用户名: 密码: 验证码:
采空区多灾耦合作用下的隧道稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采空区塌陷、滑坡均为典型的地质灾害问题,由此带来的损失非常巨大,因此对采空区塌陷、滑坡问题的研究也是岩土工程领域重点课题。苏州阳山矿区目前已经发生地面塌陷和地裂缝,并造成附近山体多处滑坡。拟建隧道工程将从两个采空区之间通过并穿过阳山,而这些采空区导致的地面塌陷、地裂缝、滑坡等地质灾害必将对隧道工程产生影响,因此苏州阳山隧道工程建设条件非常复杂。本文以该工程为背景,研究采空区、滑坡、地裂缝、地面塌陷等因素对隧道工程的影响,对隧道及附近山体边坡进行稳定性评价。显然这一研究对拟建隧道工程设计和施工具有重要的指导作用和理论意义。隧道和边坡稳定性评价的前提是通过正确的方法获取岩体的物理力学参数,目前常用的方法有现场试验法以及经验估算法,其中现场试验操作复杂,耗时费力,而且现场试验得出的数据也无法避免尺寸效应,最终选取的力学参数也不一定准确。经验估算法无需现场的大型试验,主要靠一些岩体质量评价体系来进行参数估算,但必须要在查清岩体结构类型、控制岩体稳定性优势面并具有一定数量的岩体基本强度参数的基础上进行,如岩块的单轴抗压强度、抗剪强度等。
     工程地质优势面分析和岩石强度试验方法是工程稳定性评价的基础,因此本文在现场工程地质调查及控稳优势面分析的基础上,重点研究岩石强度试验方法。试图寻求一种能在现场方便进行的岩石强度测试方法,为此自行研制了岩石强度测试仪,该测试仪可方便快捷的对控制工程稳定性的软弱岩块的单轴抗压强度、抗拉强度、粘聚力进行测试。然后结合岩体稳定性优势面分析和岩体质量评价体系进行物理力学参数的估算。最后对采空区塌陷、滑坡、隧道的稳定性进行了计算分析,论文主要取得以下研究成果和认识:
     (1)对苏州市拟建阳山隧道工程场区进行工程地质调查和岩体稳定性优势面分析,研究结果表明工程场区主要为压性断裂,致使岩体极其破碎,影响隧道工程有断层破碎带、岩脉带、滑坡、地面塌陷等。控制隧道及出入口边坡稳定性的优势面组合为岩体破碎带、岩脉带及NE向结构面。在对阳山岩体质量进行评价时,分析结果显示BQ与Q、RMR与Q成对数关系,BQ与RMR呈线性关系。用Hoek-Brown法计算了阳山岩体物理力学参数,便于在计算稳定性是选用。结构面抗剪强度对节理岩体抗剪强度的影响分析结果显示,法向应力越大,节理连通率对强度比的影响越小,随着连通率的增大,法向应力对强度比的影响逐渐减小。
     (2)分析总结了目前存在的岩石强度测试方法,指出了不足之处,对自行研制的岩石强度测试仪进行了试验,该仪器操作方便快捷,且性能稳定可以测定岩块的粘聚力、单轴抗压强度、抗拉强度,仪器总重约30Kg,可以进行现场测试。本文还进行了室内外的岩石单轴抗压强度、点荷载强度、回弹强度的试验,并通过回归分析建立了三者的数学关系,可以相互转换三种强度指标。对于岩石基本摩擦角的测定,本文提出量力环法,并与滑落法对比,平均误差仅为4.38%。
     (3)通过现场工程探勘和工程地质分析,北侧青山高岭土矿目前矿层已开采结束,处于停采状态,且距山体较远,地面塌陷已完成,继续出现灾害性塌陷及滑坡的可能性较低。南侧阳西高岭土矿采空区面积大,且深度浅,距阳山近,地表坡度较大,目前已经出现多个塌陷坑,且造成西侧山体发生滑坡,山体坡面多处开裂,同时该矿区仍在开采中,严重威胁山体稳定。因此,对阳西矿区应提高重视,加强对滑坡的监测,采用钻探、物探手段,进一步确定滑面位置。数值计算结果显示,阳西矿区在1#、2#、3#、4#采空区相继开采形成后就出现了数米的沉降,采空区上方的剪应变增量已经完全贯通,说明边坡已经滑动,这与实际情况是吻合的。
     (4)在有采空区的影响下,在隧道纵断面上,采空区滑坡对隧道的影响主要体现在水平位移上的放大作用,一般增加在10%左右。因此在隧道开挖时,当开挖至山体西侧坡脚时应加强监测。在隧道横断面上,隧道围岩变形明显受到滑坡的影响,在模型中X=1020m断面处,滑坡对隧道的影响较小,随着断面向西侧及靠近采空区一侧移动,滑坡对隧道的影响明显加剧,因此隧道开挖至X=1020m及以西地段时应提高重视,同时在断层破碎带及岩脉带处也需要足够重视。
Goaf collapse, landslides are typical geological disasters, the loss due to them is very great, therefore, the goaf collapse, landslide issues are important subjects of research in the field of geotechnical engineering. In Yangshan mine area of Suzhou, the ground collapse and ground fissures had occurred, and leaded to landslides. A proposed tunnel project will across the Yangshan, these goaf, ground collapse, ground fissures, landslides and other geological disasters will have an impact on the tunnel project.the construction conditions of Yangshan tunnel project are very complex. As the background to this project, the influence of goaf, landslides, ground fissures, ground collapse and other factors on the tunnel project was studied, the tunnel and the nearby mountain slope stability was evaluated in this paperr. Obviously, this study plays an important role in guiding the engineering design and construction of the proposed tunnel. The premise of stability evaluation for the tunnel and slope is finding a correct way to obtain physical and mechanical parameters of rock mass. The currently used methods is the field test method and empirical estimation method, the operation of field test is complex, time-consuming, but also the field trials data can not avoid the size effect, the selection of mechanical parameters is not necessarily accurate. The empirical estimation method depends mainly on rock mass quality evaluation system does not take into account large-scale trials, but it must identify the rock mass structure type, control surface of the rock mass and need a certain number of rock strength parameters, such as rock uniaxial compressive strength, shear strength.
