/hm2;春季新稍干物质积累量的推荐施肥量为883.76Kg/hm2N、204.48Kg/hm2P2O5、426.59Kg/hm2K2O,最大值1410.24Kg/hm2。该最佳施肥方案通过生产实践验证后,可为四川丘陵蚕区优质桑园建设提供参考。
     2.氮磷钾对桑树光合特性的影响
     光合作用是桑树重要的生理过程之一,桑树干物质90%以上来源于桑叶的光合作用,光合作用的强弱直接影响到桑叶的产量和质量。光合作用除了受作物本身的遗传特性影响外,还受包括湿度、温度、光照强度、二氧化碳浓度、矿物质营养等诸多环境因素影响,目前,关于桑树光合作用的基本特性以及光合速率对光强、温度、C02浓度等微气象因子的响应,各种逆境胁迫和人工栽培技术的实施对桑树光合特性的影响等研究较多,而矿质营养元素尤其是氮磷钾配合施用对桑树的光合生理报道较少。随着光合测定仪在我国的发展与应用,国内外学者就不同施肥处理对农作物光合特性的影响进行了深入广泛的研究。为此,本研究从光合生理入手,以探讨桑树叶片的光合特性及不同施肥处理对桑树光合作用的调控效应为目的,采用Li-6400xt型便携式光合测定系统,通过活体测定,以对夏伐式修剪、多年生试验桑园川826桑树品种为试验材料,研究氮磷钾肥及其施用量与桑树功能叶片叶绿素含量、叶面积指数、净光合速率、叶片气孔导度、胞间C02浓度、蒸腾速率之间的关系。结果表明:随着桑树的生长发育,春季桑树叶片叶绿素含量(Chla+b)、叶片气孔导度(Cond)随着生育期的推进逐渐升高,秋季呈现出先升高后降低的变化趋势;净光合速率(Pn)在春秋两季均呈现出先升高后降低的变化趋势;叶面积指数(LAI)、胞间CO2浓度(Ci)、蒸腾速率(Tr)在春秋两季均呈现出逐渐升高的趋势。氮磷钾不同施肥水平对桑树光合指标具有显著影响,适宜氮、磷、钾施肥量可以提高桑树LAI、Chla+b、Pn、Cond、Tr,而缺少或过量施肥使其光合能力降低;不施肥处理桑树叶片Ci显著高于施肥处理。适宜的氮、磷、钾施用水平N2P2K2(N600kg.hm-2、P2O5210kg.hm-2、K2O300kg.hm-2)可保持桑树功能叶适宜的光合状态,并能保持较长的高光合持续期。本研究可为优质高产桑园建设提供理论依据。
     3.氮磷钾对桑树叶片保护酶活性及膜脂过氧化的影响
     植物逆境生理是研究植物在逆境条件下的生理生化变化及其机制,对植物产生重要影响的逆境主要有水分亏缺、低温、高温、盐碱、环境污染等理化逆境,病虫杂草等生物逆境,此外,矿质营养元素施用不当也会对作物造成养分胁迫。养分胁迫下植物体内活性氧代谢失调,细胞膜结构被破坏。超氧化物歧化酶(SOD)、过氧化物酶(POD)及过氧化氢酶(CAT)等作为生物体内的一种保护酶,对于清除逆境下产生的有害自由基有一定的作用,丙二醛(MDA)是膜脂过氧化作用的主要产物,其含量高低反映了植物细胞膜脂过氧化程度。近年来,关于桑树施肥研究的较多,但关于肥料对叶片保护酶活性及膜脂过氧化作用研究的尚未见报道。为此,本文以桑树为研究材料,通过氮磷钾施肥配比对桑树功能叶片保护酶活性及膜脂过氧化作用进行系统研究,以揭示桑树叶片衰老机制,旨在获得四川丘陵地区最佳施肥方案,为提高桑叶品质和延长桑叶功能期提供理论依据。研究结果表明:春季随着桑树的生长发育,氮磷钾不同施肥处理桑叶中可溶性蛋白含量、超氧化物歧化酶活性、过氧化氢酶活性、过氧化物酶活性和丙二醛含量均随之提高;秋季随着桑树的生长发育,氮磷钾不同施肥处理桑叶中可溶性蛋白含量、超氧化物歧化酶活性、过氧化氢酶活性、过氧化物酶活性均呈现先升后降的趋势,而丙二醛含量则呈现逐步升高的趋势;在整个生长期,同一施肥处理随着施肥量的增加,桑叶中可溶性蛋白含量、超氧化物歧化酶活性、过氧化氢酶活性、过氧化物酶活性均会显著提高,而丙二醛含量均会显著下降,且均在2水平(N2P2K2)时达到最佳。所以科学的氮磷钾配比及施入量N2P2K2:(N600kg/hm2、 P2O5210kg/hm2、K2O300kg/hm2)能显著提高桑叶中保护酶活性,降低膜脂过氧化程度,有效延缓桑叶衰老。
     4.平衡施肥对桑树养分吸收与分配的影响
     氮、磷、钾是植物生长发育长必不可少的肥料三要素,植株N、P、K养分含量、吸收量及其分配等营养特性是科学施肥的主要依据,多数研究表明,氮磷钾及其配合施用能明显促进农作物的生长发育,提高植株养分含量,增加其养分吸收和积累。施肥对桑树NPK含量及养分吸收量的影响研究较少,国内研究侧重于盆栽试验,田间试验较少,且施肥水平设计过少,很难得出精确的结论。为此,本文以夏伐式桑树为研究材料,以揭示氮磷钾对桑树养分吸收和分配规律为目的,通过田间试验,研究氮磷钾不同施肥处理对春秋两季桑树叶片、枝条、新梢等不同部位NPK含量、吸收量及其分配的影响,研究结果表明,从肥料种类来看,桑树不同部位养分含量及养分吸收量均为N>K>P,从养分分配来看,春季叶片>新梢>枝条,秋季叶片>枝条,全年养分分配叶片>枝条。施用不同数量的氮磷钾肥对春秋季桑叶、枝条、新梢N、P、K含量和养分吸收积累量、养分分配有明显影响,氮磷钾施肥处理2水平、3水平养分含量和吸收量显著高于1水平、0水平,合理增施氮磷钾肥有利于提高桑树各部位N、P、K含量和养分吸收量。
     春季随氮肥施用量的增加,新梢和叶片生长旺盛,反而抑制了枝条的生长及氮的吸收,其含N量表现为N2>N3>N1>N0,由于氮肥对春季枝条干物质积累量的影响为N2>N1>NO>N3,因此,春季枝条氮的吸收量总体表现为N2>N1>N3>N0;春季新梢、秋季枝条及桑叶含氮量随着氮肥施用量的增加而升高,总体表现为N3>N2>N1>N0;在春季新梢和秋季枝条中干物质积累量也是随着氮肥施用量的增加而升高,因此其氮的吸收量也表现为N3>N2>N1>N0,而桑叶干物质积累量以2水平时最高(N2>N3>N1>NO),因此其氮的吸收量总体也表现为N2>N3>N1>N0。春季桑树枝条、新梢含P量及其吸收量均随着施磷量的增加而升高,表现为P3>P2>P1>P0,秋季夏伐后桑树枝条含P量及其吸收量随着施磷量的增加先升高后降低,表现为P2>P3>P1>P0;春、秋季桑叶中含P量和磷的吸收量分别表现为P2>P1>P3>P0、P1>P2>P3>P0,说明适量的磷有利于桑叶的生长,高浓度磷则抑制叶片的生长,减少干物质的积累,从而影响磷的吸收量。桑树含K量及其吸收量随着钾肥施用量的增加先升高后降低,以K2水平最高,表现为K2>K3>K1>K0,全年仅秋季叶片含K量随着钾肥施用量的增加而升高。
     5.平衡施肥对桑叶品质及其活性成分含量的影响
     课题组对四川丘陵蚕桑主产区桑园养分管理状况进行了系统的调查研究,结果表明:四川桑园立地条件差、土壤肥力低,另外肥料使用不科学,造成土壤营养元素缺乏和不平衡,氮、磷肥利用率低致使桑叶产量低、质量差,严重制约了四川蚕桑生产的发展。同时,国内外对桑树营养的研究重在不同肥料对桑叶产量、质量及蚕茧产量和质量等方面,而采用平衡施肥技术对桑叶质量,尤其是桑叶中黄酮类化合物、1-脱氧野尻霉素等生物活性成分的含量及其产量的影响迄今尚未见相关报道。现代医药学研究表明,桑树富含1-脱氧野尻霉素(1-deoxynojirimycin,DNJ)和黄酮类化合物(Flavonoid)等主要活性物质,具有降血糖、抗氧化、防衰老等多种保健和治疗功效。本文以夏伐式桑树为研究材料,以揭示氮磷钾对桑叶品质及主要活性成分形成规律为目的,采用“3414”平衡施肥方法,研究氮磷钾不同施肥处理对春秋两季桑叶桑叶中黄酮类化合物、1-脱氧野尻霉素、粗蛋白、可溶性糖的含量和产量的影响。研究结果表明,随着氮磷钾单一肥料施用量的增加,成熟桑叶中测定指标的含量均随之显著增加,但过量施用则会导致其含量没有显著变化或显著降低;通过进一步拟合桑叶的测定指标产量与氮磷钾的肥料效应方程,获得其最高产量和推荐施肥参数。黄酮类化合物、1-脱氧野尻霉素、粗蛋白、可溶性糖的最高产量和推荐施肥参数分别为:(147.90Kg/hm2;675.96Kg/hm2N、326.49Kg/hm2P2O5、462.90Kg/hm2K2O)、(13.55Kg/hm2;720.93Kg/hm2N、225.11Kg/hm2P2O5、323.63Kg/hm2K2O)、(1816.83Kg/hm2;718.46Kg/hm2N、220.11Kg/hm2P2O5、305.23Kg/hm2K2O)、(1042.65Kg/hm2;666.54Kg/hm2N、204.41Kg/hm2P2O5、243.18Kg/hm2K2O)。本实验可为四川地区大力发展的桑树综合开发及建立特定目标产物的高产优质桑园提供理论参考和指导。
     6.四川丘陵地区桑树平衡施肥数学模型的建立
     施肥模型是施肥技术的核心内容之一,其中肥料效应函数模型属于统计模型,能揭示多元肥料的相互作用,可以求算出理论上达到最高和最佳产量的最高和最佳施肥量以及可以评价肥料间的相互作用。“3414”肥料试验设计方案既吸收了回归最优设计处理少、效率高的优点,又符合肥料试验和施肥决策的专业要求。为此,本研究针对四川丘陵蚕桑主产区桑园养分管理过程中存在的问题,以提高单位面积桑园桑叶产量与生产效益,采用现代肥料二次回归“3414”设计方案,分别以桑叶产量为目标函数,选取对桑树生长发育影响较大的肥料元素氮(N)、磷(P)、钾(K)的施肥水平为调控因子,模拟桑树产叶量与N、P、K之间的回归关系。结果表明,氮磷钾对桑叶产量性状的贡献为P>K>N,由此说明磷肥是桑树生产上需要重点控制的因子,且氮磷钾双因子之间均有交互作用,其交互效应表现为PK>NP>NK。通过模拟寻优,分别得到氮、磷、钾的三元二次、二元二次、一元二次共3种7类N、P、K肥料效应函数,各类型函数获得最佳桑树产叶量的肥料因素权重表现为K>PK>P>NPK>NK>N>NP,最佳产投比的肥料因素权重表现为K>PK>NPK>P>NK>NP>N。其中三元二次肥料效应函数(Y=20313+0.25X1+43.48X2+34.47X3-0.01X12-0.14X2-0.06X32+0.05X1X2+0.02X1X3-0.07X2X3,其中X1、X2、X3分别为N、P、K肥料因子)为全因子模型,可作为桑园的推荐施肥方案。单因素效应分析显示K肥对桑树产叶量及产投比的影响最大,因而在所有模拟的函数中K肥因子的一元二次肥料效应方程(Y=25002.27+44.728X3-0.084X32)获得的最佳产量和产投比最高,用(N600kg/hm2、P2O5210kg/hm2、K2O254.33kg/hm2)的最佳施肥方案,获得的桑树的最佳经济产叶量达到30945.00kg/hm2,投入的肥料价值为4403.65元/hm2,产投比高达17.57。该最佳施肥方案通过生产实践验证后,可为四川丘陵蚕区高产桑园建设提供参考。
The silk industry is the traditional industry of China with5,000years of history. The silk industry in China, which is competitive industry and in a monopolistic position in the international market, has made a significant contribution to national economic development and export. Mulberry is an important material basis of the silk industry, the level of mulberry leaf yield per unit area of and its quality directly affects the growth and development of the silkworm and the production and quality of cocoons and silkworm eggs, thereby affecting the economic benefits of the sericulture industry as a whole. Mulberry is a perennial economic forest tree species with high ecological value. Furthermore, the mulberry with high nutritional value, good palatability, no feeding obstacle, high digestion rate, in addition to feed silkworm, is currently of the most potential for development among the woody forage plants; and it can be developed as a high-quality livestock feedstuff. Mulberry leaves are rich in1-DNJ, flavone and other natural active ingredients, which have significant effect on lowering blood sugar, anti-oxidation and anti-age. Therefore, the mulberry is also of great potential in the fields of both food and medicine. The yield per unit area, quality and the level of active ingredient content of mulberry leaves and branches are not only related to varieties of mulberry, pruning and irrigation, but also closely related to the mulberry nutrient management and the mulberry nutritional characteristics.
     According to fertilization problems in the main producing areas of hilly sericulture in Sichuan Province, the modern fertilizers quadratic regression "3414" experimental design was used to conduct field trials in this study. The effects of N, P and K on mulberry in the aspects of growth and development, dry matter accumulation, photosynthetic characteristics, protective enzyme activities, membrane lipid peroxidation, utilization and distribution of nutrient uptake, leaf quality and content of active ingredients were studied in this paper. The results revealed the laws of growth and development, nutrient uptake and distribution, quality formation and yield formation. The fertilization parameters of mulberry were also systematically studied to build and efficient and high quality fertilization, which provide a scientific basis for the rational fertilization of the local mulberry. The main results in this study were listed below:
     1. The effect of N, P and K on the growth and dry matter accumulation of mulberry
     To promote mulberry growth and development and improve the unit area of mulberry leaf yield of dry matter accumulation, the modern fertilizers quadratic regression "3414" experiment design was conducted in the summer cutting pruning, perennial test mulberry to study the effects of N, P and K treatments on the growth and development indicators of mulberry in different growth stages of leaves, twigs, shoots and leaf yield per plant, etc. The results shew that with the growth and development process moving forward mulberry main indicators of growth and development was gradually increased, and vigorous early growth and development with a decrease at the late stage; the right amount of NPK fertilizer can promote the growth and development of mulberry, while inadequate or excessive fertilization is not conducive to the mulberry normal growth and development. Spring and autumn per plant leaf yield survey analysis shows that the per plant leaf yield throughout the year in autumn was significantly higher than that in the spring; with the increase of NPK fertilizer application rate, leaf yield per plant gradually increased, and each reached maximum at the levels of two, and additions of fertilizer decreased leaf yield per plant. Effect of nitrogen fertilizer on plant leaf yield performed of N2>N3>N1>N0, phosphorus and potassium on the plant leaf yield performance of the P2>P1>P3>P0and K2>K1>K3>K0respectively.
     Spring and autumn dry matter accumulation analysis shew that the dry matter accumulation performance of leaves>twigs> shoots, and autumn>spring in the twig leaves, while spring>autumn in the twigs; Effect of nitrogen fertilizer on dry matter accumulation performed of N2>N3>N1>NO in leaves, N3>N2>N1>NO in the spring shoots; N2>N1>N0>N3>、N3>N2>N1>N0in the autumn and spring twigs; phosphorus fertilizer on dry matter accumulation performance of P2>P1>P3>P0in leaves, P2=P3>P1>P0in spring shoots and P2>P3>P1>P0, P3>P2>P1>P0in spring and autumn twigs respectively; potassium fertilizer on dry matter accumulation performance of K2>K1>K3>K0, K3>K1>K0>K2in spring shoots, and K3>K2>K1>K0, K2>K1>K3>K0in spring and autumn twigs respectively.
     By building an effect equation of fertilization with hectares of mulberry dry matter accumulation as a function and fertilizer nitrogen, phosphorus and potassium fertilizer levels as the factors, mulberry leaf dry matter accumulation, the shoot dry matter accumulation and branches dry matter accumulation and fertilization in the amount of fertilizer effect equation P value<0.05, equation fitted successfully. The results suggested that the recommended fertilization amount was694.36Kg/hm2N、198.15Kg/hm2P2O5、274.26Kg/hm2K2O, the maximum amount was8045.04Kg/hm2based on the leaves dry matter accumulation; the recommended fertilization amount was1000.05Kg/hm2N、242.04Kg/hm2P2O5、218.01Kg/hm2K2O, the maximum amount was5969.05Kg/hm2based on the twigs dry matter accumulation; the recommended fertilization amount was883.76Kg/hm2N、204.48Kg/hm2P2O5、426.59Kg/hm2K2O, the maximum amount was1410.24Kg/hm2based on the spring shoots dry matter accumulation. After proved by production practice, the best fertilization program will provide a reference for the construction of high quality mulberry of hilly silkworm in Sichuan Province.
     2. Effect of N, P, K on the photosynthetic characteristics of mulberry
     Photosynthesis is one of the important physiological processes in mulberry; more than90%of dry matter of mulberry trees is from the photosynthesis in mulberry leaf; and the strength of photosynthesis directly affect the yield and quality of mulberry leaves. Photosynthesis is affected not only by the genetic characteristics of the crop itself, but also by many environmental factors including humidity, temperature, light intensity, concentration of carbon dioxide, minerals, nutrition, etc. At present, many studies have focused on the basic characteristics of mulberry photosynthesis and the response of photosynthetic rate to light intensity, temperature, CO2concentration and micro-meteorological factors, the effect of stress and the implementation of the artificial cultivation techniques on mulberry photosynthetic characteristics. However, few studies on the effect of mineral nutrient elements, especially N, P and K with the application on the photosynthetic physiology of the mulberry have been reported. With the development and application of the photosynthetic detector in China, domestic and foreign scholars have on in-depth and extensively researched the impact of the different fertilization treatments on crop photosynthetic characteristics. Therefore, in this study, starting from the photosynthetic physiology, to explore the mulberry leaf photosynthetic characteristics and the effect of different fertilization treatments on the regulation of photosynthesis of mulberry, using Li-6400xt portable photosynthesis system, through the in vivo determination, using summer cutting pruning, perennial test Mulberry Sichuan826mulberry varieties as test materials, the relationship between the NPK fertilizer application and the mulberry function leaf chlorophyll content, leaf area index, net photosynthetic rate, stomatal conductance, intercellular CO2concentration, transpiration rate was studied. The results shew that with the growth and development of mulberry, spring mulberry leaf chlorophyll content (Chla+b), stomatal conductance (Cond) gradually increased with the advancement of the growth period, showing a trend of first increase then decrease in autumn; net photosynthetic rate (Pn) show a trend of first increase then decrease in both spring and autumn; leaf area index (LAI), intercellular CO2concentration (Ci) and transpiration rate (Tr) show a trend of gradually increase in both spring and autumn. Different N, P, K fertilizer levels had a significant impact on mulberry photosynthetic indicators; appropriate N, P, and K fertilization amount can improve the LAI, of Chla+b and Pn, Cond, Tr of mulberry tree, while lack or excess fertilization reduce its photosynthetic capacity; the Ci of mulberry leaves without fertilizer was significantly higher than that of fertilization tree. Appropriate N, P and K application level N2P2K2(N600kg.hm-2、P2O5210kg.hm-2、 K2O300kg.hm-2) can keep the mulberry function leaves suitable for photosynthetic state, and keep a long period of high photosynthetic rate. This study can provide a theoretical basis for high-quality and high-yield mulberry fields construction.
