用户名: 密码: 验证码:
软固结磨粒气压砂轮设计方法及材料去除特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光强化技术可大幅提高模具表面的硬度、耐磨性和耐腐蚀性,改善模具使用性能和提升使用寿命,但另一方面其高硬度自由曲面面形的复杂性、局域强化带来的硬度差异却制约了后续表面精密加工的开展。鉴于模具表面激光强化处理具有良好的应用前景,解决其光整加工的技术难题对于激光强化技术在模具领域的应用具有重要的现实意义。
     针对上述问题,本文提出了一种基于软固结磨粒气压砂轮的光整方法。为了提升高压环境下砂轮橡胶基体的抗撕裂特性,提出采用添加短纤维增强砂轮基体的方法,给出了复合材料模量与强度预测模型;对气压砂轮的力学特性进行了分析,并通过仿真进行了验证;采用离散元分析方法对软固结形态下的磨粒动态特性进行了研究;最后对软固结磨粒气压砂轮的材料去除特性进行了分析,并通过试验进行了验证。本文具体内容如下:
     (1)针对复合材料中纤维的无序分布特性,建立了多维网状分布模型,提出采用取向因子对其纤维分布特性进行整体归一化,对Halpin-Tsai方程进行了修正,并建立了复合材料的模量预测模型和强度预测模型,实现了芳纶浆粕纤维对丁苯橡胶的增强,制备了不同纤维体积分数和不同尺寸的气压砂轮半球形增强橡胶基体。通过拉伸试验对上述理论模型进行了验证,得出通过增加纤维所占体积分数或使用低模量的橡胶基质,纤维在橡胶基体中的性能越接近单一性,预测模型将更加准确。上述问题的讨论将为气压砂轮后续各项性能分析奠定基础。
     (2)建立了气压砂轮橡胶基体接触力学模型,对接触过程进行了数值模拟,得出结论:气压砂轮表面接触应力随着纤维体积分数的增加而增加,同样也随着原橡胶基体弹性模量的增加而增加,但砂轮接触应变却随之减少:结合层间弹性力学体系理论,分析了气压砂轮动态变化下的载荷作用规律,建立了气压砂轮双层弹性力学模型;分别以复合橡胶层厚度和磨粒粘结层厚度为研究对象进行了仿真,发现低橡胶层厚度有利于提升气压砂轮的自锐性,适合于大曲率表面加工;高橡胶层厚度则有利于提升砂轮接触应力,提高光整效率。以上论述分析了气压砂轮基体的力学特性,并为后续气压砂轮的制备工艺参数提供了依据。
     (3)采用离散元分析方法,建立了软固结磨粒颗粒间的法向与切向接触模型,分析了磨粒群的蠕变效应,给出了颗粒微观平动与转动位移公式:通过对密集颗粒系统的数值模拟,阐述了蠕变现象的发生过程,并分析了软固结磨粒群和游离磨粒群的接触力网,证实了前者产生的表面接触应力将显著大于后者的接触应力;阐述了软固结磨粒群气压砂轮的低压接触成型制作工艺流程和评价标准,给出了可用于不同加工环境下的磨粒与粘结剂具体配比方案。上述分析描述了软固结磨粒群的微观作用机理,为后续气压砂轮最终材料去除模型的建立提供了依据。
     (4)建立了气压砂轮表层单颗磨粒的力学模型,得出磨粒群微观作用机理与气压砂轮材料去除特性之间的联系。结合拉宾诺维奇磨损原理,对Preston方程系数进行修正,并对磨粒群在柔性支撑环境下的应力计算进行修正,给出了表层磨粒群在动态变化下的速度计算公式,最终建立了适用于软固结磨粒气压砂轮的材料去除预估模型,并通过试验进行了验证,得出软固结磨粒较游离磨粒有着更高的材料去除能力,而较固着磨粒群则可避免曲面加工时过深的划痕。
In mould industry, laser hardening could not only significantly improve surface hardness, wearing resistance and corrosion resistance, but also optimize performance of mould and extend its service life. However, these advantages have also brought tremendous difficulties to the finishing process of laser hardening surface, such as irregular freeform surface, high hardness and local difference of hardness. In the view of its wide future prospects, it becomes very important to figure out this problem.