     The analysis of preferred plane and rock strength test methods is the basis of engineering stability evaluation, therefore, according to the analysis of preferred plane and field engineering geology survey, rock strength test method was researched mainly. A kind of rock strength tester was self-developed, the tester can be a convenient method for testing rock uniaxial compressive strength, tensile strength and cohesion. Then combine the analysis of preferred plane and the system of rock mass quality evaluation to estimate the physical and mechanical parameters. Finally, the stability of goaf collapse, landslide, and tunnel was calculated and analyzed. To sum up, the main results of this paper can be summarized as follows:
     (1) The investigation of engineering geology and preferred plane analysis for Yangshan tunnel project show that the engineering field was controlled by compressive fracture, and produced extremely broken rock mass. The important influence factors of tunnel project are fault broken zone, dykes, landslides and ground collapse. The preferred plane controlling the stability of tunnel and slope are fault broken zone, dike zone and the NE structure surface. The quality evaluation of Yangshan rock mass shows that the relation of BQ and Q, RMR and Q is logarithmic, BQ and RMR showed a linear relationship. The physical and mechanical parameters of rock mass were calculated by Hoek-Brown method, and these parameters can be used for the numerical calculation. The impact analysis of the shear strength of jointed rock mass by structure surface showes that, the normal stress is greater and the impact of strength ratio by joints connectivity rate is smaller. The impact of strength ratio by normal stress decreases with the increase of joints connectivity rate.
     (2) The existing rock strength testing methods was analyzed and summarized, the self-developed rock strength tester can be used to test uniaxial compressive strength, tensile strength, and cohesion, the total weight is about30Kg, it is facilitate to the field testing. The indoor and outdoor rock uniaxial compressive strength, point load strength, rebound strength tests were also tested in this paper, and regression analysis was used to establish the mathematical relationship of the three strength. Proving Ring method was invented to test the basic friction angle of rock, and the average error is only4.38%when contrast with the slide method.
     (3) According to the field geological survey and engineering geology analysis, Qingshan mine area had finished mining, and it is far from the mountain, ground collapse had completed, the possibility of catastrophic collapse and landslide is lower. Yangxi mine area has a larger goaf area and shallow depth, there are already multiple collapse pits, and caused landslide in the west side of the mountain, while the mine area is still mining, it's a serious threat to the stability of the mountain. Therefore, the Yangxi mine area should improve great importance to monitor for landslide,take drilling and geophysical to determine the sliding surface further. The numerical results show that Yangxi mining area, the goaf1#,2#,3#and4#formed a few meters of settlement, the rock mass above goaf has been completely passed through by shear strain, indicating that the slope had slidied, which is consistent with the actual situation.
