用户名: 密码: 验证码:
超深井用高强高韧V150油套管的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油井深度增加,井内温度和压力相应提高,固井完井用油套管服役的地质环境发生了显著变化,对油套管的综合力学性能、使用性能和寿命提出了更高要求,特别是对强韧性匹配提出了极高的要求,现有美国API标准的高钢级油套管难以胜任。本文开展超深井用石油套管的成分设计、热变形、热矫直、热处理工艺及相关基础研究,为企业开发高强高韧的V150油套管提供技术支撑。
     根据超深井用V150油套管用钢的目标性能要求,利用人工神经网络技术开展了合金成分设计,确定了高强高韧V150钢的成分范围。对实验钢的热变形行为进行了全面而系统的研究,补偿了应变、摩擦以及变形热对流变应力的影响,基于2种不同模型构建了本构方程,绘制出了实验钢的热加工图。系统研究实验钢在连续冷却过程中的相变行为,测定了实验钢的CCT图,综合利用CCT图、温度场模拟、微观组织观察,分析了不同冷却方案的组织转变。系统研究了高强高韧油套管用钢的热处理工艺和强韧化机理,获得0℃横向冲击功达到130J的调质工艺。运用ANSYS/LS-DYAN软件建立三维有限元模型,实现无缝钢管热矫直过程的三维动态模拟。研究常规淬火+充分回火、常规淬火+不充分回火、亚温淬火+回火对油套管低温韧性及韧脆转变温度的影响。主要结论如下:
     1.确定V150钢的成分范围(质量分数,%):0.25~0.28C,0.25~0.30Si,0.90~1.10Cr,0.9~1.10Mn,0.5~0.65Mo,0.07~0.10V,0.0015~0.005Ca, Cu≤0.1,Ni≤0.2,A1≤0.03,P<0.01,S<0.005。预测的性能值为:Rt0.7=1064MPa,Rm=1127MPa,A=19.7%;CVN=115J,完全满足超深井用油套管的强韧性要求。
     2.基于strain-compensated Arrhenius模型构建的流变应力方程,考虑了应变、摩擦力和温度效应对流变应力影响,可准确预测材料在实验范围内的流变应力,预测值与实验值的相关系数R=0.99456,AARE=4:730%。综合流变应力等高线图以及加工图,得出材料的最佳热变形工艺区间:变形温度为1110℃~1200℃,变形速率为0.03~2.4s-1,在该区域内热变形会发生动态再结晶,能量耗散系数峰值为37.5%。
     3.测得了实验钢的CCT图,Ac1为778.4℃,Ac3为828.2℃,当冷却速度为0.05Φ0.5℃/s时,转变产物为多边形铁素体、珠光体和少量贝氏体的混合组织,在1℃/s~5℃/s的冷却速度范围,转变产物为贝氏体,当冷却速度大于5℃/s时,转变产物为马氏体。合适的分级控冷工艺会对减小钢管淬火应力产生很好的效果,能够抑制孪晶马氏体,得到B/M复相组织、M/A复相组织,可较好抑制裂纹形成和扩展。根据CCT图分析得出的组织转变与实际淬火组织一致,表明所测CCT图较为准确,可用于指导高强高韧油套管的热处理工艺。
     4.奥氏体化温度和回火工艺对实验钢的组织性能影响较大,在890℃保温30min水淬,经1次和2次650℃/45min回火后,在强度满足150ksi钢级要求的前提下,0℃横向冲击功分别达到100J、110J。亚温淬火可以显著提高实验钢的冲击韧性,800℃/30min亚温淬火后,经1次和2次640℃/45min回火的0℃横向冲击功分别为120J、130J,强度仍然满足150ksi钢级要求。
     5.矫直管经过第1对矫直辊时,横截面的应力应变呈轴对称分布,经过第2、3对矫直辊时,钢管横截面的应力应变分布对称性较差。内表面周向残余应力的有限元模拟值在-130~-480MPa间波动,实测值在-189~-489MPa间变化,模拟值与实验值吻合较好。第2对矫直辊的压扁量为最重要的压扁矫正控制因子,3对辊压扁量的较优组合依次为1.4mm、4.0mm、2.6mm,椭圆度少于0.4%。压弯量为最重要的矫直控制因子,压弯量、压扁量、倾斜角的最优组合分别为45mm、4.0mm、31°,采用优化的矫直参数后,矫直管的不平度大大降低,管端1m内≤1/1000mm,管体≤1/1500mm,完全能满足高尺寸精度产品要求。
     6.结合能量法和形貌分析法确定常规淬火+充分回火、常规淬火+不充分回火、亚温淬火+回火等3种典型热处理工艺对应的低温韧性及韧脆转变温度,分别为-37℃、-2℃、-73℃。亚温淬火组织经过回火后,碳化物均匀析出,大部分α铁素体等轴化,少量未溶铁素体的存在,不仅未降低材料的整体强度,还能抑制微裂纹的产生和扩展,因此有较好的低温韧性。
With the increase of depth of oil well in the process of oil exploitation, temperature and pressure in the well increase correspondingly, which makes the service environment of casing, used for well cementing and completion, change greatly. These changes put forward higher requirements for the comprehensive mechanical properties, service performance and life of casing, especially for the combination of strength and toughness, which could not be satisfied by present high grade casing produced according to API standard. In this paper, chemical composition design, hot deformation behavior, hot straightening process, heat treatment process and related basic research of the casing for ultra-high wells were investigated systematically. These studies could provide the steel enterprises with technical support for developing and manufacturing Vl50grade casing tube with high strength and high toughness.