     In allusion to the problems above, a new finishing method based on the softness consolidation abrasives (SCA) pneumatic wheel is brought forward in this paper. Firstly, in order to improve the tearing stability of interior rubber of SCA, fiber reinforced method is adopted. Meanwhile, the prediction models of modulus and ruggedness are established. Secondly the mechanics characteristic of hemispheric compound rubber is analysed by the simulation. Thirdly discrete element method is brought in for the research on the dynamic characteristic of SCA. Also moulding process of wheel is introduced. Finally the material removal prediction model of SCA is given, which is verified by the experiments. The main contents in this paper are as followed.
     (1) The distribution of the fiber in the compound rubber shows a complex poly-dimensional net. Orientation factor is used to normalize the fiber reinforce characteristic. The prediction model of modulus is set up by the modified Halpin-Tsai equation. At the same time, the prediction model of ruggedness is given. The test that Aramid Pulp is added to the Styrene-Butadiene rubber is finished and the hemispheric compound rubbers are created with kinds of size and different fiber volume fraction. The tensile tests'results are in accordance with the prediction model which is proved to be more accurate in the cases of using lower modulus of original rubber and improvement of fiber volume fraction. The points discussed above lay the foundations for the succedent performance analysis of pneumatic wheel.
     (2) The contact process between pneumatic wheel and workpiece is simulated and the conclusions show the stress increases with the improvement of fiber volume fraction and modulus of original rubber. On the contrary, the strain decreases in that case. Combined with the layers' elastic theory, the dynamic characteristic of the pneumatic wheel is analysed and the relationship between stress and stain is given. The simulation shows that thin layer of compound rubber is beneficial to enhance the softness of the wheel and fit for the machining to surface with large curvature. However, the thick layer of compound rubber can help to concentrate the cutting stress and improve the efficiency of the machining. The analysis of mechanics characteristic of pneumatic in this section provides a basis for the optimization of the manufacturing parameters.
     (3) According to the soft-ball model of discrete element method, the normal and tangential contact stress formula has been established for the relationship discussion between two particles. The translational and rotational displacement formulas of SCA are given and the creeping phenomenon is proved out by the simulation. It is also verified that the SCA has much more powerful stress net and can supply more cutting stress working on the workpiece than the free abrasives'. Besides, the craft and evaluation criterion of manufacture of SCA has been introduced and the standard of mixture ratio between abrasives and binder is given for adapting to the different machining situation. The discussions above explain the microscopic mechanism of the SCA, which provides the basis for the material removal model in the next section.
     (4) The mechanics model of single particle is analysed and the relationship between microscopic mechanism of the SCA and macroscopic machining charateristic of the pneumatic wheel has been given. Combined with the Rabinoweizc's theory, the coefficient of Preston equation is established. Meantime, cutting stress is modified in the case of particles' working under the soft support and velocity formula of SCA is figured out. Finally, the material removal model of pneumatic wheel is given, which has been proved out by the experiments. The experimental results show that the SCA has better material removal ability than the free abrasives'and can avoid the scratches to the freeform surface which the fixed abrasives always left in the same situation. This section finally shows the SCA's machining ability.
引文
[1]周圣丰,戴晓琴,郑海忠.激光熔覆与激光-感应复合熔覆WC-Ni60A涂层的结构与性能特征[J].机械.工程学报,2012,48(7):114-118.
    [2]Kwok C T, Leong K I, Cheng F T, et al. Microstructural and corrosion characteristics of laser surface-melted plastics mold steels[J]. Materials Science and Engineering A,2003,357(1-2):94-103.
    [3]洪永昌,王明辉.激光重熔和时效处理的镍基合金热喷焊层组织和性能的研究[J].机械工程学报,2012,48(10):75-81.