     3. Effects of N, P and K on the mulberry leaf protective enzyme activities and membrane lipid peroxidation
     Plant Stress Physiology is to study the physiological and biochemical changes and mechanisms of plants under stress conditions. The main adversities with important impacts on plant include Water deficit, low temperature, high temperature, salinity, environmental pollution and other physical and chemical adversities. In addition, the mineral nutrient elements applied improperly will cause nutrient stress on crop. Nutrient stress causes reactive oxygen metabolic disorders, cell membrane structure destroyed in plants. As the protective enzymes in organisms, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) play a certain role in removing harmful free radicals generated under stress condition. Malondialdehyde (MDA) is a plasma membrane oxidation product, and the level of its content reflects the plasma membrane peroxidation degree. In recent years, many studies have been reported on mulberry fertilization; however, no study has been reported on effects of the fertilizer on protective enzyme activities and membrane lipid peroxidation. Therefore, in this paper, using mulberry as materials, the effects of N, P, K fertilizer ration on the protective enzyme activities and membrane lipid peroxidation of the functional leaf of mulberry were systematically studied to reveal the mechanism of mulberry leaf senescence and provide a theoretical basis for improving the quality of mulberry leaves, and extending the functional period of mulberry leaf. The results show that with the growth and development of mulberry in spring, soluble protein content, superoxide dismutase, catalase activity, peroxidase activity and malondialdehyde content increased in mulberry with different treatments; with the growth and development of mulberry in autumn, soluble protein content, superoxide dismutase, catalase activity and peroxidase activity firstly increased and decreased later in mulberry with different treatments, while malondialdehyde content gradually increased; throughout the growing period, with the increase of fertilization amount in the same treatment, soluble protein content, superoxide dismutase, catalase activity and peroxidase activity all significantly increased, while malondialdehyde content significantly decreased, each reach the best point at level2(N2P2K2). Therefore, scientific N, P, K ratio and application amount (N2P2K2:600kg/hm2N、210kg/hm2P2O5,300kg/hm2K2O) can significantly improve the mulberry leaves in the activities of protective enzymes, reduce membrane lipid peroxidation and effectively delay the mulberry leaf senescence.
     4. The impact of balanced fertilization on the mulberry nutrient uptake and distribution
     N, P and K are the three fertilising elements essential for plant growth and development, N, P and K nutrient content, the absorbing amount and their distribution and other nutritional characters of plants are the basis for scientific fertilization. Most researches show that N, P, K and its combined application can significantly promote the growth and development of crops, improve the nutrient content in plant and increase their nutrient uptake and accumulation. Few studies on the effects of fertilization on the N, P and K contents and nutrient uptake amount of mulberry have been reported. Studies in China have focused on the pot experiments, while field test is rare. Furthermore, the previously reports did not have enough fertilization level design; therefore, it was difficult to draw accurate conclusions. In this paper, the summer cutting mulberry trees were used as research materials to explore the law the effects of N, P and K on the mulberry nutrient absorption and distribution. Through field trials, the effects of different fertilization treatments of N, P and K on the N, P and K contents and absorbing amount and distribution in the different parts of mulberry trees such as leaves, branches, shoots, etc, in spring and autumn were studied. The results show that, in the aspect of the fertilizer types, the absorbing amount in different parts performs the same as N>K>P; in the aspect of nutrition distribution, spring leaves>shoots> branches, autumn leaves> branches, leaves> branches although the year. Different amount of N, P and K significantly affected the N, P and K contents and the absorption and distribution of nutrition of mulberry leaves, branches and shoots in spring and autumn; the nutrient content and absorption at level2and3of N, P and K fertilization were significantly higher than those of level1and level0. Properly increase in N, P and K fertilizer application will increase the N, P and K contents and nutrition absorption in each part of the mulberry trees.
     In spring, with the increase of N application, shoots and leaves grew vigorously, which inhibited the growth and N absorption of branches, the N contents in branches performed as N2>N3>N1>N0. As the effect of N fertilizer on spring branches'dry matter accumulation was N2>N1>NO>N3, the spring branches' N absorption performed as N2>N1>N3>N0; with the increase in the amount of nitrogen fertilizer, nitrogen content of spring shoots, autumn branches and mulberry leaf increased, and overall performance as N3>N2>N1>N0; dry matter accumulation in spring shoots and autumn branches increased with the increase in the amount of nitrogen fertilizer, and nitrogen uptake also shew N3>N2>N1>N0; Mulberry leaf dry matter accumulation was maximum (N2>N3>N1>N0) at levels2, therefore its nitrogen uptake of the overall performance of N2>N3>N1>N0. The content and absorption amount of P in spring mulberry branches, the shoot content increased with the increase of phosphate fertilization and its performance of P3>P2>P1>P0; The P content and absorption of Pin the summer cutting mulberry branches in autumn firstly increased and decreased later with the increase of P fertilization with the performance of P2>P3>P1> P0; the P content and absorption of mulberry leaves in spring and autumn performaned as P2>P1>P3>P0and P1>P2>P3>P0respectively, which indicated that proper amount of P fertilizer improved the growth of mulberry leaves, while excess P fertilizer inhibited the growth of mulberry leaves, reducing the accumulation of dry matter and subsequently affecting the absorption of P. The K content and absorption amount in mulberry trees firstly increased and decreased later with the increase of K fertilization, and reached maximum at K2level, with the performance of K2>K3>K1>K0. All through the year, the K content in mulberry leaves increased with the increase of K fertilization only in spring.
     5. Effects of balanced fertilization on mulberry leaf quality and its active ingredient content
     We have systematically investigated the nutrient management conditions of mulberry in the Sichuan hills sericulture main producing areas. The results shew that the site conditions of Sichuan mulberry were poor, and its soil fertility was low. The unscientific usage of fertilizer resulted in soil nutrient deficiency and unbalanced. The inefficient usage of N and P fertilizer resulted in the low yield and quality of mulberry leaves, which severely inhibited the development of sericulture production in Sichuan Province. Previous studies mainly focused on the effects of different fertilizers on the leave yield and quality, cocoon yield and quality. However, no study on the mulberry leaves quality, especially the yield of mulberry leaves and its contents of flavonoids and1-deoxynojirimycin and other biologically active components using balance fertilization techniques has been reported. The results of modern medical research show that the mulberry leaves are rich in1-deoxynojirimycin (DNJ) and flavonoid and other active compounds, presenting hypoglycemic, anti-oxidation, anti-aging and other health and therapeutic efficacy. In this paper, summer cutting mulberry trees were used as research materials to explore the law of effects of N, P and K on the quality of mulberry trees and the formation of main active compounds. The effects of different N, P, K fertilization treatments on the contents and yield of flavonoids,1-deoxynojirimycin, crude protein and soluble sugar in spring and autumn mulberry leaves were studied using the "3414" balance fertilization method. The results shew thatthe contents of determination indicators significantly increased with the increase of single N, P, K fertilizers application, while excess application resulted in no significantly variation or significantly decrease of the contents. By further fitting the determination indicators production in mulberry leaves and N, P, K fertilizers response equations, the highest yield and related recommended fertilization parameters were obtained. The highest yield and recommended fertilization parameters of flavonoids,1-deoxynojirimycin, crude protein, soluble sugar were (147.90Kg/hm2;675.96Kg/hm2N,326.49Kg/hm2 P2O5,462.90Kg/hm2K2O),(13.55Kg/hm2;720.93Kg/hm2N,225.11Kg/hm2P2O5,323.63Kg/hm2K2O),(1816.83Kg/hm2;718.46Kg/hm2N,220.11Kg/hm2P2O5,305.23Kg/hm2K2O),(1042.65Kg/hm2;666.54Kg/hm2N,204.41Kg/hm2P2O5,243.18Kg/hm2K2O) respectively. This experiment may provide a theoretical reference and guidance for the Sichuan region of great efforts to develop the comprehensive development of mulberry and the establishment of high quality and yield mulberries with specific target products.
     6. The establishment of mathematical models of hilly region mulberry balanced fertilization in Sichuan Province
     Fertilization model is one of the core content of the fertilizer technology. Fertilizer response function model is a statistical model, which can reveal the interaction of diverse fertilizers and theoretically calculate the highest and best fertilization amount when reaching the highest and best yield and evaluate the interaction between the fertilizers."3414" fertilizer trial design is one of the best quadratic regression D-optimal designs. The "3414" design program not only has the regress optimal design's advantages of less process and high efficiency, but also meets the professional requirements of the fertilizer test and fertilization decisions. In this study, according to the problem exists in the hilly the sericulture main producing areas of Mulberry nutrient management process in Sichuan Province, to increase leaf yield and production efficiency per unit area of mulberry, using the modern fertilizers quadratic regression "3414" design program, the regress relationships between mulberry leaves and N, P, K were simulated with the leaf yield as the objective function and selecting the fertilization level of fertilizer elements N, P, K as regulatory factors. Through trial studies,3kinds of7varieties N, P, K fertilizer response functions were obtained. The fertilizer factors weights of various types of function to obtain the best mulberry leaf yield performed as K>PK>P>NPK>NK>N>NP, and the best of output to input ratio fertilizer factor weights expressed as K>PK>NPK>P>NK>NP>N. Of the three kinds of functions, the ternary quadratic fertilizer effect function (Y=20313+0.25X1+43.48X2+34.47X3-0.01X12-0.14X22-0.06X32+0.05X1X2+0.02X1X3-0.07X2X3, X1、X2、X3are N, P, K fertilizers effect factors) was full-factor model, which could be used as recommending fertilization program of mulberry. The effect of single factor analysis showed that the K fertilizer presented the greatest impact on the production of mulberry leaf yield. Therefore, in all simulation functions, quadratic fertilization effect equation of K fertilizer factor (Y=25002.27+44.728X3-0.084X32) obtained the highest ratio of best yield to input. The usage of the optimal fertilization of600kg/hm2N,210kg/hm2P2O5,254.33kg/hm2K2O can obtain the best economy of mulberry leaf yield of30945.00kg/hm2with the fertilization input of4403.65Yuan/hm2; and the ratio of production to input reached to17.57. After proved by production practice, the best fertilization program may provide a reference for the construction of high-yield mulberry fields of the hilly sericulture area in Sichuan Province.