     According to the target performance of Vl50grade steel, the composition of experimental steel was designed by artificial neural network. The comprehensive and systematic investigation on hot deformation behavior of experimental steel was carried out considering the effects of strain, friction and deformation heat on flow stress. Constitutive equations were established on the basis of two different models, and the processing map was developed as well. The phase transformation behavior of experimental steel during continuous cooling process was studied systematically and CCT diagram was obtained based on the study. Microstructure transformation of the steel under different cooling schemes was analyzed by utilizing comprehensively the CCT diagram, simulation of temperature field and microstructure observation. Based on the systematic study on the effect of different heat treatment parameters on the strength and toughness of experimental steel, a quenching and tempering process was obtained by which lateral absorbed-energy at0℃of the steel could be increased to130J. Hot straightening process of seamless tubes was simulated dynamically by3D finite element model established using software ANSYS/LS-DYAN. Effects of three heat treatment processes such as conventional quenching followed by tempering completely, conventional quenching followed by tempering incompletely and subcritical quenching followed by tempering, on the low temperature toughness and the ductile to brittle transition temperature for the steel were investigated respectively. The main conclusions can be drawn as follows:
     1. The chemical composition of V150grade steel could be designed as (in wt.%):0.25~0.28C,0.25~0.30Si,0.9%~1.1%Cr,0.9~1.10Mn,0.5~0.65Mo,0.07-0.IV,0.0015~0.005Ca, Cu≤0.1,Ni≤0.2, Al≤0.03, P<0.01, S<0.005. The predicted mechanical properties of the steel with this composition are:Rt0.7=1064MPa,Rm=1127MPa,A=19.7%; CVN=115J. Obviously, the properties of the designed steel can completely satisfy the requirements for the strength and toughness of casing for ultra deep wells.
     2. Constitutive equation was established based on the strain-compensated Arrhenius model with considering the effects of strain, friction and deformation heat on flow stress. The established constitutive equation could predict the flow stress accurately over the entire experimental range of strain rates, temperatures and strains. The correlation coefficient(R) and average absolute relative error(AARE) for the developed model are0.99456and4.730%respectively. The optimum domains of the processing parameters were determined as1110℃~1200℃and0.03~2.4s-1by processing map and contour map. When the steel is hot deformed in this optimum domain, dynamic recrystallization can occur and the energy dissipation coefficient is the peak value37.5%.
     3. The CCT diagram of experimental steel was obtained and the critical temperatures of AC1and AC3were determined as778.4℃and828.2℃respectively by DSC. When the cooling rates are in the range of0.05-0.5℃/s, the transformation product consists of polygonal ferrite, pearlite and a small amount of bainite. When the cooling rate is ranging from1℃/s to5℃/s, the product is mainly composed of bainite. When the product. Using an appropriate multi-stage controlled cooling process is beneficial to decreasing the quenching stress. This is because the formation of twin martensite could inhibited by this process on one hand. On the other hand, the composite microstructure of B/M and M/A is generated which inhibit the formation and propogation of cracks. The quenched microstructure of the steel shows good agreement with the results analyzed with CCT diagram indicating the obtained CCT diagram is accurate enough to provide basis for the heat treatment process of28CrMnMoV steel.
     4. Austennizing temperature and tempering process have significant influence on the microstructure and properties of experimental steel. When the steel was austenitized at890℃for30min followed by water quenching and then tempered at650℃for45min one time and twice respectively, the corresponding lateral absorbed-energy at0℃could reach100J and110J with the strength meeting the requirement of V150grade steel. Subcritical quenching process could remarkably increase the toughness of the steel. When the steel was austenitized at800℃for30min followed by water quenching and then tempered at640℃for45min one time and twice respectively, the corresponding lateral impact energy at0℃could reach120J and130J on the premise of strength meeting the requirement of V150grade steel.