    [4]Torkamany M J, Sabbaghzadeh J, Hamedi M J. Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels[J]. Materials and Design,2012,34:666-672.
    [5]KIM J D, LEE M H, LEE S J, et al. Laser transformation hardening on rod-shaped carbon steel by Gaussian beam[J]. Chinese Journal of Nonferrous Metals,2009,19,941-945.
    [6]Torkamany M J, Sabbaghzadeh J, Hamedi M J. Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels[J]. Materials and Design,2012,34:666-672.
    [7]吴红兵,贾志欣,刘刚等.航空钛合金高速切削有限元建模[J].浙江大学学报,2010,44(5):982-987.
    [8]Jiwang Y, Jun M, Takashi O, Tsunemoto K. Investigation on shape transferability in ultraprecision glass moulding press for microgrooves[J]. Precision Engineering,2011,35:2014-2023.
    [9]李德群,张宜生.模具企业数字制造技术的现状与发展[J].CAD/CAM与制造业信息化,2003,7(1):10-15.
    [10]谢蔚,许珞萍,吴晓春等.用高新技术进一步提升模具钢质量[J].上海金属,2006,28(3):1-5.
    [11]周永泰.模具工业在国民经济中的重要地位及其发展趋势[J].模具商情,2003,62(6):2-4.
    [12]冯荣元.模具激光强化处理技术[J].模具制造,2006,11:76-80.
    [13]关义青沈宁 白松等.激光相变硬化的概述[J].热处理技术与装备,2011,32(3):15-18.
    [14]王振华,揭晓华,黄诗君等.718塑料模具钢激光相变硬化层的性能研究[J].材料热处理技术.2008,37(6):22-24.
    [15]刘江龙.激光表面合金化技术发展中的若干间题[J].金属热处理,2006,3:3-6.
    [16]高彩桥.激光表面强化技术[J].光电子,2005,1(4):188-194.
    [17]表斌,龚知本,沈书泊等.新型廉价c仇激光热处理涂料的研究[J].激光技术.1999,23(6):364-368.
    [18]晃明举.金属材料表面激光淬火和熔覆若干关键技术研究[D].郑州:郑州大学博士论文,2003,
    [19]闫忠琳,叶宏.激光熔覆技术及其在模具中的应用[J].激光杂志,2006,27(2):73-74.
    [20]Hua Y, Aihua W, Zhaoting X, et al. Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying[J]. Applied Surface Science,2010,256(23): 7001-7009.
    [21]王秀彦,安国平,李栋.摸具表面的激光非熔凝加工的应用研究综述[J].北京工业大学学报,2001,27(4):415-419.
    [22]李俊昌.激光热处理温度场及相变硬化带的快速计算[J].中国激光,1997,24(7):665-672.
    [23]Adam B, Slawomir I. Numerical simulation of transient and residual stresses caused by laser hardening of slender elements[J]. Computational Materials Science,1997,7(4):366-376.
    [24]臧辰峰,刘常升,张小彬等.轧辊表面激光处技术的研究进展[J].材料导报,2010,24(2):6-10.
    [25]李贵江,许长庆,孟丹等.材料表面激光合金化研究进展[J].铸造技术,2008,29(8):1136-1139.
    [26]Galun R, Weisheit A, Mordike B L. Laser surface alloying of magnesium base alloys[J]. Journal of Laser Applications,1996,6(12):229-305.
    [27]姚建华,张伟.激光熔覆制备纳米结构涂层的研究进展[J].激光与光电子学进展,2006,43(4):8-11.
    [28]花国然,罗新华,赵剑峰等.纳米陶瓷块体的激光烧结成形实验研究[J],中国机械工程,2004,15(15):1372-1375.
    [29]丁阳喜,李军.模具钢激光表面改性技术的研究进展[J].模具工业,2007,33(9):65-67.
