用户名: 密码: 验证码:
500MPa级细晶粒热轧盘圆钢的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家高技术研究发展计划(十五863)课题“500MPa碳素钢先进工业化制造技术”和国家自然科学基金项目“成形功率泛函积分线性化及在金属加工中应用研究”,对普通C-Mn成分开发HRBF500盘圆钢在控轧控冷工艺过程中组织演变规律和力学性能的变化进行了研究,并据此进行了工业试验。论文的主要内容包括:
     (1)盘圆钢轧后各冷却区温度演变及返红现象的研究
     以盘圆钢的实际轧后冷却过程为计算条件,考虑了辐射、强制对流、自然对流等热损失过程,利用ANYSYS软件建立了盘圆钢断面的瞬态温度场模型,研究了从精轧机组出口到斯太尔摩强制风冷区的整个控冷区盘圆钢横断面温度、返红现象随时间的变化规律,为定性分析轧后控制冷却过程的显微组织演变及力学性能的变化奠定基础。
     (2)精轧机组轧件的变形及温升研究
     为了计算高速线材精轧过程的非均匀变形,分析了等效矩形法的基本原理,据此提出了一种不需要进行等效矩形转换而直接求解椭圆—圆孔型系统等效应变的新方法,称其为相交面积法(Overlapping Area method),简称OA法。
     根据相交面积和孔型入口面积的比值,确定了高速线材精轧机组椭圆—圆孔型系统的宽展类型、等效应变的范围;为检验OA的有效性,利用OA法求解了精轧机组的温升。计算温升与实测结果符合较好,相对误差小于10%。利用温升计算结果分析了精轧入口温度、出口速度对整个机组累积总温升的影响,结果表明:总温升随出口速度降低而降低,但当降速10%轧制时,这种降低效果并不显著;总温升随入口温度降低而近似线性地升高。
     (3)试验钢室温拉伸性能及变形特性
     对于几种试验钢单轴拉伸下的变形特性进行了对比和分析。结果表明,在均匀变形阶段,不同屈服形式试验钢具有相似的加工硬化特性;而在低应变区,不同屈服形式试验钢的加工硬化性质差异很显著。从屈服现象的物理本质出发,对于试验钢出现无明显屈服同时变形特性与双相钢相类似的现象,综合运用多晶增殖模型、位错增殖理论、残余应力理论等给出了较全面地解释。根据理论分析结果,提出了消除试验钢无明显屈服点现象的措施。
     (4) HRBF500试验钢的工艺模拟与设备校核
     以普通C-Mn为研究对象,采用单道次压缩实验辅以显微组织观察,模拟分析了轧后冷却工艺过程,研究了Mn含量和冷却速度对相变过程、组织形貌等的影响。利用成形功率泛函线性化方法对控温轧制时粗轧机组的设备能力进行了校核。结果表明,3#粗轧机轧辊强度及电机负荷均处于安全范围内。
     (5)开发HRBF500盘圆钢的工业试验
     基于热模拟实验和温度场的模拟结果,通过对化学成分、轧制温度、冷却参数等的调整,确定了TMCP工艺中各参数的范围。对20MnSi成分采取提C降Mn调整后,生产出满足国标要求的HRBF500盘圆钢。
The work of this dissertation was carried out integrating with the 863 project of 'The Advanced Industrial Manufacture Technology of 500MPa Carbon Steel' and the 'Research on Functional Linearization of Deformation Power and Its Application in Metal Forming'which sponsored by National Natural Science Foundation of China. The microstructure evolution and mechanical properties of plain C-Mn tested steel during controlled rolling and controlled cooling were investigated. In addition, industrial trials to develop HRBF500 wire rod were carried out. The main works are shown as following:
     (1) Temperature evolution and reheating behavior of hot rolled wire rod in the controlled cooling zones
     The transient temperature field model of hot rolled wire rod was developed by ANSYS software to calculate temperature distribution inside the workpiece from exit of the finishing mill to Stelmor fans cooling zone. The effects taken into account were radiation, forced convection and natural cooling. The temperature field and reheating behavior of the workpiece with time during controlled cooling were analyzed, which provided the foundation for the qualitative prediction of the microstructure evolution and mechanical properties.
     (2) Deformation and temperature jump of the workpiece in the finishing mill
     In order to calculate the inhomogeneous deformation of hot rolled wire rod, a new analytic method called OA (Overlapping Area) method to solve the effective strain without using rectangular sections conversion is therefore proposed on basis of the principle of the equivalent rectangular approximation method. The spread types and the range of effective strain in oval-round passes were determined by a parameter which is the ratio of overlapping area to the entry area for a given pass. To validate the OA method, it was used to calculate the temperature jump during finish rolling ofΦ6.5mm wire. The results show that the calculated values of accumulative temperature jump is in good agreement with the measured ones as the maximum relative error is no more than 10%. The effect of the entry temperatureθand finishing exit speed v on the total temperature jumpΔθwas analyzed. The results show thatΔθslightly decreases with lowering the speed by 10%, but it almost increases linearly with decreasingθ.
     (3) Room tensile properties and deformation behaviour of tested steel
     The mechanical behaviors of several tested steels in uniaxial tension were compared including the relationship between work-hardening coefficient, work-hardening index, work-hardening rate and true strain. The results reveal that in uniform deformation stage the different yield style tested steels possess the similar strain hardening characteristics, and their characteristics have an obvious difference in small strain stage. From physical essence of yield phenomenon, the reason of no yield point with abnormal mechanical properties similar to dual phase steel for tested steel was analyzed with the colligation of several theories including dislocation multiplying, residual stress theory, the multiplication yield model of polycrystalline metal, and so on. Then, the corresponding countermeasures were put forward.