     5. When the tube passed through the first pair of straightening rollers, the distribution of stress and strain on the cross section is axisymmetric. However, when it passed through the second and third pairs of straightening rollers, the distribution is not that axisymmetric. The simulated value of circumferential residual stress on internal surface is in the range of-130MPa--480MPa, which shows good agreement with the measured value in the range of-189MPa--489MPa. Flattening rate of the second pair of straightening rollers is the most correction control factor, and the ovality of tubes could be controlled less than0.4%when the flattening rates for the three straightening rollers are1.4mm,4.0mm and2.6mm respectively. The intermesh is the most important straightening control factor. The optimum set of straightening parameters (the intermesh, flattening rate and slant angle) were simulated as45mm, 4.0mm and31°. Flatness of the tubes could be controlled less than1/1000mm within the scope of lm away from the pipe end and below1/1500mm in the section of pipe body by optimizing straightening process with these parameters indicating these can satisfy the requierement of high precision products.
     6. Combined with the energy approach and analysis of morphology, effects of three different heat treatment processes(including conventional quenching followed by complete tempering, conventional quenching followed by incomplete tempering and subcritical quenching followed by complete tempering) on low temperature toughness and the ductile to brittle transition temperature were investigated. In addition, the corresponding ductile to brittle transition temperatures of the steel by the three heat treatment processes were determined as-37℃,-2℃and-73℃, respectively. The experimental steel could obtain excellent low temperature toughness by subcritical quenching and tempering. This is mainly because carbides precipitate homogeneously and most a ferrite grains gradually become equiaxed during the heat treatment process. In addition, the existence of undissolved ferrite could not only decrease the strength, but also inhibit the formation and propogation of cracks, resulting in an increase of toughness.
引文
[1]丰振军,曹峰,杨力能,等.中国油井管研究进展[J].石油工业技术监督,2010,26(7):52-53.
    [2]吕拴录,李鹤林,藤学清,等.油套管粘扣和泄漏失效分析综述[J].石油矿场机械,2011,40(4):21-25.
    [3]杨秀琴.中国油井管的供求现状与发展[J].金属世界,2012(3):1-10.
    [4]Spec API.5CT.套管和油管规范[S].北京:兵器工业出版社,2001.
    [5]李晓源,文九巴,李全安.油气田井下油管的防腐技术[J].腐蚀科学与防护技术,2003,15(5):272-276.
    [6]张传友,史庆志,孙宇,等.石油天然气勘探开发用高性能无缝钢管的品种与开发:石油天然气用高性能钢技术论坛——油气开采,储运的战略需求对钢铁材料的新挑战会议论文集,2011[C].
    [7]李平全.油气田生产开发期套管的损坏原因分析——《油套管标准研究,油套管失效分析及典型案例》(2)[J].钢管,2006,35(5):53-59.
    [8]杨秀琴.我国钢管工业的现状,问题与发展前景(上)[J].钢管,2008,37(1):12-17.
    [9]杨秀琴.我国钢管工业的现状,问题与发展前景(下)[J].钢管,2008,37(2):1-4.
    [10]李平全,王世宏,黄志潜.石油工业发展对低合金及微合金化石油管的要求与对策[J].中国冶金,2004(2):34-38.
    [11]吉玲康,姜立伟.J55套管射孔开裂分析[J].钢管,1998,27(1):5-11.
    [12]王宁,赵鹏,向双娣,等.对我国油井管产业发展的几点认识[J].钢管,2011,40(3):12-16.
    [13]李鹤林,韩礼红.刍议我国油井管产业的发展方向[J].焊管,2009,32(4):5-10.
    [14]郑瑞,李铁军.我国管线钢的生产与发展[J].重型机械科技,2003(4):47-51.
    [15]殷国茂.中国钢管50年[M].四川科学技术出版社,2004.
    [16]谢香山.高性能油井管的发展及其前景[J].上海金属,2000,22(3):3-12.
    [17]殷国茂,邹子和.我国不锈钢无缝钢管的生产现状及发展[J].钢管,1998,27(6):17-30.
    [18]张毅,李欣.推进油井管国产化需要注意的几个问题[J].钢管,2000,29(4):34-43.
    [19]李平全,王世宏.油井管国产化的现状及其进一步国产化的建议[J].钢管,2000,29(1):44-47.
    [20]李鹤林,田伟.面向“十二五”的油井管[J].钢管,2012,41(1):1-6.
    [21]何文渊,吴云海.近年来国内各油公司勘探活动特点[J].中国石油勘探,2005,10(1):61-64.
    [22]林元华,邹波,施太和,等.钻柱失效机理及其疲劳寿命预测研究[J].石油钻采工艺,2004,26(1):19-22.
    [23]Davenport S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modelling of hot rolling[J]. Materials Science and Technology, 2000,16(5):539-546.
    [24]Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization:An application to the hot rolling of steels[J]. ISIJ international, 1997,37(10):1000-1009.
    [25]何宜柱,雷廷权.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2000,12(1):26-30.
    [26]余永宁.金属学原理[M].冶金工业出版社,2000.
    [27]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta materialia,1996,44(1):137-148.