    [30]蔡军,梁海峰,刘国林.汽车大烈覆盖件模具激光表面强化技术的应用[J].汽车工艺与材料,2009,1:24-26.
    [31]袁哲俊,王先逵.精密和超精密加工技术[M].北京,机械工业出版社,2002.
    [32]吴云锋,陈洁.精密超精密加工技术综述[J].新技术新工艺,2007,6:38-40.
    [33]高兴军,赵恒华.精密和超精密磨削机理及磨削砂轮选择的研究[J].机械制造,2004,12:43-45.
    [34]黄云,黄智.砂带磨削的发展及关键技术[J].中国机械工程,2007,18(18):2263-2267.
    [35]王伟,负超等.机器人砂带磨削的曲面路径优化算法[J].机械工程学报,2011,47(7):8-15.
    [36]李东明,李丽,马先英等.模具自由曲面自动研磨加工实验研究[J].组合机床与自动化加工技术,2006,2:86-88.
    [37]王贵林,张飞虎等.微波铁氧体基片高效磨削技术研究[J].中国机械工程,2007,18(12):1479-1482
    [38]杨乾华.三维振动抛光钛合金叶片的实验研究[J].机械设计与制造,2006,1:135-136.
    [39]韩明臣.钛合金带式抛光工艺研究[J].国外工艺技术集锦,2006,25(6):44-44.
    [40]张伯鹏.加工精度自生成及其在超精球体研磨中的实现[J].机械工程学报,2007,43(9):75-79.
    [41]王艳,周晓军,胡德金.基于气中放电辅助修整金刚石砂轮的试验研究[J].机械工程学报,2006,42(7).222-226.
    [42]Kordonsky W I, Williami I, Pokhorov I V, et al. Magnetorheological polishing devices and methods [P]. US Patent,5449313,1995.
    [43]Aric B S, Stephen D J, William I K, Roger F. GanslExperiments and observations regarding the mechanisms of glass removal in magnetorheological finishing[J]. Applied Optics,2001,40 (1): 20-331.
    [44]Donald G, William I K, Paul D, et al. Magnetorheological finishing (MRF) in commercial p recision op tics manufacturing[C]. SP IE,3782:80-911.
    [45]Arrasmith S R, Kozhinova I A, Gregg L L, et al. Detailsof the polishing spot in magnetorheological finishing (MRF)[C]. ISP IE,3782:92-1001.
    [46]张峰,潘守甫,张学军.磁流变抛光材料去除的研究[J].光学技术,2001,27:522-525
    [47]彭小强,戴一帆,李圣怡.磁流变抛光中的磁场与磁流变液缎带成型分析[J].高技术通讯,2004,4:58-60.
    [48]张学成,戴一帆等.磁射流抛光技术研究[J].机械设计与制造,2007,12:114-116.
    [49]张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计[J].航空精密制造技术,2006,42(1):12-15.
    [50]康桂文.磁流变抛光技术的研究现状及其发展[J].机床与液压,2008,3(36):173-175.
    [51]Kordonski W, Shorey A, Sekeres A. New magnetically assisted:material removal with magnetorheological fluid jet[J]. The International Society for Optical Engineering,2003,5180: 107-114.
    [52]Fletcher A J, Hull J B, Metckie J, et al. Computer modeling of the abrasive flow machining process [A]. Proceedings of the International Conference on Surface Engineering:Current Trends and Future Prospects[C], Toronto,1990:592-601.
    [53]Davies P J, Fletcher A J. The assessment of the Theological characteristics of various polyborosiloxane/grit mixtures as utilized in the abrasive flow machining process[J]. Journal of Mechanical Engineering Science,1995,209(6):408-418.
    [54]Williams R E, Rajurkar K P. Metal removal and surface finish characteristics in abrasive flow machining[A]. Mechanics of Deburring and Surface Finishing Processes[C]. NewYork:ASME,1989: 93-106.
    [55]Yamada Y, Kurobe T, Yamamoto K. High speed slurry flow finishing of inner wall of stainless steel capillary[J]. International Journal of the Japan Society for Precision Engineering,1998,32 (1):39-40.