     (4) Under goaf condition, the influence of landslide to tunnel is mainly reflecting on amplification for horizontal displacement, generally increased about10%. Therefore, when tunnelling to the west side of the mountain, the slope and tunnel should be intensified monitoring. In the numerical model, the cross-section of X=1020m, landslide has a small impact on the tunnel, when the cross-section move to west side, the impact of landslide was significantly increased, therefore, when tunneling to X=1020m, and the west should improve great importance, and fault fracture zone and dykes zone also needs adequate attention.
引文
[1]王树仁,慎乃齐,张海清,等.下伏采空区高速公路隧道变形特征数值分析[J],中国矿业,2008,17(3),76-79.
    [2]张长敏.煤矿采空塌陷特征与危险性预测研究—以北京西山地区为例[D],中国地震局地质研究所博士学位论文,2009.
    [3]王晖.青兰高度公路沿线北八特采空区地表沉陷机理及数值模拟[D],中国地质大学(北京)博士学位论文,2010.
    [4]L. Holla, Ground Movement Due to Longwall Mining in High Relief Areas in New South Wales, Australia[J]. Int. J. Rock Uech. Min. Sci,1997,34(5),775-787.
    [5]BIAN Zhengfu, INYANG Hilary I, DANIELS John L,etc,al. Environmental issues from coal mining and their solutions[J]. Mining Science and Technology,2010,20,215-223.
    [6]马海涛,贺红生,付士根.采空塌陷影响因素及稳定性分级方法研究[J],中国安全生产科学技术,2008,4(5),37-41.
    [7]蔡美峰,孔留安,李长洪,等.玲珑金矿主运巷塌陷治理区稳定性动态综合监测与评价[J],岩石力学与工程学报,2007,26(5),886-894.
    [8]张锦瑞,陈娟浓,岳志新,等.采煤塌陷引起的地质环境问题及其治理[J],中国水土保持,2007,4,37-39.
    [9]王金安,李大钟,尚新春.采空区坚硬顶板流变破断力学分析[J],北京科技大学学报,2011,33(2),142-148.
    [10]胡留现,王慧萍.东同矿业公司近地表采矿诱发地表塌陷的数值模拟研究[]],黄金,2010,31(8),26-29.
    [11]刘菁华,王祝文,朱士.煤矿采空区及塌陷区的地球物理探查[J],煤炭学报,2005,30(6),715-719.
    [12]Rajendra Singh, P. K. Mandal, A. K. Singh, etc, al. Coal pillar extraction at deep cover:With special reference to Indian coalfields[J]. International Journal of Coal Geology,2011,86,276-288.
    [13]张涛,夏述光,谭显坤,等.断裂构造对山区公路隧道选线与施工的影响研究[J],岩土力学,2005,26(S),275-279.
    [14]余永强,路耀邦,杨小林,等.高地应力断裂破碎隧道爆破开挖振动效应[J],工程爆破, 2010,16(3),48-51.
    [15]赵振寰,阳山高岭土矿山坡变形及岩体滑移的研究[J],同济大学学报,1988,16(4),429-434.
    [16]李建华,苏州高岭土矿壁式分层崩落法试采初析[J],非金属矿,2001,24(1),32-34.
    [17]曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克—普拉格岩石强度准则的修正[J],水利学报,2004,(9),18-23.
    [18]周国林,谭国焕,等.剪切破坏模式下岩石的强度准则[]],岩石力学与工程学报,2001,20(6),753-76.
    [19]丁黄平,佴磊,张振营.岩石抗压强度点荷试验与回弹试验相关性研究[J],路基工程,2008,5,70-71.
    [20]Z. Y. Yang, J. M. Chen, T. H. Huang, Effect of Joint Sets on the Strength and Deformation of Rock Mass Models[J], Int. J. Rock Uech. Min. Sci,1998,5(1),75-84.
    [21]C. Gehle, H. K. Kutter. Breakage and shear behaviour of intermittent rock joints[J], International Journal of Rock Mechanics & Mining Sciences,2003,40,687-700.
    [22]M. Prudencio, M. Van Sint Jan. Strength and failure modes of rock mass models with non-persistent joints[J], Int. J. Rock Uech. Min. Sci,2007,44,890-902.
    [23]P. H. S. W. Kulatilake, Bwalya Malama, Jialai Wang, physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J], Int. J. Rock Uech. Min. Sci,2001, 38,641-657.
    [24]王谦源,李晔.形节理岩体强度与变形尺度效应的试验研究[J],岩土力学,2008,29(5),1325-1328.