    [28]孔君华,刘昌明,郑琳,等.超低碳微合金钢形变连续冷却过程中的相变[J].金属热处理,2004,29(11):27-30.
    [29]田永君,袁秀信,高慧菊,等.热变形中的动态回复过程[J].材料科学与工艺,1987,6(2):68-74.
    [30]Tang Z, Stumpf W. The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels[J]. Materials Characterization,2008,59(6):717-728.
    [31]胡安民,孙祖庆.低碳钢多道次热变形中的应变强化相变与铁素体动态再结晶[J].金属学报,2000,36(11):1192-1196.
    [32]伍来智,陈军,张鸿冰.40Cr钢奥氏体动态再结晶及晶粒细化[J].上海交通大学学报,2008,42(5):786-790.
    [33]赵乃勤.合金固态相变[M].中南大学出版社,2008.
    [34]文九巴.材料科学与工程[M].哈尔滨工业大学出版社,2007.
    [35]李松瑞,周善初.金属热处理[M].中南大学出版社,2003.
    [36]Rometsch P A, Starink M J, Gregson P J. Improvements in quench factor modelling[J]. Materials Science and Engineering:A,2003,339(1):255-264.
    [37]Liu S D, Zhang X M, Huang Z B, et al. Prediction of hardness of aluminum alloy 7055 by quench factor analysis[J]. Materials science forum, 2007,546:881-884.
    [38]Mrovec J, Jakesova M. The effect of loading on the transformation of retained austenite to martensite[J]. Seripta Metallurgiea,1978,12(12):1091-1094.
    [39]赵延阔.超深井用超高强高韧V150套管热处理工艺研究[D].长沙:中南大学,2011.
    [40]姚灿阳.7050铝合金厚板淬火温度场及内应力场的数值模拟研究[D].长沙:中南大学,2007.
    [41]王毅.20CrMoH齿轮用钢热处理工艺研究[D].哈尔滨:哈尔滨理工大学,2005.
    [42]彭其凤,丁洪太.热处理工艺及设计[M].上海交通大学出版社,1994.
    [43]徐天兵.25CrMnMo钢强韧化研究[J].国外金属热处理,2004,25(3):30-31.
    [44]Zou D, Han Y, Zhang W, et al. Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel[J]. Journal of Iron and Steel Research, International,2010,17(8):50-54.
    [45]曹建军,陈明安.26CrMoNbTiB (S135)钻杆管热处理工艺的研究[J].金属材料与冶金工程,2007,35(2):28-32.
    [46]Hiroyuki T. Evolution and Coarsening of Carbides in 2.25 Cr-1Mo Steel Weld Metal During High Temperature Tempering[J]. Journal of Iron and Steel Research (International),2010,17(5):74-78.
    [47]王伟,王威,任学平,等.30Mn(N80Q)水淬钢热处理基本特性的研究[J].轧钢,2005,22(3):21-24.
    [48]李强.矫直状态下钢管弹塑性变形区的研究[J].钢管,1995(4):34-37.
    [49]项凌松,王会民.六辊矫直机消除无缝钢管矫后管端压扁的工艺研究[J].黑龙江冶金,2000(2):1-4.
    [50]井永水,窦忠强,李忠富.矫直理论的新探索[J].北京科技大学学报,2002,24(1):64-66.
    [51]黄建国,吕昌.无缝钢管矫直分析[J].包钢科技,2007,33(2):20-21.
    [52]徐勇,程先华.P110套管冷矫残余应力模拟分析[J].钢铁, 2004,39(1):30-32.
    [53]王福华.辊式矫直机压下规程仿真分析[D].武汉:武汉科技大学,2009.
    [54]何涛,杨竞,金鑫.ANSYS10. O/LS-DYNA非线性有限元分析实例指导教程[M].机械工业出版社,2007.
    [55]李连进,王惠斌.用有限元法分析石油套管定径产生的残余应力[J].石油矿场机械,2006,35(1):52-55.
    [56]李艳辉.斜辊钢管矫直过程数值模拟及残余应力的研究[D].鞍山:辽宁科技大学,2008.
    [57]王云,刘才,马立东,等.棒材二辊矫直过程中的辊缝工艺参数[J].钢铁,2012,47(9):50-52.
    [58]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [59]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [60]Dvorkin E N, Medina F M. Finite element models for analyzing the straightening of steel seamless tubes [J]. J. Eng. Ind.(Trans. ASME), 1989,111(4):351-355.
    [61]Huh H, Heo J H, Lee H W. Optimization of a roller levelling process for A17001T9 pipes with finite element analysis and Taguchi method[J]. International Journal of Machine Tools and Manufacture,2003,43(4):345-350.
    [62]Mutrux A, Berisha B, Hochholdinger B, et al. Numerical Modelling of Cross Roll Straightening[J]. Proc.7. LS-Dyna Anwederforum,2008.