    [56]Kurobe T, Yamada Y, Yamamoto K. Development of high speed slurry flow finishing of the inner wall of stainless steel capillary[J]. Journal of the International Societies for Precision Engineering and Nanotechnology.2001,25:100-106.
    [57]汤勇,周德明,杨钢.磨料流光整加工性研究[J].华南理工大学学报(自然科学版),2001,29(9):17-19.
    [58]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术.2004,30(2):248-250.
    [59]尤伟伟,彭小强,戴一帆.磁流变抛光液的研究[J].光学精密工程.2004,12(3):330-334.
    [60]Entov V M, Barsoum M, Shmatyan L. Instability of magnetorheo logical fluids[J]. Rheol,2002,45(5): 727-739.
    [61]邢志,吕建刚,李猛.磁流变液特性分析及实验研究[J].磁性材料及器件,2005,36(3):21-23.
    [62]于清松,成哗,胡世波.模具型面数控研磨抛光技术研究[J].制造技术与机床,2002,8:44-45.
    [63]张云,冯之敬,赵广木.磁流变抛光工具及其去除函数[J].清华大学学报(自然科学版).2004,44:190-193.
    [64]张永俊,罗进生,刘志宏.机器人机械电解抛光曲面运动仿真[J].现代机械,2001,3:27-29.
    [65]Walker D D, Beaucamp A T H, Bingham R G,et al. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2002,4842:73-84.
    [66]Walker D D, Beaucamp A T H, Bingham R G, et al. Precessions aspheric polishing:New results from the development programme[A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2003,5180:15-28.
    [67]Walker D D, Beaucamp A T H, Bingham R G,et al. Novel CNC polishing process for control of form and texture on aspheric surfaces[A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2002,4767:99-105.
    [68]张伟,李洪玉,金海.气囊抛光去除函数的数值仿真与试验研究[J].机械工程学报,2009,45(2):308-312.
    [69]计时鸣,金明生,张宪等.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报,2007,43(8):2-6.
    [70]Ji S M, Jin M S, Zhang L, et al. Design of spinning-inflated-gasbag polishing tool and its automated system for free-form mould[J]. WSEAS Transactions on Systems,2006,5(6):1448-1454.
    [71]Ji S M, Zhang L, Yuan Q L, et al. A novel ballonet polishing tool and its robot control system for polishing curved surface of mould[J]. International Journal of Computer Applications in Technology, 2007,29(2-4):212-215.
    [72]张立群,金日光,陈松等.短纤维橡胶基复合材料模量的理论预测[J].材料研究学报,1998,12(6):575-579
    [73]吴支平,贾清秀,刘力等.橡胶增强的理论研究[J].合成橡胶工业,2004,23(1):1-5.
    [74]Wolff S, Donnet J B. Characteriazation of fibers in vulcanizates according to the Einstein-Guth-Gold equstion[J]. Rubber Chemical Technology,1990,63(1):32-35.
    [75]孙开俊,顾伯勤,周剑锋等.单向短纤维增强复合材料纵向弹性模量预测[J].南京工业大学学报,2011,33(2):85-88.
    [76]刘保臣,刘春太,上官林建等.闭合近似模型对短纤维增强塑料制品力学性能预测的影响[J].高分子材料科学与工程,2010,26(11):165-168.
    [77]任超,陈建钧,潘红良.随机短纤维增强复合材料弹性模量预测模型[J].复合材料学报,2012,29(4):191-194.
    [78]张耀丰,朱大胜,顾伯勤.短纤维增强橡胶基密封复合材料纵向拉伸模量的研究[J].润滑与密封,2010,7:61-64.
    [79]丁学忠,唐立强.短纤维增强复合材料动态剪切模量及热膨胀系数预报[J].哈尔滨工程大学学报,2010,31(1):75-78.