引文
[1]黄东风,王果,李卫华,等.不同施肥模式对蔬菜生长、氮肥利用及模拟土柱氮素淋失的影响[J].水土保持学报,2009(3):48-52.
    [2]段亮,段增强,常江.地表管理与施肥方式对太湖流域旱地氮素流失的影响[J].农业环境科学学报,2007(3):813-818.
    [3]李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报,1999(3):193-205.
    [4]侯彦林,陈守伦.施肥模型研究综述[J].土壤通报,2004(4):493-501.
    [5]Schroder J. J., Neeteson J. J., Withagen J. C. M., et al. Effects of N application on agronomic and environmental parameters in silage maize production on sandy soils[J]. Field Crops Research,1998,58(1):55-67.
    [6]Ar B. Fertilization of sorghum based on modified Mitscherlich-Bray equation under semi-arid tropics[J].1998,46(3):383-391.
    [7]Ghosh P. C., Misra U. K. Modified Mitscherlich-Bray.Equation for Calculation of Crop Response to Applied Phosphate[J].1996,44(4):786-788.
    [8]王兴仁,农业,张福锁.现代肥料试验设计[M].中国农业出版社,1996.
    [9]朱涛,张中原,李金凤,等.应用二次回归肥料试验“3414”设计配置多种肥料效应函数功能的研究[J].沈阳农业大学学报,2004(3):211-215.
    [10]吴志勇,闫静,施维新,等.“3414”肥料效应试验的设计与统计分析[J].新疆农业科学,2008(1):135-141.
    [11]王兴仁,陈新平,张福锁,等.施肥模型在我国推荐施肥中的应用[J].植物营养与肥料学报,1998(1):67-74.
    [12]郭希敏,李艳辉.平衡施肥对水稻产量的影响[J].现代农业科技,2010(11):44-45.
    [13]李玉影,韩晓日,刘双全,等.平衡施肥对白浆土水稻产量及品质的影响[J].中国土壤与肥料,2008(5):49-52.
    [14]刘双全.三江平原地区高效施肥对水稻产量及品质的影响[J].黑龙江农业科学,2008(5):56-58.
    [15]Leesawatwong M., Jamjod S., Kuo J., et al. Nitrogen fertilizer increases seed protein and milling quality of rice[J]. Cereal chemistry,2005,82(5):588-593.
    [16]Alcantara J. M., Cassman K. G. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice[J]. Cereal Chem,1996,73(5):556-560.
    [17]李卫国,任永玲.氮、磷、钾、硅肥配施对水稻产量及其构成因素的影响[J].山西农业科学,2001(1):53-58.
    [18]漆辉,伍钧,韩巧,等.陇西河流域平衡施肥对水稻产量及其构成因素的影响[J].四川农业大学学报,2011(1):10-15.
    [19]薛鸿雁,张文成,李宝玉,等.平衡施肥对玉米产量和品质的影响[J].黑龙江农业科学,2004(3):4-6.
    [20]邢月华,韩晓日,汪仁,等.平衡施肥对玉米养分吸收、产量及效益的影响[J].中国土壤与肥料,2009(2):27-29.
    [21]黄艳胜.不同施肥量对春玉米品质与产量影响的研究[J].中国林副特产,2002(2):24-25.
    [22]魏荔,张怀文,孙义祥,等.不同施肥处理对糯玉米产量和养分吸收量的影响[J].北京农业,2008(3):27-29.
    [23]李录久,李显胜,郭熙胜,等.油菜高产高效平衡施肥技术研究[J].现代农业科技,2007(2):59-61.
    [24]鲁剑巍,陈防,张竹青,等.磷钾肥配合施用对油菜产量及养分积累的影响[J].中国油料作物学报,2003(2):53-56.
    [25]Ogoke I. J., Carsky R. J., Togun A. O., et al. Effect of P fertilizer application on N balance of soybean crop in the guinea savanna of Nigeria[J]. Agriculture, Ecosystems\& Environment,2003,100(2-3):153-159.
    [26]Kamara A. Y., Kwari J., Ekeleme F., et al. Effect of phosphorus application and soybean cultivar on grain and dry matter yield of subsequent maize in the tropical savannas of north-eastern Nigeria[J]. African Journal of Biotechnology,2010,7(15).
    [27]Jones G. D., Lutz J. A. Yield of wheat and soybeans and oil and protein content of soybean as affected by fertility treatments and deep placement of limestone[J]. Agronomy Journal,1971,63(6):931-934.
    [28]Frazier R. D., Ham G. E., Nelson W. W., et al. Influence of fertilizer placement on yield response of soybeans[J]. Agronomy Journal,1973,65(1):81-84.
    [29]Randall G. W., Ham G. E., Poole W. D. Foliar fertilization of soybeans. I. Effect of fertilizer sources, rates, and frequency of application[J]. Agronomy Journal,1983,75(2):195-200.
    [30]马文娟,同延安,高义民,等.平衡施肥对线辣椒产量、品质及养分累积的影响[J].西北农林科技大学学报(自然科学版),2010(1):161-166.
    [31]王丽英,张彦才,翟彩霞,等.平衡施肥对连作日光温室黄瓜产量、品质及土壤理化性状的影响[J].中国生态农业学报,2008(6):1375-1383.
    [32]王翠红,唐建初,刘钦云,等.NPK肥不同配比对萝卜产量及硝酸盐含量的影响[J].生态与农村环境学报,2006(4):62-66.
    [33]杨忠.平衡施肥技术对黄瓜生长和产量的影响[J].中国园艺文摘,2010(6):12-14.
    [34]吕烈武,王汀忠.水稻“3414”平衡施肥试验研究[J].安徽农学通报,2008(23):138-139.
    [35]王岩萍.水稻平衡施肥试验产量分析[J].宁夏农林科技,2011(6):7-12.
    [36]战秀梅,韩晓日,王帅,等.应用“3414”肥料试验模型求解春玉米施肥参数的研究[J].河南农业科学,2009(1):51-54.
    [37]陈怀红.黄泥土玉米施肥模型研究[J].贵州农业科学,2009(9):48-51.
    [38]王列富,刘晓娜.华杂四号油菜高产施肥模型研究[J].河南农业大学学报,2000(4):381-384.
    [39]宿庆瑞,杨亚洁,金继运,等.哈93216高蛋白大豆平衡施肥技术的试验研究[J].土壤肥料,2003(4):24-28.
    [40]邢素芝,汪建飞,姚春芬.辣椒NPK肥料配施数学模型的研究[J].土壤通报,2003(3):238-240.
    [41]Marino S., Tognetti R., Alvino A. Effects of varying nitrogen fertilization on crop yield and grain quality of emmer grown in a typical Mediterranean environment in central Italy[J]. European Journal of Agronomy,2011,34(3):172-180.
    [42]Yang G., Tang H., Tong J., et al. Effect of fertilization frequency on cotton yield and biomass accumulation[J]. Field Crops Research,2012,125(0):161-166.
    [43]Ierna A., Pandino G., Lombardo S., et al. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization[J]. Agricultural Water Management,2011,101(1):35-41.
    [44]Scursoni J. A., Palmano M., De Notta A., et al. Italian ryegrass (Lolium multiflorum Lam.) density and N fertilization on wheat (Triticum aestivum L.) yield in Argentina[J]. Crop Protection,2012,32(0):36-40.
    [45]Guan G., Tu S., Yang J., et al. A Field Study on Effects of Nitrogen Fertilization Modes on Nutrient Uptake, Crop Yield and Soil Biological Properties in Rice-Wheat Rotation System[J]. Agricultural Sciences in China,2011,10(8):1254-1261.
    [46]Elwan M. W. M., Abd El-Hamed K. E. Influence of nitrogen form, growing season and sulfur fertilization on yield and the content of nitrate and vitamin C of broccoli[J]. Scientia Horticulturae,2011,127(3):181-187.
    [47]Wyngaard N., Echeverria H. E., Rozas H. R. S., et al. Fertilization and tillage effects on soil properties and maize yield in a Southern Pampas Argiudoll[J]. Soil and Tillage Research,2012,119(0):22-30.
    [48]Dordas C. A. Variation of physiological determinants of yield in linseed in response to nitrogen fertilization[J]. Industrial Crops and Products,2010,31(3):455-465.
    [49]Zhang H., Chi D., Wang Q., et al. Yield and Quality Response of Cucumber to Irrigation and Nitrogen Fertilization Under Subsurface Drip Irrigation in Solar Greenhouse [J]. Agricultural Sciences in China,2011,10(6):921-930.
    [50]Rieger S., Richner W., Streit B., et al. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation[J]. European Journal of Agronomy,2008,28(3):405-411.
    [51]Hao M., Fan J., Wang Q., et al. Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau[J]. Pedosphere,2007,17(2):257-264.