    [63]黄建国,吕昌.无缝钢管矫直分析[J].包钢科技,2007,33(2):20-21.
    [64]徐勇,程先华.钢管压扁矫正残余应力分析[J].上海交通大学学报,2003,37(10):1526-1528.
    [65]李连进,王惠斌,宗卫兵,等.石油套管残余应力对抗压溃强度影响的数值模拟[J].钢铁,2005,40(6):51-54.
    [66]张洁,李连进,屠浩,等.残余应力对石油套管承载能力的影响分析[J].天津理工学院学报,2004,20(4):11-14.
    [67]‘庞世明.高性能计算技术及其在油气勘探中的应用[J].勘探地球物理进展,2002,25(1):35-40.
    [68]王滨.ASTM金属材料夏比V型缺口冲击试验方法介绍[J].理化检验:物理分册,2004,40(7):367-371.
    [69]邱成军,王元化,王义杰.材料物理性能[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [70]Chung Y D, Fujii H, Ueji R, et al. Friction stir welding of high carbon steel with excellent toughness and ductility[J]. Scripta Materialia,2010,63(2):223-226.
    [71]Zhang X, Cai Q, Zhou G, et al. Microstructure and mechanical properties of V-Ti-N microalloyed steel used for fracture splitting connecting rod[J]. Journal of materials science,2011,46(6):1789-1795.
    [72]Park S, Lee K, Min K, et al. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents [J]. Journal of Nuclear Materials, 2012,426(1-3):1-8.
    [73]WANG C, GAO H. Influences of Twice Thermal Cycle on the Structure and Properties of X80 Pipeline Steel[J]. Welded Pipe and Tube,2007,30(3):15-18.
    [74]Song Y Y, Ping D H, Yin F X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Science and Engineering:A,2010,527(3):614-618.
    [75]李鹤林,张亚平,韩礼红.油井管发展动向及高性能油井管国产化(上)[J].钢管,2007,36(6):1-6.
    [76]李鹤林,吉玲康,谢丽华.中国石油钢管的发展现状分析[J].河北科技大学学报,2006,3(1):1-5.
    [77]李鹤林,韩礼红,张文利.高性能油井管的需求与发展[J].钢管,2009,38(1):1-9.
    [78]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1-11.
    [79]刘建中.加大品种结构调整力度推进石油油井用管开发[J].四川冶金,2008,30(1):21-30.
    [80]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.
    [81]马开华,刘修善.深井超深井钻井新技术研究与应用[M].北京:中国石化出版社,2005.
    [82]李平全,史交齐,赵国仙,等.油套管的服役条件及产品研制开发现状(上)[J].钢管,2008,37(4):6-12.
    [83]李平全,史交齐,赵国仙,等.油套管的服役条件及产品研制开发现状(下)[J].钢管,2008,37(5):11-14.
    [84]鞠虹,王君,唐晓,等.油气集输管道在海洋环境中的腐蚀与防护[J].石油化工设备,2010,39(5):41-47.
    [85]张毅,陈建初,赵鹏.油管服役受力分析[J].石油专用管,2000(3):8-17.
    [86]万兆,管昌生.钻井套管失效机理分析及可靠度设计方法研究[D].武汉:武汉理工大学,2007.
    [87]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西安:西北工业大学,2002.
    [88]李鹤林,田伟,邝献任.油井管供需形势分析与对策[J].钢管,2010,39(1):1-7.
    [89]孔令铭.2007年1-5月份我国钢管行业供需情况及下半年预测[J].焊管,2007,30(4):5-9.
    [90]李鹤林,冯耀荣.石油管材与装备失效分析案例集[M].北京:石油工业出版社,2006.
    [91]韩力群.人工神经网络理论,设计及应用:人工神经细胞,人工神经网络和人工神经系统[M].北京:化学工业出版社,2002.
    [92]Hagan M T, Demuth H B, Beale M H. Neural network design[M]. Pws Pub. Boston London,1996.
    [93]王立民,张红,吕成林,等.0CrllNi2MoVNb钢高温压缩变形的流变应力[J].金属热处理,2008,33(10):74-76.
    [94]刘战英,陈连生,周满春,等.变形条件对30MnSiV钢动态再结晶行为的影响[J].钢铁研究学报,2004,16(1):49-52.
    [95]Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883-1892.
    [96]Venugopal S, Mannan S L, Prasad Y. Processing map for hot working of stainless steel type AISI 316L[J]. Materials science and technology, 1993,9(10):899-906.
    [97]Kain V, Shinde S S, Gadiyar H S. Mechanism of improved corrosion resistance of type 3041 stainless steel, nitric acid grade, in nitric acid environments[J]. Journal of materials engineering and performance, 1994,3(6):699-705.