    [25]栗东平,王谦源,张增祥,等.模拟岩性的相似试验研究[J],2007,24(2),12-14.
    [26]E. Hoek, E. T. Brown. Underground Excavatio in Rock[M]. The Institute of Mining and Metallurgy, london,1980.
    [27]E. HOEK, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion—2002 edition[C]//Proceedings of NARMS-TAC 2002, Minging Innovation and Technology. Toronto: University of Toronto,2002,267-273.
    [28]E. Hoek, E. T. Brown. Empirical strength criterion for rockmass [J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineers,1980,106(GT9),1013-1035.
    [29]E. Hoek. An empirical strength criterion and its use in designing slopes and tunnels in heavily jointed weathered rock [A]. Proceeding of 6th Southeast Asia Conference on Soil Engineering[C]. Taipei:[s.n.],1980.
    [30]E. Hoek. Practice Rock Engineering[M]. Rotterdam: A. A. Balkema,2000.
    [31]E. T. Brown, D H Trollope, Strength of a model of jointed rock[J]. J. Soil mech. Found. Div., ASCE,1970,96,685-704.
    [32]E. Hoek, E. T. Brown, practical estimates of rock mass strength[J]. Int J Rock mech and Mining Sci.1997,34(8),1165-1186
    [33]杨泽,侯克鹏,李克钢,等.云锡大屯锡矿岩体力学参数的确定[J],岩土力学,2010,31(6),1923-1928.
    [34]G. S. Fesenko, R.N. Volodin, V.Ya. Yukhvit. Localization conditions and characteristics of oxidized zones in deposits of sulfide ores in northwestern Cuba[J], International Geology Review,1971,16(11),1257-1269.
    [35]Bieniawski Z T. Estimating the strength of rock materials[J]. SouthAfdcan Institute ofMining andMetallurgy,1974,74,312-320.
    [36]Bieniawski Z T. Rock Mechanics Design in Mining and Tunneling [M].1994.
    [37]Kalamaras G S, Bieniawski Z T. A rock strength concept for coalseams incorporating the effect of time[A]. Proceedings of the Eighth InternationalCongress on RockMechanics[C],1995,1, 295-302.
    [38]Nicholson G A, Bieniawski Z T.A nonlinear deformation modulus based on rockmass classification[J] Int. J.Min.Geo.I Eng,1990,8(3),181-202.
    [39]Barton N, Bandis S. Review of predictive capabilities of JRC-JCS mode in engineering practice[A]. In:Rock Joints[C]. Rotterdam:A. A.Balkema,1990,603-610
    [40]N. Barton, S. Bandis, K. Bakhtar. Strength, Deformation and conductivity coupling of rock joints[J],International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1986,22(3),121-140.
    [41]S.C. Bandis, A.C. Lumsden, N.R. Barton. Fundamentals of rock joint deformation[J], International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1983,20(6),249-268.
    [42]巫德斌,徐卫亚.岩石边坡力学参数取值的GSMR法[J],岩土力学,2005,26,(9),1421-1426.
    [43]刁心宏,王泳嘉,冯夏庭.用人工神经网络方法辨识岩体力学参数[J],东北大学学报(自然科学版),2002,23(1),60-63.
    [44]乔春生,张清,黄修云.岩石工程数值分析中选择岩体力学参数的神经元网络方法[J],岩石力学与工程学报,2000,19(1),64-67.
    [45]N. E. Yasitli, B. Unver.3Dnumerical modeling of longwall mining with top-coal caving[J], International Journal of Rock Mechanics & Mining Sciences.2005,4,219-235.
    [46]B. Unver, N. E. Yasitli. Modelling of strata movement with a special reference to caving mechanism in thick seam coal mining[J], International Journal of Coal Geology.2006,66, 227-252.
    [47]A. Vakili, B. K. Hebblewhite. A new cavability assessment criterion for Longwall Top Coal Caving[J], International Journal of Rock Mechanics & Mining Sciences.2010,47,1317-1329.
    [48]ZHU Qing-hua, FENG Mei-mei, MAO Xian-biao. Numerical analysis of water inrush from working-face floor during mining[J], J China Univ Mining & Technol,2008,18,159-163.
    [49]Rajendra Singh, T. N. Singh. Wide stall mining for optimal recovery of coal from a thick seam under surface features[J], International Journal of Rock Mechanics and Mining Sciences,1999,36,155-168
    [50]WANG Haifeng, CHENG Yuanping, YUAN Liang, etc, al. Similarity model tests of movement and deformation of coal-rock mass below stopes[J], Mining Science and Technology, 2010,20,188-192.