    [80]付绍云,李来风.短纤维增强树脂基复合材料强度和模量的各向异性[J].材料研究学报,2003,17(4):408-414
    [81]王金山,顾伯勤,周剑锋等.短纤维增强弹性体复合材料的强度预测[J].材料导报,2011,25(6): 134-137.
    [82]刘浩,张亚芳,齐雷.短纤维增强脆性基复合材料破坏过程和力学性能研究[J].中山大学学报,2008,47(6):124-128.
    [83]黄星路,朱大胜,顾伯勤.短纤维增强橡胶基密封复合材料横向拉伸强度的预测[J].中国科技论文在线,2011,6(9):683-687.
    [84]杨川,张吉喜,刘世楷等.A1203短纤维增强铝基复合材料的抗拉强度及影响因素[J].机械工程材料,2004,28(2):13-16.
    [85]江中浩,连建设.短纤维增强金属基复合材料弹性模量和屈服强度不对称性的解释[J].复合材料学报,2000,17(1):51-55.
    [86]汪传生,田浩,郭磊等.聚酯短纤维增强胎面胶混炼工艺的实验研究[J].橡塑技术与装备,2007,33(8):15-18.
    [87]梁锦华,黄启忠,苏哲安等.短纤维增强C/C-SiC复合材料的制备工艺[J].粉末冶金材料科学与工程.2005,1:65-70.
    [88]谢苏江,蔡仁良.非石棉短纤维增强橡胶密封板材的压缩成张工艺设计[J].橡胶工业,2000,47(7):415-419.
    [89]仲伟虹,李志敏.适于快速成型制造工艺的短纤维增强复合材料研究[J].复合材料学报,2000,17(4):43-47.
    [90]许春香,李金富.A1203短纤维增强ZA27合金复合材料制备工艺[J].太原工业大学学报,1997,28(3):44-48.
    [91]杨桂成,曾汉民.剑麻纤维增强聚氯乙烯复合材料工艺与性能的研究[J].玻璃钢/复合材料,1995,6:22-26.
    [92]李征,王希诚.高聚物注塑成型填充过程有限元分析并行迭代算法[J].大连理工大学学报,2010,50(1):1-8
    [93]谢刚李明强张新等.高聚物注塑成型的可模性研究[J].黑龙江大学自然科学学报,2005,22(6):729-731
    [94]翟明,中长雨.注塑成型充填过程中注射速率的优化设计[J].高分子学报,2003,2(1):35-37.
    [95]何曼君.高分子物理[M].上海:复旦大学出版社,1990.
    [96]张斌,黄筑平.剪切变形下非晶态高聚物的力学行为[J].应用数学和力学,2004,25(10):997-1002
    [97]刘雪堵同亮彭雄奇.PP木纤维复合材料热粘弹性力学特性研究[J].功能材料.2012,43(9):1099-1101.
    [98]陶俊林李奎.水泥砂浆的一个热粘弹性率型损伤本构模型[J].爆炸与冲击,2011,3:268-273.
    [99]何平笙,朱平平,杨海洋.高聚物粘弹性力学模型的等当性[J].高分子材料科学与工程.2007,23(3):170-172.
    [100]何平笙,杨海洋,朱平平.试论高聚物结构与性能关系的三个层次[J].化学通报,2010,1:88-92.
    [101]何平笙,杨海洋,朱平平.小形变时杨氏模量等于三倍的剪切模量[J].高分子通报,2010,2:88-91.
    [102]卓倩,陈荣国,肖荔人等.一种环境友好橡胶——配位交联橡胶的研究进展[J].材料导报,2011,25(7):140-144.
    [103]翟俊学,张萍,赵树高.自交联橡胶/橡胶共混物及其交联状态[J].橡胶工业,2004,51(8):501-506.
    [104]栗雪娟,欧阳洁,李强,麦宏晏.高聚物离散松弛时间谱计算的CMPSO方法[J].应用基础与工程科学学报,2011,19(4):600-607.