    [98]Sivaprasad P V, Venugopal S, Venugopal S, et al. Validation of processing maps for a 15Cr-15Ni-2.2 Mo-0.3 Ti austenitic stainless steel using hot forging and rolling tests [J]. Journal of materials processing technology, 2003,132(1):262-268.
    [99]Sivaprasad P V, Mannan S L, Prasad Y. Processing parameters for the mechanical working of 9 Cr-1 Mo steel:processing maps approach[J]. Materials science and technology,2004,20(12):1545-1550.
    [100]Lin Y C, Liu G. Effects of strain on the workability of a high strength low alloy steel in hot compression[J]. Materials Science and Engineering:A, 2009,523(1):139-144.
    [101]Ji G, Li F,Li Q, et al. Development and validation of a processing map for Aermet100 steel[J]. Materials Science and Engineering:A, 2010,527(4):1165-1171.
    [102]Paul B, Kapoor R, Chakravartty J K, et al. Hot working characteristics of cobalt in the temperature range 600-950℃[J]. Scripta Materialia, 2009,60(2):104-107.
    [103]Prasad Y, Rao K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate:Anisotropy of hot workability [J]. Materials Science and Engineering:A,2008,487(1):316-327.
    [104]Rao K P, Prasad Y, Hort N, et al. Hot workability characteristics of cast and homogenized Mg-3Sn-1Ca alloy[J]. Journal of Materials Processing Technology,2008,201(1):359-363.
    [105]Niu Y, Hou H, Li M, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy [J]. Materials Science and Engineering:A, 2008,492(1):24-28.
    [106]Li H Z, Wang H J, Liang X P, et al. Hot deformation and processing map of 2519A aluminum alloy [J]. Materials Science and Engineering:A, 2011,528(3):1548-1552.
    [107]Prasad Y, Sasidhara S, Sikka V K. Characterization of mechanisms of hot deformation of as-cast nickel aluminide alloy [J]. Intermetallics, 2000,8(9):987-995.
    [108]Prasad Y, Sastry D H, Deevi S C. Processing maps for hot working of a P/M iron aluminide alloy [J]. Intermetallics,2000,8(9):1067-1074.
    [109]Roebuck B, Lord J D, Brooks M, et al. Measurement of flow stress in hot axisymmetric compression tests[J]. Materials at High Temperatures, 2006,23(2):59-83.
    [110]McQueen H J, Celliers O C. Application of hot workability studies to extrusion processing. Part III:physical and mechanical metallurgy of Al-Mg-Si and Al-Zn-Mg alloys[J]. Canadian metallurgical quarterly, 1997,36(2):73-86.
    [111]Spigarelli S, Evangelista E, McQueen H J. Study of hot workability of a heat treated AA6082 aluminum alloy[J]. Scripta Materialia,2003,49(2):179-183.
    [112]McQueen H J, Xia X, Cui Y, et al. Solution and precipitation effects on hot workability of 6201 alloy [J]. Materials Science and Engineering:A, 2001,319:420-424.
    [113]McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering:A,2002,322(1):43-63.
    [114]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32.
    [115]Lin Y C, Chen M, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008,42(3):470-477.
    [116]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Materials Science and Engineering:A,2009,500(1):114-121.
    [117]Samantaray D, Mandal S, Bhaduri A K, et al. Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels [J]. Materials Science and Engineering:A,2011,528(4):1937-1943.
    [118]Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel [J]. Materials Science and Engineering:A, 2009,526(1):1-6.
    [119]Phaniraj M P, Lahiri A K. The applicability of neural network model to predict flow stress for carbon steels [J]. Journal of Materials Processing Technology,2003,141(2):219-227.
    [120]Zhang Z D, Zhou H T, Liu X H, et al. Development of Processing Maps for Coiled Tubing Steel[J]. Advanced Materials Research,2012,415:955-959.
    [121]Ziegler H. Progress in solid mechanics[M]. New York:John Wiley and Sons, 1963.
    [122]Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering:A,1998,243(1):82-88.
    [123]Murty S N, Rao B N. Instability map for hot working of 6061 Al-10 vol% metal matrix composite[J]. Journal of Physics D:Applied Physics, 1998,31(22):3306-3311.
    [124]Murty S, Rao B N. On the development of instability criteria during hotworking with reference to IN 718[J]. Materials Science and Engineering:A, 1998,254(1):76-82.
    [125]Murty S N, Rao B N, Kashyap B P. Development and validation of a processing map for zirconium alloys [J]. Modelling and Simulation in Materials Science and Engineering,2002,10(5):503-520.
    [126]范跃华.高强度管线钢的连续冷却转变研究[D].南京:南京理工大学,2007.
    [127]王立军,蔡庆伍,余伟,等.低碳低合金钢的连续冷却相变组织特征及其形成机制[J].材料工程,2010(8):29-33.