    [51]毛荐新,采空区上方边坡破坏形式及加固措施[J],金属矿山,1998,264,19-21.
    [52]江学良,杨慧,曹平.基于SURPAC模型的采空区与露采边坡相互影响的FLAC3D分析[J],岩土力学,2011,32(4),1234-1240.
    [53]柴红保,曹平,柴国武,等.采空区对边坡稳定性的影响[J],中南大学学报(自然科学版),2010,41(4),1528-1534.
    [54]王云鹏,张瑞新,李二旭,等.井工开采影响下的露天矿边坡沉陷规律研究[J],中国安全生产科学技术,2010,6(6),98-102.
    [55]徐杨青,吴西臣.井工开采对露天矿高边坡稳定性影响的研究[J],工程地质学报2010,18(3),333-339.
    [56]胡德富,孔宪立.采空区地表斜坡层状结构岩体移动特征[J],同济大学学报,1995,23(3),276-280.
    [57]崔杰,王兰生,王卫,等.采空区边坡变形破裂演化机制研究[J],采矿与安全工程学报,2008,25(4),409-414.
    [58]姜晨光,盖玉松,廖明全,等.矿区地表沉陷规律的新认识[J],岩石力学与工程学报,2003,22(1),162-165.
    [59]朱苦竹,朱合华.滑坡与隧道相互作用机理实例分析[J],地下空间与工程学报, 2006,2(5),809-813.
    [60]王树仁,张海清,慎乃齐.穿越采空区桥隧工程危害效应分析及对策[J],解放军理工大学学报(自然科学版),2009,10(5),492-496.
    [61]李晓红,姜德义,刘春,等.公路隧道穿越采空区治理技术研究[J],岩土力学,2005,26(6),910-914.
    [62]叶飞,霍三胜,常文伟.公路隧道穿越软弱破碎煤系地层及采空区施工安全控制技术[J],公路,2011,6(6),199-205.
    [63]王敬.煤矿采空区对离军高速公路桥隧布设的影响分析[J],公路,2008,8(8),153-156.
    [64]李辉,炊鹏飞,杨小红,等.隧道下穿采空区的监测及结果分析[J],地下空间与工程学报,2011,7(4),753-758.
    [65]李晓红,靳晓光,卢义玉,等.西山坪隧道穿煤及采空区围岩变形特性与数值模拟研究[J],岩石力学与工程学报,2002,21(5),667-670.
    [66]张志沛,彭惠,杨锡平.喜口池隧道穿越煤矿采空区段稳定性分析与研究[]],煤炭工程,2011,7,70-72.
    [67]王树仁,慎乃齐,张海清,等.下伏采空区高速公路隧道变形特征数值分析[J],中国矿业,2008,17(3),76-80.
    [68]刘德成,张荣隋,梁栋彬.山东省兖州市采煤区地面塌陷的原因及其对策[J],水土保持研究,2005,12(4),67-69.
    [69]张成良,杨绪祥,李风,等.大型采空区下持续开采空区稳定性研究[J],武汉理工大学学报,2010,32(8),117-120.
    [70]苏仲杰,于广明,杨伦.覆岩离层变形力学机理数值模拟研究[J],岩石力学与工程学报,2003,22(8),1287-1290.
    [71]王兵,杨为民,王辉,等.路基下煤矿采空区地表塌陷特征及其形成机理[J],公路,2007,10,101-105.
    [72]陈勇.梅山铁矿上覆岩体塌陷与错动机理研究[J],金属矿山,2004,5,11-16.
    [73]王学滨,潘一山,马瑾FLAG3D在岩石变形局部化数值模拟中的应用[J],辽宁工程技术大学学报(自然科学版),2001,20(4),522-523.
    [74]陈红江,李夕兵,高科.突变级数法在采空区塌陷预测中的应用[J],安全与环境学报,2008,8(6),108-111.
    [75]王旭春,管晓明,王晓磊,等.露天矿边坡稳定性与岩体参数敏感性研究[J],煤炭学报,2011,36(11),1806-1811.
    [76]王生俊,贾学民,韩文峰,等.高速公路下伏采空区剩余沉降量FLAC3D计算方法[J],岩石力学与工程学报,2005,,24(19),3545-3450.
    [77]马海涛,贺红生,付士根.采空塌陷影响因素及稳定性分级方法研究[J],中国安全生产科学技术,2008,4(5),37-42.