    [52]Montemurro F., Maiorana M., Ferri D., et al. Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization[J]. Field Crops Research,2006,99(2-3):114-124.
    [53]Zhang H., Yang X., He X., et al. Effect of Long-Term Potassium Fertilization on Crop Yield and Potassium Efficiency and Balance Under Wheat-Maize Rotation in China[J]. Pedosphere,2011,21 (2):154-163.
    [54]Dong H., Kong X., Li W., et al. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility[J]. Field Crops Research,2010,119(1):106-113.
    [55]Kasiviswanathan K., Iyengar M. N. S. Effect of plant densities, methods of leaf harvest and nitrogen fertilization on the leaf yield of irrigated mulberry in Mysore State[J]. Indian J. Seric,1970,9:43-48.
    [56]Kasiviswanathan K., Krishnaswami S., Chowdhury P. C. Long-term studies on the variety, spacing and nitrogen fertilization for the improvement of yield potential of mulberry[J]. Indian J Seric,1979,18:23-29.
    [57]Shankar M. A., Rangaswamy B. T. Effect of applied nitrogen and potassium on mulberry leaf yield and quality in relation to silkworm cocoon characters [J]. Better Crops International,1999,13(2):21.
    [58]Takagishi H., Shirata K., Kawauchi I., et al. Effects of fertilization on leaf quality of mulberry[J]. Bulletin of Sericultural Experiment Station,1985,30.
    [59]Penkov I., Others. Effect of fertilization of mulberry plantations on the growth of bushes and yield and nutritive value of mulberry leaves.[J]. Zhivotnov"dni Nauki,1980,17(4):93-100.
    [60]Absar M. M. R. N., Qader M. A. EFFECT OF NPK FERTILIZERS ON NUTRITIVE VALUES OF MULBERRY LEAVES [J]. Journal of the Asiatic Society of Bangladesh: Science,1993,19:137.
    [61]Paul N. K., Qaiyyum M. A. Effect of seed different levels of NPK fertilizers and irrigation on yield and nutritive quality of mulberry leaf[J]. Bangladesh Journal of Agricultural Research,2009,34(3):435-442.
    [62]杨贵明,张夫道,薛秋生,等.桑树体内氮、磷分布及品种间营养效率差异研究[J].植物营养与肥料学报,2003,9(1):106-111.
    [63]杨贵明,张夫道,薛秋生,等.不同桑树品种各器官氮磷含量及其累积量研究[J].湖北农业科学,2001(5):63-65.
    [64]陈防,鲁剑巍.氮磷肥配合施用对桑树生长和桑叶产量的影响[J].土壤肥料,2005(4):3-5.
    [65]韩世玉,杨红.冬、春不同施肥量对桑树春季生产性能的影响研究[J].广西蚕业,2001,38(1):15-19.
    [66]曾艳,周柳强,杨瑞青,等.施钾对桑树生长和吸钾特性的影响[J].广西农业科学,2007,38(2):169-173.
    [67]叶舒娅,郭熙盛,朱宏斌,等.钾肥对桑树生长、桑叶产量、养分吸收的影响[J].蚕业科学,2000,26(4):261-264.
    [68]鲁剑巍,陈防,万运帆,等.钾肥用量和品种对桑叶生产及蚕茧质量的影响[J].土壤学报,2004,41(5):780-788.
    [69]Jianwei L., Fang C., Yunfan W., et al. Investigation of Fertilization on Mulberry in Main Product Area of Hubei Province [J][J]. Chinese Agricultural Science Bulletin,2005,21(12):233.
    [70]鲁剑巍,陈防,廖志文,等.氮钾肥配合施用对桑叶产量品质及蚕茧质量的影响[J].植物营养与肥料学报,2007,13(4):719-724.
    [71]徐爱群,缪文军.氮磷肥不同配比对桑树生长的影响[J].上海农业科技,2007(5):143.
    [72]张竹青,鲁剑巍,孙向阳.氮钾配合施用对桑树生长和桑叶产量的影响[J].贵州农业科学,2007,35(2):65-66,73.
    [73]周明发,吴中民.桑园氮、磷、钾优化施用模型初探[J].耕作与栽培,2004(1):41-42.
    [74]曾艳.桑树营养特性及平衡施肥效应研究[D].广西大学,2007.
    [75]Zhang Z., Lu J., Sun X. The Advance on Mulberry Fertilization[J]. Hubei Agricultural Sciences,2007.
    [76]Wang Z., Chen J. The Experiment on Fertilization of NPK Ratio for the Mulberry Field for Parent Egg Production 1. The Effect of Different NPK Ratio of Fertilization on Spring Leaves Proportion and Quality[J]. Bulletin of Sericulture,2009,4.
    [77]Xu H., Lu J., Li X., et al. Investigation of present fertilization on rapeseed in Hubei province [J][J]. Chinese Journal of Oil Crop Sciences,2010,3.
    [78]Huo Y. Mulberry cultivation and utilization in China[C].2002.
    [79]Hu X., Xiong C., Yu C. Research on the Development of Sericulture Industry in China in the Background of Low Carbon Economy[J]. Ecological Economy,2011.
    [80]Li J., Cui Y. Application of Recommended Fertilization Expert Software System on Soil Testing and Fertilizer Recommendation [J][J]. Agricultural Science\& Technology and Equipment,2008,4.
    [81]张文标,金则新,柯世省,等.木荷光合特性日变化及其与环境因子相关性分析[J].广西植物,2006(5):492-498.
    [82]Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and Soil,1999,208(1):9-19.
    [83]沈秀瑛,戴俊英,胡安畅,等.玉米叶片光合速率与光、养分和水分及产量关系的研究[J].玉米科学,1994(3):56-60.
    [84]蔡瑞国,张敏,戴忠民,等.施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响[J].植物营养与肥料学报,2006(1):49-55.
    [85]孙红春,李存东,周彦珍.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响[J].河北农业大学学报,2005(6):9-14.
    [86]何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究[J].中国农业科学,1998(3):66-71.
    [87]M A Chler F., N O Sberger J. Influence of inorganic phosphate on photosynthesis of wheat chloroplasts[J]. Journal of experimental botany,1984,35(4):488-494.
    [88]张永丽,李雁鸣,肖凯,等.不同氮、磷用量对杂种小麦旗叶光合特性的影响[J].植物营养与肥料学报,2004(3):231-236.
    [89]Rao I. M., Pessarakli M. The role of phosphorus in photosynthesis[J]. Handbook of photosynthesis,1997,173:194.
    [90]Lauer M. J., Pallardy S. G., Blevins D. G., et al. Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.)[J].Plant physiology,1989,91(3):848.
    [91]Lauer M. J., Pallardy S. G., Blevins D. G., et al. Whole Leaf Carbon Exchange Characteristics of Phosphate Deficient Soybeans (Glycine max L.)[J]. Plant Physiol,1989,91(3):848-854.
    [92]杨晴,韩金玲,李雁鸣,等.不同施磷量对小麦旗叶光合性能和产量性状的影响[J].植物营养与肥料学报,2006(6):816-821.
    [93]饶立华,薛建明,蒋德安,等.钾营养对杂交稻光合作用动态及产量形成的效应[J].中国水稻科学,1990(3):106-112.
    [94]裴雪霞,党建友,王姣爱,等.钾锌锰配施对冬小麦旗叶叶绿素含量的影响[J].河南职业技术师范学院学报,2002(2):13-15.
    [95]周录英,李向东,王丽丽.氮、磷、钾、钙肥不同用量对花生光合性能及产量品质的影响[J].花生学报,2006(2):11-16.
    [96]王俊侠,范惠菊.水分和钾肥对冬小麦旗叶光合特性的影响[J].河北农业科学,2006(3):43-45.
    [97]安连荣,张洪武,尹家凤,等.桑树光合作用特性的研究[J].蚕业科学,2000(2):115-117.
    [98]吴飞,王代钢,李勇.三倍体桑树不同叶位表观光合速率测试[J].蚕业科学,2005(3):337-339.
    [99]胡彦波,郑桂英,王晶英,等.光强转换对不同生长环境下桑树叶片光化学效率的影响[J].应用生态学报,2010(2):300-305.
    [100]Hu Y. B., Zheng G. Y., Wang J. Y., et al. [Effects of irradiance transition on leaf photochemical efficiency of mulberry under different light conditions][J]. Ying Yong Sheng Tai Xue Bao,2010,21(2):300-305.
    [101]Hu Y. B., Sun G. Y., Wang X. C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants[J]. J Plant Physiol,2007,164(8):959-968.
    [102]孙磊,程嘉翎,方荣俊,等.桑树春季光合速率变化及其影响因子的研究[J].中国蚕业,2010(1):13-16.
    [103]冀宪领,盖英萍,牟志美,等.低聚壳聚糖对桑树种子萌发和桑树生理特性影响的研究[J].蚕业科学,2003(3):299-302.
    [104]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学,2004(2):117-122.
    [105]Yan H. X., Fang L. B., Huang D. Z. [Effects of drought stress on the biomass distribution and photosynthetic characteristics of cluster mulberry] [J]. Ying Yong Sheng Tai Xue Bao,2011,22(12):3365-3370.
    [106]Xu N., Sun G. Y. [Responses of mulberry seedlings photosynthesis and antioxidant enzymes to chilling stress after low-temperature acclimation][J]. Ying Yong Sheng Tai Xue Bao,2009,20(4):761-766.
    [107]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002(4):11-14.
    [108]任迎虹.干旱胁迫对不同桑品种保护酶和桑树生理的影响研究[J].西南大学学报(自然科学版),2009(4):94-99.
    [109]Guha A., Sengupta D., Reddy A. R. Physiological optimality, allocation trade-offs and antioxidant protection linked to better leaf yield performance in drought exposed mulberry[J]. J Sci Food Agric,2010,90(15):2649-2659.