    [105]郝如江,陈静波.高聚物熔体松弛时间谱的计算[J].郑州工业大学学报,2001,22(4):90-92.
    [106]朱平平,何平笙,杨海洋.高聚物粘弹性力学模型计算中容易被忽视的一个基本问题[J].高分子材料科学与工程,2007,23(3):251-253.
    [107]朱平平,何平笙,杨海洋.从高分子运动的温度依赖关系看高分子运动特点[J].高分子通报,2005,5:147-150.
    [108]朱照宏.多层弹性体系应力分析计算程序的编制[R].同济大学科学技术情报站,1983:1-33.
    [109]朱照宏,严作人.弹性多层路面的力学图谱分析[J].同济大学学报,1986,1:1-11.
    [110]郭文复.多层半无限弹性体在刚性原板压缩下的力学计算[J].力学学报,1984,3:282-289.
    [111]邓学均.弹性多层地基上刚性路面板的力学分析[J].岩土工程学报,1986,5:31-38.
    [112]王凯.层状弹性体系理论及其在半刚性基层沥青路面分析中的应用[J].中国公路学报.1990,3(4):32-41.
    [113]王凯,范建华.应用阻尼最小二乘法由实测位移值反算多层路面的弹性模量[J].重庆交通学院学报.1991,10(2):69-78.
    [114]白顺果,崔自治,党进谦.上力学[M].北京,中国水利水电出版社,2009.
    [115]张孟喜,土力学原理[M].武汉,华中科技大学出版社,2007.
    [116]张伯平,党进谦.土力学与地基基础[M].北京,中国水利水电出版社,2006.
    [117]周健,池毓蔚,池永等.沙土双轴实验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [118]周健,池永.沙土力学性质的细观模拟[J].岩土工程学报,2003,24(6):901-906.
    [119]毕忠伟,孙其诚,刘建国等.点载荷作用下密集颗粒物质的传力特性分析[J].力学与实践,2011,33(1):10-16.
    [120]李婉宜,曾攀,雷丽萍.离散颗粒流动堆积行为离散元模拟及实验研究[J].力学与实践,2012,34(1):20-26.
    [121]曹秒艳,董国疆,赵长财.基于离散元法的固体颗粒介质传力特性研究[J].机械工程学报,2011,47(14):62-69.
    [122]蒋军,徐正红,徐凌峰.颗粒体材料中的力链压曲变形[J].浙江大学学报,2010,10:1931-1937.
    [123]卞跃威,夏才初,肖维民等.考虑蠕变效应的岩石损伤起始准则[J].长江科学院院报,2012,29(8):17-23.
    [124]王凌.基于蠕变效应的公路边坡稳定性分析[J].大众科技,2010,4:80-81.
    [125]Preston F W. The theory and design of plate glass polishing machines[J]. Journal of the Society of Glass Technology,1927,11:214-256.
    [126]Maury A, Ouma D, Boning D, Chung J. A modification to preston's equation and impact on pattern density effect modeling[A]. Program Abstracts, Advanced Metallization and Interconnect Systems for ULSI Applications[C],1997.
    [127]Cook L.M.. Chemical processes in glass polishing [J]. Journal of Non-Crystalline Solids,1990, 120(1-3):152-171.
    [128]Lin T R. An analytical model of the material removal rate between elastic and elastic-plastic deformation for a polishing process [J]. International Journal of Advanced Manufacturing Technology, 2007,32(7-8):675-681.
    [129]Luo Q, Ramarajan S, Babu S J. Modifcation of the Preston equation for the chemical-mechanical polishing of copper[J]. Thin Solid Films,1998,335:160-167.
    [130]Brinksmeier E, Riemer O, Gessenharter A. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering,2006,30(3):325-336.
    [131]Jeng Y R, Huang P Y. Impact of abrasive particles on the material removal rate in CMP[J]. Electrochemical and Solid-State Letters,2004,7(2):G40-G43.