    [78]马海涛,贺红生,王云海.采空塌陷影响因素分析及颗粒元数值模拟研究[J],矿冶工程,2010,30(1),1-5.
    [79]袁海平,王继伦,赵奎,等.采空区形态对地表塌陷分布影响研究[J],金属矿山,2011,11,25-28.
    [80]张晓君.采空区顶板大面积冒落的数值模拟[J],化工矿物与加工,2007,9,17-18.
    [81]张建全,闫保金,廖国华.采动覆岩移动规律的相似模拟实验研究[]],金属矿山,2002,8,10-13.
    [82]马海涛.“11.6”特别重大坍塌事故矿区采场稳定性三维数值模拟分析[J],中国安全生产科学技术,2007,3(6),68-72.
    [83]Pouya A, Ghoreychi M. Determination of Rock Mass Strength Properties by Homogenization[J]. Int.J. Nu-mer.Anal.Meth.Geomech,2001,25,1285-1303.
    [84]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [85]张志刚,乔春生.改进的节理岩体强度参数经验确定方法及工程应用[J],北京交通大学学报,2006,30(4),46-49.
    [86]张志刚,乔春生,李晓.单节理岩体强度试验研究[J],中国铁道科学,2007,28(4),34-39.
    [87]罗国煜.地质灾害优势面分析理论与方法[J],自然灾害学报,1992,1(3),45-55.
    [88]罗国煜,阎长虹,陈兆乾,等.岩坡优势面分析及其专家系统研究[J],科学通报,1993,38(21),1979-1982.
    [89]江苏省地质局,区域水文地质普查报告(1:20万)--苏州无锡幅.1976.
    [90]阎长虹,王玉英,罗国煜,等.压性构造对岩溶发育的控制作用[J],地质论评.2008,54(3),343-347.
    [91]蔡晶晶,阎长虹,王宁,等.高密度电法在地铁岩溶勘察中的应用[J],工程地质学报,2011,19(6),935-940.
    [92]杨瑞东,盛学庸,魏晓,等.基于Google Earth影像分析区域性大型“X”共轭节理系统对宏观岩溶作用的控制[J],地质论评,2009,55(2),173-180.
    [93]罗国煜,吴浩.工程勘察中的新构造—优势面分析原理[M],地质出版社,北京,1991.
    [94]罗国煜,王培清,陈华生,等.岩坡优势面分析理论与方法[M],地质出版社,北京,1992.
    [95]罗国煜.工程地质优势面理论观点概要与认识[]],江苏地质,2008,32(1),1-4.
    [96]罗国坦,王培清,蔡钟业,等.论边坡两类优势面的概念及其研究方法[]],岩土工程学报,1982,4(2),57-66.
    [97]罗国煜,阎长虹,李晓昭,等.苏通长江大桥的工程地质研究[J],江苏地质,2007,31(1),1-6.
    [98]罗国煜,刘松玉,杨卫东.区域稳定性优势面分析理论与方法[J],岩土工程学报,1992,14(6),10-18.
    [99]罗国煜.关于地裂缝地质灾害的优势面分析[J],江苏地质,2006,30(1),1-5.
    [100]罗国煜,王培清,吴浩.火成岩地区露采边坡主要变形破坏类型和模式[J],岩土工程学报,1986,8(6),26-36.
    [101]喻军,童立元,刘松玉,等.优势面理论的隧道控水与模拟分析[J],岩土力学,2009,30(12),3825-3830.
    [102]罗国烬,李晓昭,阎长虹,等.论环境岩土工程及其环境地学研究[J],岩土工程学报,2003,25(1),101-104.
    [103]庄乾城,罗国煜,李晓昭,等.南京地铁稳定性优势面理论分析[J],高校地质学报,2002,8(4),453-459.
    [104]蔡斌,喻勇,吴晓铭.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J],岩石力学与工程学报,2001,20(S),1677-1379-459.
    [105]C.O. Aksoy,O. Kantarci, V. Ozacar. An example of estimating rock mass deformation around an underground opening using numerical modeling[J], International Journal of Rock Mechanics & Mining Sciences,2010,47,272-278.
    [106]Byung-Sik Chun, Woong Ryul Ryu, Myung Sagong. Indirect estimation of the rock deformation modulus based on polynomial and multiple regression analyses of the RMR system[J], International Journal of Rock Mechanics & Mining Sciences.2009,46,649-658.