    [110]时连辉,牟志美,姚健.不同桑树品种在土壤水分胁迫下膜伤害和保护酶活性变化[J].蚕业 科学,2005(1):13-17.
    [111]Ren Y. Protective enzyme activity and physiological properties of four mulberry varieties affected by drought stress in the Panxi Region of Sichuan Province, China[J]. Forestry Studies in China,2009(3).
    [112]刘明学,李邦发,王晓东.干旱胁迫对不同衰老型小麦抗氧化酶活性的影响[J].安徽农业科学,2008(23):9851-9853.
    [113]盖英萍,冀宪领,牟志美,等.氯化钠胁迫对桑树超氧化物歧化酶和过氧化氢酶的影响[J].蚕业科学,2006,32(1):99-102.
    [114]廖岩,赵肖,陈桂珠.盐胁迫对无瓣海桑幼苗根茎叶膜保护系统的影响[J].海洋环境科学,2009,28(2):154-158.
    [115]窦宏伟,周菲,谢清忠,等.SO_2胁迫对桑树部分生理生化特性的影响[J].蚕业科学,2010,36(1):126-131.
    [116]刘洪展,郑风荣,赵世杰.高温胁迫对不同衰老型小麦叶片中活性氧清除系统的影响[J].贵州农业科学,2006(1):8-10.
    [117]梁秋霞,曹刚强,苏明杰,等.植物叶片衰老研究进展[J].中国农学通报,2006(8):282-285.
    [118]阎成士,李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通报,1999(4):398-404.
    [119]杨长明,杨林章.不同养分模式对水稻叶片衰老的影响研究[J].中国生态农业学报,2003(1):20-22.
    [120]聂军,郑圣先,戴平安,等.控释氮肥调控水稻光合功能和叶片衰老的生理基础[J].中国水稻科学,2005(3):255-261.
    [121]王晓云,李向东,邹琦.施氮对花生叶片多胺代谢及衰老的调控作用[J].作物学报,2001(4):442-446.
    [122]何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3).
    [123]孙小妹,张涛,陈年来,等.土壤水分和氮素对春小麦叶片抗氧化系统的影响[J].干旱区研究,2011(2):205-214.
    [124]刘大会,刘伟,朱端卫,等.施用磷肥对菊花活性成分及清除自由基能力的影响[J].中国中药杂志,2010(17):2236-2241.
    [125]王春枝,陶姝宇,齐宝利,等.施肥对南果梨树叶片叶绿素含量、抗氧化酶活性及膜脂过氧化程度的影响[J].土壤通报,2011(6):1399-1403.
    [126]廖德志,吴际友,王旭军,等.氮磷钾不同配比施肥对台湾桤木抗氧化酶的影响[J].林业科技开发,2010(3):72-74.
    [127]时连辉,牟志美,姚健.不同桑树品种在土壤水分胁迫下膜伤害和保护酶活性变化[J].蚕业科学,2005,31(1):13-17.
    [128]胡彦波.低温和盐碱胁迫下桑树光合作用的适应性研究[D].东北林业大学,2007.
    [129]Srivastava S., Kapoor R., Thathola A., et al. Nutritional quality of leaves of some genotypes of mulberry (Morus alba)[J]. Int J Food Sci Nutr,2006,57(5-6):305-313.
    [130]Nomura T., Fukai T., Matsumoto J., et al. Constituents of the cultivated mulberry tree[J]. Planta Med,1982,46(3):167-174.
    [131]Liu X., Xiao G., Chen W. Advances in research and development of Mulberry[J]. Chinese Traditional and Herbal Drugs,2001,32(6):569-571.
    [132]Boschini C. Nutritional quality of mulberry cultivated for ruminant feeding[J]. Animal Production and Health Paper,2002(147):171.
    [133]Benavides J. E. Utilization of mulberry in animal production systems[J]. Mulberry for animal production. FAO Animal Production and Health Paper. FAO, Rome,2002:291.
    [134]徐万仁.利用桑叶作为家畜饲料的可行性[J].中国草食动物,2004,24(5):39-41.
    [135]苏海涯,吴跃明,刘建新.桑叶中的营养物质及其在反刍动物饲养中的应用[J].中国奶牛,2002(1):26-28.
    [136]吴浩,孟庆翔.桑叶的营养价值及其在畜禽饲养中的应用[J].中国饲料,2010(13):38-40,43.
    [137]王建芳,陈芳.桑叶的营养成分及在饲料中的应用[J].中国饲料,2005(12):36-37.
    [138]马可为,赵国先,李娜,等.桑叶在动物营养中的应用[J].养殖与饲料,2007(11):69-71.
    [139]Datta R. K. Mulberry cultivation and utilization in India[J]. Mulberry for animal production. Animal Production and Health,2002(147):45.
    [140]叶志毅,刘红.利用桑树叶资源发展畜牧业生产的可行性分析[J].中国畜牧杂志,2003,39(1):43-44.
    [141]张乃锋,刁其玉,王海燕,等.桑叶粉对蛋鸡生产性能及蛋品质的影响[J].中国家禽,2009,31(2):19-22.
    [142]吴萍,厉宝林,李龙,等.日粮中添加桑叶粉对绿壳蛋鸡产蛋性能及蛋品质的影响[J].蚕业科学,2007,33(2):280-283.
    [143]王道营,卞欢,诸永志,等.桑叶粉对鸡蛋蛋黄胆固醇含量和脂肪酸组成的影响[J].江西农业学报,2011,23(8):139-140,143.
    [144]兰翠英,董国忠,黄先智.桑叶粉对蛋鸡生产性能和蛋品质的影响[J].中国饲料,2011(19):40-44.
    [145]刘小明,曹玉华.饲料中添加桑叶粉对蛋鸡产蛋性能和鸡蛋品质的影响[J].湖南农业科学,2011(11):132-133,136.
    [146]李胜利,郑博文,李钢,等.饲用桑叶对原料乳成分和体细胞数的影响[J].中国乳业,2007(7):60-61.
    [147]黄自然,杨军,吕雪娟.桑树作为动物饲料的应用价值与研究进展[J].蚕业科学,2006,32(3):377-385.
    [148]郭建军,李晓滨,齐雪梅,等.饲料中添加桑叶对种母猪繁殖性能的影响[J].中国畜禽种业,2010,06(9):63-64.
    [149]刘先珍,朱建录.桑叶粉代替鱼粉饲喂肉鸡效果初报[J].中国农学通报,2006,22(7):51-53.
    [150]石艳华,杨晓东,马双马,等.桑叶粉替代玉米豆粕饲喂肉兔试验[J].黑龙江畜牧兽医,2007(7):72-73.
    [151]Kandylis K., Hadjigeorgiou I., Harizanis P. The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep[J]. Trop Anim Health Prod,2009,41(1):17-24.
    [152]Kandylis K., Hadjigeorgiou I., Harizanis P. The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep[J]. Tropical animal health and production,2009,41(1):17-24.
    [153]毛红骞,高红林.桑叶的重要成分、功能及其在食品中的应用[J].江苏调味副食品,2009,26(1):30-33,36.
    [154]杜周和,刘俊凤,左艳春,等.桑叶的营养特性及其饲料开发利用价值[J].草业学报,2011,20(5):192-200.
    [155]Srivastava S., Kapoor R., Thathola A., et al. Mulberry (Morus alba) leaves as human food: a new dimension of sericulture[J]. Int J Food Sci Nutr,2003,54(6):411-416.
    [156]Lee Y. J., Sim C. H., Chun S. S. Physical and sensory properties of chiffon cake prepared with mulberry powder[J]. Korean J Food Nutr,2009,22(4):508-516.
    [157]Hur M. S. Quality characteristics of sponge cake with addition of mulberry powder[J]. MD Thesis,2008:34-35.
    [158]Kim J. Y., Kwon H. J., Jung J. Y., et al. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats[J]. Journal of Agricultural and Food Chemistry,2010,58(11):6666-6671.
    [159]Mohammadi J., Naik P. R. Evaluation of hypoglycemic effect of Morus alba in an animal model[J]. Indian journal of pharmacology,2008,40(1):15.
    [160]Park J. M., Bong H. Y., Jeong H. I., et al. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats[J]. Nutrition research and practice,2009,3(4):272.
    [161]Kimura T., Nakagawa K., Kubota H., et al. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans[J]. Journal of agricultural and food chemistry,2007,55(14):5869-5874.
    [162]Kim G. N., Kwon Y. I., Jang H. D. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting alpha-glucosidase in normal rats[J]. J Med Food,2011,14(7-8):712-717.
    [163]Chang L. W., Juang L. J., Wang B. S., et al. Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark[J]. Food Chem Toxicol,2011,49(4):785-790.
    [164]Andallu B., Varadacharyulu N. C. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats[J]. Clinica Chimica Acta,2003,338(1-2):3-10.
    [165]Peng C. H., Liu L. K., Chuang C. M., et al. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis[J]. J Agric Food Chem,2011,59(6):2663-2671.
    [166]Kong W. H., Oh S. H., Ahn Y. R., et al. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models[J]. Journal of agricultural and food chemistry,2008,56(8):2613-2619.
    [167]Ou T. T., Hsu M. J., Chan K. C., et al. Mulberry extract inhibits oleic acid-induced lipid accumulation via reduction of lipogenesis and promotion of hepatic lipid clearance[J]. J Sci Food Agric,2011,91(15):2740-2748.
    [168]Sergio W. Mulberry roots and seeds may be effective in the treatment of AIDS[J]. Medical Hypotheses,1989,29(1):75-76.
    [169]Du J., He Z., Jiang R., et al. Antiviral flavonoids from the root bark of Morus alba L.[J]. Phytochemistry,2003,62(8):1235-1238.
    [170]Xiangrui Y. H. Z. Research Progress of 1-deoxynojirimycin [J][J]. Bulletin of Sericulture,2003,l.