    [128]李红英,王法云,曾翠婷,等.3Cr2Mo钢CCT曲线的测定与分析[J].中南大学学报(自然科学版),2010,41(3):923-929.
    [129]吴松乾.5CrMnMo钢大型热锻模淬火开裂失效分析[J].金属热处理,2004,29(11):59-62.
    [130]林武,张希旺,赵延阔,等.Q345钢奥氏体连续冷却转变曲线(CCT图)[J].材料科学与工艺,2009(2):247-250.
    [131]李红英,林武,宾杰,等.低碳微合金管线钢过冷奥氏体连续冷却转变[J].中南大学学报(自然科学版),2010,41(3):924.
    [132]徐光.金属材料CCT曲线测定及绘制[M].北京:化学工业出版社,2009.
    [133]刘江成,张传友,付继成,等.超深井用V150级高强高韧套管开发:第七届中国钢铁年会大会论文集(中),2009[C].
    [134]Saha Podder A, Bhadeshia H. Thermal stability of austenite retained in bainitic steels[J]. Materials Science and Engineering:A,2010,527(7):2121-2128.
    [135]杨静,李桂艳,韩鹏,等.钼对高强度船板钢变形后连续冷却转变的影响[J].机械工程材料,2009(8):10-12.
    [136]Pan T, Yang C, Ma Y, et al. Chemistry and Process Optimization of V-Microalloyed N80-Class Seamless Casing Tube[J]. Journal of Iron and Steel Research, International,2010,17(3):72-78.
    [137]武斌斌,温殿英,李连进,等.热轧高强度无缝钢管淬火工艺温度场有限元模拟[J].天津理工大学学报,2006,22(6):28.
    [138]干勇,田志凌,董瀚.中国材料工程大典(第3卷)[M].北京:化学工业出版社,2006.
    [139]Bergeon N, Kajiwara S, Kikuchi T. Atomic force microscope study of stress-induced martensite formation and its reverse transformation in a thermomechanically treated Fe-Mn-Si-Cr-Ni alloy [J]. Acta materialia, 2000,48(16):4053-4064.
    [140]王泾文.淬火温度对20CrMnTi钢组织和性能的影响[J].热加工工艺,2005(1):50-53.
    [141]李安铭,王海瑞.亚温淬火对25MnV钢显微组织和力学性能的影响[J].机械工程材料,2009(12):36-38.
    [142]Wang X D, Xu W Z, Guo Z H, et al. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process[J]. Materials Science and Engineering:A, 2010,527(15):3373-3378.
    [143]Lee Y K, Shin H C, Jang Y C, et al. Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel[J]. Scripta materialia,2002,47(12):805-809.
    [144]Jacques P J, Delannay F, Ladriere J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels [J]. Metallurgical and Materials Transactions A, 2001,32(11):2759-2768.
    [145]Benjamin F, Maxime S, Alexandra R, et al. Microstructural evolutions and cyclic softening of 9% Cr martensitic steels [J]. Journal of Nuclear Materials, 2009,386:71-74.
    [146]杨福宝,白秉哲,刘东雨,等.无碳化物贝氏体/马氏体复相高强度钢的组织与性能[J].金属学报,2004,40(3):296-300.
    [147]吴大银.10Ni5CrMoV钢晶粒超细化热处理工艺研究[D].哈尔滨:哈尔滨工程大学,2008.
    [148]周洪宝,蔡庆伍,武会宾,等.热处理工艺对预硬型塑料模具钢组织的影响[J].热加工工艺,2012,41(12):170-172.
    [149]Taylor K A, Olson G B, Cohen M, et al. Carbide precipitation during stage I tempering of Fe-Ni-C martensites[J]. Metallurgical Transactions A, 1989,20(12):2749-2765.
    [150]Zhang Z, Delagnes D, Bernhart G. Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements[J]. Materials Science and Engineering:A,2004,380(1):222-230.
    [151]Ping D H, Ohnuma M, Hirakawa Y, et al. Microstructural evolution in 13Cr 8Ni-2.5 Mo-2A1 martensitic precipitation-hardened stainless steel [J]. Materials Science and Engineering:A,2005,394(1):285-295.
    [152]Djebaili H, Zedira H, Djelloul A, et al. Characterization of precipitates in a 7.9 Cr-1.65 Mo-1.25 Si-1.2 V steel during tempering[J]. Materials Characterization,2009,60(9):946-952.
    [153]Lingamanaik S N, Chen B K. The effects of carburising and quenching process on the formation of residual stresses in automotive gears[J]. Computational Materials Science,2012,62:99-104.
    [154]Caballero F G, Miller M K, Garcia-Mateo C, et al. Redistribution of alloying elements during tempering of a nanocrystalline steel [J]. Acta Materialia, 2008,56(2):188-199.
    [155]Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction[J]. Metallurgical Transactions A,1983,14(6):1025-1031.