    [107]Seokhoon Oh, Hojoon Chung, Duk Kee Lee. Geostatistical integration of MT and borehole data for RMR evaluation[J], Environmental Geology.2004,46,1070-1078.
    [108]S. B. Yim, Y. S. Seo, C. Y. Kim, etc, al. Critical Strain Concept-Based Simple Method for Pre-Evaluation of Tunnel Face Safety using RMR[J], Procedia Engineering. 2011,14,3147-3150.
    [109]Byung-Sik Chun, Yong-Jea Lee, Deok-Dong Seo, etc, al. Correlation deformation modulus by PMT with RMR and rock mass condition[J], Tunnelling and Underground Space Technology. 2006,21,231-232.
    [110]Pooyan Asadollahi, Roozbeh Foroozan. Comparison of the evaluated rock mass properties from the TSP system and the RMR classification (Semnan tunnel, Iran)[J], Tunnelling and Underground Space Technology.2006,21,236.
    [111]S.Y. Choi, H.D. Park. Comparison among different criteria of RMR and Q-system for rock mass classification for tunnelling in Korea[J], Tunnelling and Underground Space Technology. 2002,17,391-401.
    [112]徐卫亚,郑文棠,石安池.水利工程中的柱状节理岩体分类及质量评价[J],水利学报.2011,42(3),262-270.
    [113]张绍民,刘丰收,毕哓东.工程岩体分类方法在小浪底工程中的应用[J],岩土力学.2007,28(11),2480-2484.
    [114]刘业科,曹平,衣永亮,等.于地下深部工程岩体特性的RMR系统修正[J],中南大学学报(自然科学版).2010,41(4),1497-1505.
    [115]贾明涛,王李管.基于区域化变量及RMR评价体系的金川Ⅲ矿区矿岩质量评价[J],岩土力学,2010,31(6),1907-1912.
    [116]王永秀,毛德兵,齐庆新.数值模拟中煤岩层物理力学参数确定的研究[J],煤炭学报.2003,28(6),593-597.
    [117]康小兵,许模,陈旭.岩体质量Q系统分类法及其应用[J],中国地质灾害与防治学报.2008,19(4),91-95.
    [118]刘现春,石豫川,童建刚.Q系统在西南某水电站TBM施工隧洞围岩质量分类中的应用[J],水资源与水工程学报.2011,22(5),167-170.
    [119]O.S. Dinc, H. Sonmez, C. Tunusluoglu, etc, al. A new general empirical approach for the prediction of rock mass strengths of soft to hard rock masses[J], International Journal of Rock Mechanics & Mining Sciences.2011,48,650-665.
    [120]S. Tzamos, A.I. Sofianos. Extending the Q system's prediction of support in tunnels employing fuzzy logic and extra parameters[J], International Journal of Rock Mechanics & Mining Sciences.200643,938-949.
    [121]Arild Palmstrom, Einar Broch. Use and misuse of rock mass classification systems with particular reference to the Q-system[J], Tunnelling and Underground Space Technology. 2006,21,575-593.
    [122]Rudolf Schwingenschloegl, Christoph Lehmann. Swelling rock behaviour in a tunnel: NATM-support vs. Q-support-A comparison[J], Tunnelling and Underground Space Technology.2009,24,356-362.
    [123]张永杰,曹文贵,赵明华.基于区间理论与GSI的岩质边坡稳定可靠性分析方法[J],土木工程学报.2011,44(3),93-100.
    [124]韩现民,李晓,孙喜书.GSI在节理化岩体力学参数评价中的应用-以金川二矿区水平矿柱为例金属矿山.2009,1,24-28.
    [125]卢书强,许模.基于GSI系统的岩体变形模量取值及应用[J],岩石力学与工程学报,2009,28(s1),2736-2742.
    [126]Hoonil Seol, Sangseom Jeonga, Chunwhan Cho, etc, al. Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)[J], International Journal of Rock Mechanics & Mining Sciences.45 (2008,45,848-861.
    [127]H. Sonmez, C. Gokceoglu, R. Ulusay. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J], International Journal of Rock Mechanics & Mining Sciences.2004,41,849-857.
    [128]M. Cai, P. K. Kaiser, H. Uno, etc, al. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J], International Journal of Rock Mechanics & Mining Sciences.2004,41,3-19.
    [129]M. Cai, P. K. Kaiser, Y. Tasaka, etc, al. Determination of residual strength paramete 回弹强度 of jointed rock masses using the GSI system[J], International Journal of Rock Mechanics& Mining Sciences.2007,44,247-265.