    [171]周晓玲,孙凌云,张进,等.1-脱氧野尻霉素的来源及合成研究进展[J].蚕业科学,2011,37(1):105-111.
    [172]周吉银,王稳,周世文.桑药用资源的降糖作用机制研究进展[J].中国实验方剂学杂志,2010,16(11):204-206.
    [173]何雪梅,廖森泰,刘吉平.桑树的营养功能性成分及药理作用研究进展[J].蚕业科学,2004,30(4):390-394.
    [174]耿鹏,朱元元,杨洋,等.桑树资源中1-脱氧野尻霉素的测定及其生物活性分析[J].中草药,2005,36(8):1151-1154.
    [175]Kim J., Kim S., Lee H. S., et al. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A,2003,1002(1-2):93-99.
    [176]Meng X., Ouyang Z., Chang Y., et al. [Contrast of 1-deoxynojirimycin content in mulberry leaves from different habitats][J]. Zhong Yao Cai,2008,31(1):8-10.
    [177]Nuengchamnong N., Ingkaninan K., Kaewruang W., et al. Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,44(4):853-858.
    [178]欧阳臻,陈钧.不同季节桑叶中1-脱氧野尻霉素(DNJ)含量的测定[J].食品科学,2004,25(10):211-214.
    [179]叶晶晶,殷浩,孙波,等.桑树中的1-脱氧野尻霉素含量变化规律研究[J].蚕业科学,2009,35(4):722-727.
    [180]张军,穆莉,檀华蓉,等.桑叶中黄酮化合物的提取工艺及不同品种不同时期的含量变化[J].蚕业科学,2006,32(1):142-145.
    [181]吕玉兰,丘振文,黄春莲.五种桑品种桑叶总黄酮含量的分析[J].中医临床研究,2010,2(8):96-97.
    [182]刘利,潘一乐.不同桑种桑叶总黄酮含量分析[J].中国农学通报,2008,24(1):488-491.
    [183]孙敏耀,唐文照,卢霞,等.分光光度法测定不同采收时间桑叶中总黄酮[J].中草药,2004,35(10):1190-1191.
    [184]张作法,金洁,时连根.反相高效液相色谱法测定桑枝中1-脱氧野尻霉素的含量[J].中国药学杂志,2007,42(7):535-538.
    [185]张和禹,汪泰初,刘金珠,等.桑树枝干乳汁中的1-脱氧野尻霉素含量测定与分析[J].蚕业科学,2011,37(1):121-124.
    [186]陈正收,徐瑾,周应军.桑白皮药材中1-脱氧野尻霉素的两种含量测定方法的比较[J].中成药,2007,29(11):1654-1657.
    [187]廖森泰,何雪梅,邹宇晓,等.广东桑桑枝总黄酮含量测定及与体外抗氧化活性的相关性研究[J].蚕业科学,2007,33(3):345-349.
    [188]罗国庆,吴亦集,王振江,等.桑白皮总黄酮的提取工艺优化及不同方法获取桑白皮的总黄酮提取效果[J].蚕业科学,2010,36(5):738-742.
    [189]赵桂华,马连珍,刘和善,等.对桑枝的老嫩程度与黄酮含量关系的实验研究[J].基层中药杂志,2001,15(2):22-23.
    [190]苏海涯,吴跃明,刘建新.桑叶中的营养物质和生物活性物质[J].饲料研究,2001(9):1-3.
    [191]颜新培,蔡光先,李顺祥,等.桑蚕及相关产物的化学成分与药理研究现状[J].湖南中医药大学学报,2009,29(5):78-80.
    [192]Li Y., Ji D., Zhong S., et al. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice[J]. Journal of Ethnopharmacology,2011,134(3):961-970.
    [193]Asano N., Oseki K., Tomioka E., et al. N-containing sugars fromMorus alba and their glycosidase inhibitory activities[J]. Carbohydrate Research,1994,259(2):243-255.
    [194]Tanabe K., Nakamura S., Omagari K., et al. Repeated ingestion of the leaf extract from Morus alba reduces insulin resistance in KK-Ay mice[J]. Nutrition Research,2011,31(11):848-854.
    [195]Tsuduki T., Nakamura Y., Honma T., et al. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the $\beta$-oxidation system in rat liver[J]. Journal of agricultural and food chemistry,2009,57(22):11024-11029.
    [196]蒋昊,徐立,刘峻池,等.药桑的生物活性成分及药理作用研究进展[J].蚕业科学,2011,37(1):98-104.
    [197]俞灵莺,李向荣,方晓.桑叶总黄酮对糖尿病大鼠小肠双糖酶的抑制作用[J].中华内分泌代谢杂志,2002,18(4):313-315.
    [198]薛长勇,刘英华,张荣欣,等.桑叶黄酮对a-糖苷酶活性的影响[J].中国组织工程研究与临床康复,2007,11(21):4191-4193.
    [199]陈玲玲,刘炜,陈建国,等.桑叶黄酮对糖尿病小鼠调节血糖的作用机制研究[J].中国临床药理学杂志,2010,26(11):835-838.
    [200]郭小补,廖森泰,刘吉平,等.不同桑品种的桑叶总黄酮含量与体外抗氧化活性的相关性[J].蚕业科学,2008,34(3):381-386.
    [201]李向荣,方晓,俞灵莺.桑叶黄酮抗氧化及抑制蛋白糖基化作用[J].浙江大学学报(农业与生命科学版),2005,31(2):203-206.
    [202]苏言辉,祝红梅,夏道曼,等.桑叶黄酮对胰岛素抵抗大鼠氧化应激影响[J].中国公共卫生,2011,27(10):1225-1226.
    [203]Nomura T., Fukai T., Hano Y. Chemistry and biological activities of isoprenylated flavonoids from medicinal plants (moraceous plants and Glycyrrhiza species)[J].2003,Volume 28, Part 1:199-256.
    [204]Asano N., Tomioka E., Kizu H., et al. Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis[J]. Carbohydrate Research,1994,253(0):235-245.
    [205]方晓,李向荣,陈伟平,等.桑叶浸出液对糖尿病模型大鼠降血糖作用初步观察[J].浙江医学,1999(4).
    [206]徐健飞,义祥辉,陈全斌.桑叶不同化学成分的降血糖作用[J].广西植物,2010,30(2):284-286.
    [207]陈福君,卢军,张永煜.桑的药理研究(Ⅰ)——桑叶降血糖有效组分对糖尿病动物糖代谢的影响[J].沈阳药科大学学报,1996(1):24-27.
    [208]周吉银,王稳,周世文.桑药用资源的降糖作用机制研究进展[J].中国实验方剂学杂志,2010,16(11):204-206.
    [209]孟夏,欧阳臻,常钰,等.不同产地桑叶的1-脱氧野尻霉素含量比较[J].中药材,2008,31(1):8-10.
    [210]关丽萍,郑光浩,金晴昊,等.RP-HPLC测定不同地区、不同采集期桑叶中1-脱氧野尻霉素[J].中草药,2005,36(12):1881-1882.
    [211]鲁战会,吴生文,唐健,等.桑叶功效成分含量与产地关联性研究[J].食品科技,2007,32(1):75-79.
    [212]殷浩,佟万红,叶晶晶,等.光照强度对桑叶中1-脱氧野尻霉素含量的影响[J].安徽农业科学,2010,38(28):15634-15635,15654.
    [213]殷浩,佟万红,叶晶晶,等.施氮量及氮素形态对桑叶中1-脱氧野尻霉素含量的影响[J].安徽农业科学,,2010,38(32):18129-18131.
    [214]殷浩,佟万红,叶晶晶,等.施氮量及氮素形态对桑叶中1-脱氧野尻霉素含量的影响[J].农业科学与技术(英文版),2010,11(6):183-185.
    [215]范巧佳,张毅,杨世民,等.氮素形态对川芎生长、产量与阿魏酸和总生物碱含量的影响[J].植物营养与肥料学报,2010,16(3):720-724.
    [216]宋姗姗,隆小华,刘玲,等.不同钾肥用量对长春花盛花期生长和生物碱含量的影响[J].土壤,2011(6):935-940.
    [217]裴建文,孙新荣,王鹏,等.施肥对西北地区各等级半夏总生物碱含量的影响[J].甘肃农业大学学报,2010,45(2):95-99.
    [218]徐三林,林秋梅,符洪,等.施肥对药用长春花产量和生物碱含量的影响[J].中国园艺文摘,2009,25(5):28-29.
    [219]纪瑛,蔺海明,陈垣,等.施氮对苦豆子生物量及生物碱积累的影响[J].草业学报,2008,17(3):40-46.
    [220]张燕,王文全,杜世雄,等.氮、磷、钾对益母草生长及水苏碱和总生物碱影响的研究[J].中草药,2007,38(12):1881-1884.
    [221]陈中坚,孙玉琴,赵雄廷,等.施肥水平对半夏产量和质量影响的研究[J].中药材,2006,29(8):757-759.
    [222]刘大会,杨特武,朱端卫,等.不同钾肥用量对福田河白菊产量和质量的影响[J].中草药,2007,38(1):120-124.
    [223]刘大会,朱端卫,周文兵,等.氮、磷、钾配合施用对福田白菊产量和品质的影响[J].中草药,2006,37(1):125-129.
    [224]杨睿,付春祥,金治平,等.不同理化因子对雪莲毛状根生长和总黄酮生物合成的影响[J].生物工程学报,2005,21(2):233-238.
    [225]郑军,曹福亮,郁万文.不同氮素形态及配比对生育后期银杏叶品质的影响[J].浙江林学院学报,2007,24(5):564-568.
    [226]刘乡,刘大会,杨特武,等.氮、钾对盆栽药菊的生长、产量及品质影响[J].中药材,2007,30(11):1356-1359.