    [156]郭从盛.淬火钢回火过程的数学模型[J].金属学报,1999,35(8):865-868.
    [157]李阳华,赵延阔,武岳,等.回火温度对超高强高韧V150套管组织性能的影响[J].中南大学学报(自然科学版),2012,43(6):2128-2136.
    [158]Xu-dong F, Gang Y, Lin-zhu C. Effect of Quenching Process Parameters on Microstructure and Hardness of 65Mn Steel [J]. Heat Treatment Technology and Equipment,2009,30(3):70-73.
    [159]李安铭,张红伟,杨红保.原始组织对25MnV钢“零保温”淬火后组织性能的影响[J].河南理工大学学报(自然科学版),2006,25(1):1-5.
    [160]方鸿生,刘东雨,白秉哲,等.无碳化物贝氏体/-B氏体复相钢的新进展[J].金属热处理,2001,26(10):4-6.
    [161]方鸿生,刘东雨,常开地,等.1500MPa级经济型贝氏体/马氏体复相钢的组织与性能[J].钢铁研究学报,2001,13(3):31-36.
    [162]李平全.油套管的缺陷及其在建井期的典型失效案例——《油套管标准研究,油套管失效分析及典型案例》(5-2)[J].钢管,2007,36(2):57-60.
    [163]张毅,宋箭平.BG110T抗挤套管的试验研究(上)—残余应力,平均壁厚,屈服强度对临界抗挤强度的影响[J].钢管,2002,31(1):13-16.
    [164]金明,钟倩霞.油井管温矫工艺的实验研究[J].钢管,1998,27(6):12-16.
    [165]贺景春,郭兆成,李小龙.抗挤毁性能分析及高抗挤毁P110套管的设计[J].包钢科技,2006,32(z1):55-58.
    [166]李连进.用有限元方法分析石油套管矫直产生的残余应力[J].钢管,2006,35(2):29-32.
    [167]李连进,武斌斌,温殿英.基于有限元分析的石油套管淬火残余应力[J]. 计算机辅助工程,2006,15(1):326-329.
    [168]李连进,沈淑君.数值仿真技术在石油套管制造中应用的展望米[J].2004(6):35-37.
    [169]庄茁.ABAQUS非线性有限元分析与实例[M].科学出版社,2005.
    [170]尹纪龙,李大永,彭颖红,等.动力显式有限元法辊弯成形全流程仿真技术研究[J].塑性工程学报,2006,13(1):36-39.
    [171]朱美珍,王春香.对向六斜辊管材矫直机压扁力研究[J].包头钢铁学院学报,1997,16(1):36-41.
    [172]李荣锋,祝洪川,李长一,等.N80钢管残余应力的测试与分析[J].理化检验:物理分册,2009,45(1):65-66.
    [173]杨琳琳.钢管矫直工艺参数研究及有限元分析[D].太原:太原科技大学,2011.
    [174]Li B, Nye T J, Metzger D R. Multi-objective optimization of forming parameters for tube hydroforming process based on the Taguchi method[J]. The International Journal of Advanced Manufacturing Technology, 2006,28(1-2):23-30.
    [175]潘尔顺,徐小芸,奚立峰.有限元与田口实验设计中冲压加工模具参数稳健性设计[J].材料科学与工艺,2008,16(5):679-683.
    [176]李艳华,杜继涛,费宏斌.利用ABAQUS与正交试验理论的TRB成形参数优化[J].现代制造工程,2009(11):136-138.
    [177]Reggio M, McKenty F, Gravel L, et al. Computational analysis of the process for manufacturing seamless tubes [J]. Applied thermal engineering, 2002,22(4):459-470.
    [178]李连进.六辊斜轧无缝钢管矫直机的压下量研究[J].锻压技术,2008,33(5):82-84.
    [179]Behrens B, El Nadi T, Krimm R. Development of an analytical 3D-simulation model of the levelling process[J]. Journal of Materials Processing Technology,2011,211(6):1060-1068.
    [180]Huh H, Lee H W, Park S R, et al. The parametric process design of tension levelling with an elasto-plastic finite element method[J]. Journal of Materials Processing Technology,2001,113(1):714-719.
    [181]巴春秋.在斜辊矫直机上钢管矫直工艺的改进[J].国外钢铁,1994,19(2):51-53.
    [182]王毓芳,肖诗唐.质量改进的策划与实施:含试验设计及田口方法[M]. 中国经济出版社,2005.
    [183]学玫.X70管线钢冲击韧性实验研究[J].金属学报,2003,39(2):159-163.
    [184]邓增杰.钢管的韧性要求及评定[J].焊管,1990,13(1):32-38.
    [185]周昌玉,夏翔鸣.CrMo钢材料韧脆转变温度曲线的回归分析[J].压力容器,2003,20(6):13-18.
    [186]那顺桑,姚青芳.金属强韧化原理与应用[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700