    [130]E. Hoek, P. Marinos, M. Benissi. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation[J], Bull Eng Geol Env.1998,57,151-160.
    [131]G. Russo. A new rational method for calculating the GSI[J], Tunnelling and Underground Space Technology.200924,103-111.
    [132]Lysandros Pantelidis. Rock slope stability assessment through rock mass classification systems[J], International Journal of Rock Mechanics & Mining Sciences.2009,46,315-325.
    [133]杜时贵,胡晓飞,郭霄,等JRC-JCS模型与直剪试验对比研究[J],岩石力学与工程学报,2008,22(s1),2747-2753.
    [134]张庆,郑光,许强.携剪实验和JRC-JCS模型在结构面抗剪强度取值中的应用[J],地质灾害与环境保护,2011,22,(1),103-107.
    [135]杜时贵,杨树峰,姜舟,等.JRC快速测量技术[J],工程地质学报,2002,11(1),98-102.
    [136]J. ZHAO. Joint surface matching and shear strength part B:JRC-JMC shear strength criterion[J], International Journal of Rock Mechanics & Mining Sciences,1997,34(2), 179-185..
    [137]E. Z. Lajtai. Strength of Discontinuous Rocks in Shear[J], Geotechnique,1969,19(2),218-233.
    [138]陈新,廖志红,李德建.节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J],岩石力学与工程学报,2011,30,(4),781-789.
    [139]长江水利委员会长江科学院.工程岩体分级标准GB50218[S],2008.
    [140]国际岩石力学学会实验室和现场标准化委员.岩石力学试验建议方法(上)[M].北京:煤炭工业出版社,1982.
    [141]中华人民共和国城乡建设环境保护部.标准回弹评定混凝土抗压强度技术规程[S].北京,1985.
    [142]中华人民共和国国家标准GB/T 50266-99,工程岩体试验方法标准[S],北京,1999.
    [143]曾伟雄,林国赞.岩石单轴饱和抗压强度的点荷载试验方法设计与探讨[J],岩石力学与工程学报,2003,22(4),566-568.
    [144]戴洪军,蔡升华,郭纪中.点荷载强度试验中经验公式的分析[]],岩土工程学报,2001,2,43-46.
    [145]孙广忠,岩体力学原理[M],科学出版社,北京,2011.
    [146]李庆华,材料力学[M],西南交通大学出版社,成都,2005.
    [147]宫凤强,刘科伟,李志.矿区采空塌陷危险性预测的Bayes判别分析法[J],采矿与安全工程学报,2010,27(1),30-34.
    [148]许传华,任青文,李瑞.地下工程围岩稳定性分析方法研究进展[J].金属矿山,2003,2,34-37.
    [149]刘波,韩彦辉FLAC原理、实例与应用指,人民交通出版社.北京.2005.
    [150]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例,中国水利水电出版社.北京.2009.
    [151]Itasca Consulting Group Inc. FLAC users manual(version5.0). Minneapolis:Itasca Consulting Group Inc.2005.
    [152]郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J],岩石力学与工程学报,2003,22(12),1943-1952.
    [153]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J],地震边坡破坏机制及其破裂面的分析探讨,2009,28(8),1714-1723.
    [154]郑颖人,赵尚毅.用有限元强度折减法求边(滑)坡支挡结构的内力[J],岩石力学与工程学报,2004,23(20),3552~3558.
    [155]赵宏华,陈国兴.考虑盾构隧道埋深影响和岩土特性影响的地表变形计算[J],工业建筑, 2010,40(12),60-65.
    [156]杨红军,廖树忠,方建勤,等.隧道埋深及开挖方法对于二衬支护时机的影响[J],沈阳工业大学学报,2010,32(5),590-596.
    [157]李加林,邓飞皇.隧道埋深对地铁运行诱发振动的影响分析[J],科学技术与工程,2007,15(7),3819-3825.
    [158]Shue-Yeong Chi, Jin-Ching Chern, Chin-Cheng Lin. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J], Tunnelling and Underground Space Technology.2001,16,159-165.
    [159]M. Verman, B. Singh, M. N. Viladkar, etc,al. ffect of Tunnel Depth on Modulus of Deformation of Rock Mass[J], Rock Mech. Rock Engng.1997,30(3),121-127.
    [160]邵勇,阎长虹,许宝田,等.小型溶洞对隧道稳定性的影响分析[J],地质论评2012,58(3),519-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700