    [227]刘春霞,王玥,严胜柒,等.氮、磷营养限制及光照、蔗糖浓度对黄酮代谢相关基因表达的影响[J].江苏农业科学,2010(1):4-8.
    [228]李明,张清云,蒋齐,等.氮磷钾互作效应对甘草黄酮含量影响的初步研究[J].土壤通报,2007,38(2):301-304.
    [229]李静,夏建国.氮磷钾与茶叶品质关系的研究综述[J].中国农学通报,2005,21(1):62-65,75.
    [230]李菊艳,姚文秋,宫绍斌,等.环境因素对大豆异黄酮的影响研究进展[J].中国农学通报,2010,26(9):167-170.
    [231]吴家胜,应叶青,曹福亮,等.施磷对银杏叶产量及黄酮含量的影响[J].东北林业大学学报,2003,31(1):17-18.
    [232]楼崇,唐二春,汪贵斌,等.施肥对苗期银杏叶黄酮质量分数的影响[J].浙江林学院学报,2006,23(1):61-64.
    [233]王小晶,蔡国学,王洋,等.氮磷钾分期施用对甘薯产量和品质的影响[J].中国农学通报,2011,27(7):188-192.
    [234]左启华,李会彬,张立峰,等.施钾对华北高寒区饲用玉米产量与营养品质的影响[J].玉米科学,2011,19(2):119-122.
    [235]Fan T., Wang S., Xiaoming T., et al. Grain yield and water use in a long-term fertilization trial in Northwest China[J]. Agricultural Water Management,2005,76(1):36-52.
    [236]吕慧峰,王小晶,赵欢,等.肥料组合对马铃薯产量、品质和土壤肥力的影响[J].长江蔬菜,2010(22):46-48.
    [237]李华,毕如田,程芳琴,等.钾锌锰配合施用对马铃薯产量和品质的影响[J].中国土壤与肥料,2006(4):46-50.
    [238]赵荣芳,曹宁,崔振岭,等.氮素分期优化管理对冬小麦产量和籽粒品质的影响[J].中国农学通报,2009,25(16):142-145.
    [239]胡华锋,介晓磊,郭孝,等.氮磷钾及微量元素与有机肥配施对紫花苜蓿饲草产量及品质的影响[J].沈阳农业大学学报,2010,41(1):98-101.
    [240]朱小梅,李泽碧,吴家旺,等.不同施肥对白菜产量和品质的影响[J].江苏农业科学,2007(1):193-195.
    [241]黄东风,林新坚,罗涛.几种有机肥料在高丹草上的应用效果[J].草业科学,2005,22(5):32-35.
    [242]鲁剑巍,陈防,廖志文,等.氮钾肥配合施用对桑叶产量品质及蚕茧质量的影响[J].植物营养与肥料学报,2007,13(4):719-724.
    [243]许楠,张晓松,张秀丽,等.供氨水平对田间桑树叶片产量及其生理特性的影响[J].经济林研究,2011,29(3):45-49.
    [244]施炳坤,中国农业科学院,蚕业研究所.中国桑树品种志[M].农业出版社,1993.
    [245]刘刚,佟万红,黄盖群,等.四川桑树种质资源研究现状与展望[J].安徽农业科学,2008(33):14625-14626.
    [246]鲁剑巍,陈防,万运帆,等.湖北省蚕桑主产区桑园施肥状况调查[J].中国农学通报,2005(12).
    [247]罗春燕,林超文,涂仕华,等.四川盆地钙质紫色土区桑园养分状况研究[J].西南农业学报,2011(1):159-163.
    [248]罗春燕,林超文,涂仕华,等.四川丘陵蚕桑主产区桑园养分管理状况研究[J].西南农业学报,2010(4):1155-1159.
    [249]杨海霞,朱祥瑞,房泽民.蚕沙的开发利用研究进展[J].蚕桑通报,2002(3):9-12.
    [250]邢萱.蚕沙综合利用技术及效益[J].农牧产品开发,1995(9):17-19.
    [251]吕玉宪,彭晓虹,张建华.蚕沙堆肥化处理生产有机肥研究[J].中国蚕业,2003(3):39-40.
    [252]管三平.推广桑树专用肥提高桑园肥培水平[J].中国蚕业:38-39.
    [253]刘刚,殷浩,罗春燕,等.四川省丘陵地区桑树平衡施肥的数学模型建立[J].蚕业科学,2011(3):526-531.
    [254]刘刚,殷浩,佟万红,等.氮、磷、钾对春季桑叶1-脱氧野尻霉素含量和产量的影响[J].草业科学,2012(2):274-279.
    [255]Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and Soil,1999,208(1):9-19.
    [256]韩晓日,姜琳琳,王帅,等.不同施肥处理对春玉米穗位叶光合指标的影响[J].沈阳农业大学学报,2009(4):444-448.
    [257]许大全,丁勇,沈允钢.C4植物玉米叶片光合效率的日变化[J].植物生理学报:43-48.
    [258]曾琳,王更亮,王广东.氮磷钾营养水平对观赏向日葵生长发育及光合特性的影响[J].西北植物学报,2010(6):1180-1185.
    [259]Kalt-Torres W., Kerr P. S., Usuda H., et al. Diurnal changes in maize leaf photosynthesis: I. Carbon exchange rate, assimilate export rate, and enzyme activities[J]. Plant Physiology,1987,83(2):283.
    [260]Furbank R. T., Foyer C. H., Walker D. A. Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1987,894(3):552-561.
    [261]Fredeen A. L., Rao I. M., Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max[J]. Plant Physiology,1989,89(1):225.
    [262]黄淑君,于翠,熊超,等.桑树光合特性研究进展[J].湖北农业科学,2011(24):5028-5031.
    [263]越鹏,李彩凤,陈业婷,等.氮素水平对甜菜功能叶片光合特性的影响[J].核农学报,2010(5):1080-1085.
    [264]Ramanjulu S., Sreenivasalu N., Giridhara Kumar S., et al. Photosynthetic characteristics in mulberry during water stress and rewatering[J]. Photosynthetica,1998,35(2):259-263.
    [265]任迎虹.干旱胁迫对不同桑品种保护酶和桑树生理的影响研究[J].西南大学学报(自然科学版),2009(4):94-99.
    [266]鲁剑巍,熊建平,陈防,等.施肥对桑叶品质的影响[J].蚕业科学,2004(4):417-420.
    [267]蒋瑜,张怀志.平衡施肥技术在桑树上的应用[J].土壤肥料,2004(5):33-35.
    [268]Ren Y. Protective enzyme activity and physiological properties of four mulberry varieties affected by drought stress in the Panxi Region of Sichuan Province, China[J]. Forestry Studies in China,2009,11(3):190-195.
    [269]张锋,王建华,余松烈,等.白首乌氮、磷、钾积累分配特点及其与物质生产的关系[J].植物营养与肥料学报,2006(3):369-373.
    [270]Li J. T., Zhang B. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical China[J]. Pedosphere,2007,17(5):568-579.
    [271]王伟妮,李小坤,鲁剑巍,等.氮磷钾配合施用对水稻养分吸收、积累与分配的影响[J].华中农业大学学报,2010(6):710-714.
    [272]李林锋,吴小凤.氮磷钾配施对鸦胆子养分吸收与分配的影响[J].热带农业科学,2010(11):15-20.
    [273]张朝轩,谢祝捷,陈澍棠,等.氮磷钾硼肥配施对青花菜养分吸收分配及产量和品质的影响[J].园艺学报,2008(4):591-594.
    [274]张西露,刘明月,伍壮生,等.马铃薯对氮、磷、钾的吸收及分配规律研究进展[J].中国马铃薯,2010(4):237-241.
    [275]张鹏,刘瑞,崔亚胜,等.施肥对陕西关中西部灌区小麦养分吸收及肥料利用率的影响[J].西北农林科技大学学报(自然科学版),2011(1):166-170.
    [276]Cassman K. G., Gines G. C., Dizon M. A., et al. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen[J]. Field Crops Research,1996,47(1):1-12.
    [277]杨贵明,张夫道,薛秋生,等.桑树体内氮、磷分布及品种间营养效率差异研究[J].植物营养与肥料学报,2003(1):106-111.
    [278]王芳,励建荣.桑叶的化学成分、生理功能及应用研究进展[J].食品科学,2005,26(z1):111-117.
    [279]何雪梅,廖森泰,刘吉平.桑树资源综合利用进展及开发对策[J].蚕业科学.,2005,31(1):4-7.
    [280]殷浩,佟万红,叶晶晶,等.施氮量及氮素形态对桑叶中1-脱氧野尻霉素含量的影响[J].农 业科学与技术(英文版),2010,11(6):183-185.
    [281]Yin H., Shi X., Sun B., et al. Accumulation of 1-deoxynojirimycin in silkworm, Bombyx mori L.[J]. Journal of Zhejiang University-Science B,2010,11(4):286-291.
    [282]刘利林,王帅,尤宜安.桑叶营养价值及部分活性物质的初步研究[J].塔里木大学学报,2010,22(3):25-28.
    [283]陈建生,徐培智,唐拴虎,等.施肥对甜玉米物质形成累积特征影响研究[J].植物营养与肥料学报,2010,16(1):58-64.
    [284]殷浩,佟万红,叶晶晶,等.施氮量及氮素形态对桑叶中1-脱氧野尻霉素含量的影响[J].安徽农业科学,2010,38(32):18129-18131.
    [285]王泽林,陈继久.种茧育桑园氮磷钾施肥最佳配方的试验1.春季不同施肥比例对桑叶产、质量的影响[J].蚕桑通报,2009,40(4):23-26.
    [286]王圣瑞,陈新平,高祥照,等.3414"肥料试验模型拟合的探讨[J].植物营养与肥料学报,(2).
    [287]高祥照,马常宝,杜森.测土配方施肥技术[M].中国农业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700