    [132]Klocke F, Dambon O, Filho G G C. Influence of the polishing process on the near-surface zone of hardened and unhardened steel[J]. Wear,2005,258(11-12):1794-1803.
    [133]Yang M Y, Lee H C. Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die[J]. Journal of Materials Processing Technology,2001,16(1): 298-304.
    [134]顾震隆.短纤维复合材料力学[M].第一版.北京.国防工业出版社,1987.
    [135]Pipes R B, weatherhold R C. Behavior of discontinuous fiber composites[C]. Japan-U.S, Conference, Tokyo.1981, p74.
    [136]张立群,金日光,陈松耿等.短纤维橡胶基复合材料模量的理论预测[J].材料研究学报,1998,12(6):575-579.
    [137]Nielsen L E. Generalized equation for the elastic modulus of composite materials[J]. Journal of applied physics,1970,41(11):4626-4627.
    [138]张立群.短纤维橡胶基复合材料结构一性能关系理论研究[D].北京化工大学,1995.
    [139]王金山,顾伯勤,周剑锋等.短纤维增强弹性体复合材料的强度预测[J].材料导报B.2011,25(6):134-137.
    [140]Zhang L Q. Study on the theoy of strength of short fiber/rubber composites I prediction of longitudinal tensile strength[J]. Acta Mater Compos Sinica,1998,15(4):89.
    [141]吴卫东,钦焕宇,田明等.芳纶浆粕纤维增强EPDM复合材料结构与性能的研究[J]中国化工学会(IESC)年会,2006,302-314.
    [142]李晨,周彦豪.对尼龙短纤维一丁苯橡胶复合材料模量的影响因索及模量的预测[J].复合材料 学报,1990,7(4):53-59.
    [143]Blumentritt B F, Vu B T, Cooper S L. The mechanical properties of oriented diseontinuous fiber-reinforced thermoplastics[J]. Polymer Engineering and Science,1974,14(9):633-640.
    [144]Gu B Q, Chen Y. Development of a new kind of sealing composite material reinforced with aramid and pre-oxidized fibers[J]. Key Engineering Materials,2007,355:1243-1246.
    [145]Weber M E, Kamal M R. Mechanical and microscopic investigation of whisker-reinforced silicone rubber[J]. Polymer Composites,2004,13(2):133-145.
    [146]王凯.层状弹性体系理论及其在半刚性基层沥青路面分析中的应用[J].中国公路学报,1990,3(4):32-41.
    [147]钟阳,黄永根.轴对称半空间层状弹性体系动态反应的理论解[J].中国公路学报,1998,11(2):24-29.
    [148]于传君,郝海洪.路面层状弹性体系在轴对称荷载作用下结构分析的状态变量法[J].辽宁交通科技,2002,25(4):14-17.
    [149]栗振锋,胡长顺.横观各向同性轴对称层状弹性体系半空间问题的求解[J].西安公路交通大学学报,2000,20(4):8-10.
    [150]毕忠伟,孙其诚,刘建国等.点载荷作用下密集颗粒物质的传力特性分析[J].力学与实践,2011,33(1):10-16.
    [151]王等明,周又和.密集颗粒流中的速度波动及自扩散特征[J].中国沙漠,2011,(31)3:618-625.
    [152]王春立,柴大鹏,林正奎.基于边缘探测的密集颗粒图像分割方法[J].高技术通讯,2011,21(4):339-344.
    [153]罗虹,刘家浚,朱宝亮等.几种不同硬度材料的滑动磨粒磨损特征[J].摩擦学学报,1994,14(3);213-219.
    [154]计时鸣,李琛,谭大鹏等.基于Preston方程的软性磨粒流加工特性[J].机械工程学报,2011,47(17):156-163.
    [155]Shi F G, Zhao B. Modeling of chemical-mechanical polishing with soft pads[J]. Applied Physics Materials Science & Processing,1998.67; 249-252
    [156]金明生.模具自由曲面气囊抛光机理及工艺研究[D].杭州:浙江工业大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700