     (4) Process simulation and capacity of rolling mill check
     The microstructure evolution for plain C-Mn steel in controlled cooling process was investigated using single pass compression test and metallographic analysis. Moreover effect rule of cooling rate and Mn content on microstructure was obtained. The capacity of roughing mill was checked during controlled rolling by the functional linearization of deformation power method. The results show the roll strength and electric engine load of No.3 roughing mill are within the permissive range.
     (5) Industrial trials to develop the HRBF500 wire rod
     Industrial trials were carried out on high speed wire mill based on the results of thermal-mechanical simulation and temperature field analysis. The process routine was determined by adjusting chemical composition, rolling temperature and cooling parameter in order to improve mechanical properties. After decreasing Mn content and increasing C content, HRBF500 wire rod was successfully produced.
引文
1.徐寅.我国400MPa热轧带肋钢筋应用现状和发展建议[J].轧钢,2002,19(4):3-6.
    2.程志军,徐有邻.建筑用钢筋发展展望[C]//2001中国钢铁年会论文集.北京:中国金属学会,2001:653-656.
    3.孟宪珩,白宗奇.HRB500钢筋的研制[J].河北冶金,2006,12(6):17-19.
    4.孟宪珩,白宗奇.承钢HRB500钢筋的研制及市场开发[J].冶金标准化与质量,2005,43(3):31-34.
    5.陈英.V-Nb微合金化HRB500钢筋的试制[J].轧钢,2007,24(3):64-66.
    6.崔培耀,俞敏,徐军.HRB500钢筋的试制开发[J].中国冶金,2003,9(11):30-33.
    7.王丽鹃,杨茂麟,杨碧能.HRB500Ⅳ级热轧带肋钢筋开发[J].冶金标准化与质量,2006,44(2):26-28.
    8.王学忠,刘佩明,穆国栋,等.HRB500钢筋的研制与生产分析[J].山东冶金,2005,27(3):20-22.
    9.杨雄,鲁丽燕,王全礼,等.HRB500级钢筋的研制和闪光对焊试验研究[J].施工技术,2004,33(3):52-53.
    10.赵亮,张朝晖,巨建涛.钒铁与钒氮合金生产HRB500钢筋的对比试验研究[J].热加工工艺,2007,36(18):35-37.
    11.任履俊,熊玲琪.浅析影响热轧带肋钢筋可焊性的因素[J].江西冶金,2000,20(2):12-14.
    12.单麟天.国外钢筋的生产状况、供需关系及价格[J].钢铁钒钛,1995,16(2):60-69.
    13.赵德文,王晓文,王国栋,等.超级钢热轧带肋线材工业试验与生产[J].钢铁,2005,40(10):52-54.
    14.高秀华,齐克敏,邱春林,等.20MnSi Ⅲ级热轧螺纹钢筋的开发[J].钢铁研究学报,18(7):43-45.
    15.冯运莉,齐长发,郭健,等.HRB400级Φ6~Φ10mm热轧带肋钢筋的研制[J].河北冶金,2000,15(1):17-20.
    16.吕良刚.超细晶粒化钢筋生产的研究与实践[J].冶金标准化与质量,2003,41(5):22-23.
    17. Weng Y Q. Development of ultrafine grained steel in China[C]//NG Steel'2001. Beijing:The Chinese Society for Metals,2001:1-15.
    18. Hurley P J, Hodgson P D, Muddle B C. Analysis and characterization of ultra-fine ferrite produced during a new steel strip rolling process[J]. Scripat Mater.,1999,40(4):433-438.
    19. Nagai K. State-of-the-art of 800MPa Steel project in Japan[C]//NG Steel'2001. Beijing:The Chinese Society for Metals,2001:8-15.
    20. Nagai K. Grain refinement through heavy deformation[C]//Proceeding of the workshop on HIPERS-21. Pohang:POSCO,2002:17-25.
    21. Choo W Y. Present developing status of high performance steel in Korea (HIPERS-21 Project)[C]//NG Steel'2001. Beijing:The Chinese Society for Metals,2001:16-26.
    22. Choo W Y.4th year progress of HIPERS-21 project[C]//Proceeding of the workshop on HIPERS-21. Pohang:POSCO,2002:1-5.
    23. Nagai K. Second phase of ultra steel project at NIMS[C]//Proceedings of advanced structural steels. Shanghai:The Chinese Society for Metals,2004:15-22.
    24. Choo W Y. First stage achievements of HIPERS-21 project and plan of second stage[C]//Proceedings of advanced structural steels. Shanghai:The Chinese Society for Metals,2004:23-38.
    25.王国栋,刘相华,李维娟,等.超级Super-SS400钢的工艺轧制实验[J].钢铁,2001,36(5):39-43.
    26. Wang G D, Liu X H, Ding H, et al. Development and application of 400MPa super steel[C]//NG Steel'2001. Beijing:The Chinese Society for Metals,2001:55-61.
    27.李新城,陈光,张开华.钢铁材料组织超细化技术研究[J].热加工工艺,2002,16(6):54-57.
    28.张红梅,刘相华,王国栋.形变量和冷却速度对低碳微合金管线钢晶粒细化的影响[J].东北大学学报(自然科学版),2001,2001(22):102-104.
    29. Huang Y D, Yang W Y, Sun Z Q. Formation of ultrafine grained ferrite in low carbon steel by heavy deformation in ferrite or dual phase region[J]. Journal of Material Processing Technology,2003,134(1):19-25.
    30. Yoshitaka A, Toshiro T, Shigeharu H. Ferrite grain size refinement by heavy deformation during accelerated cooling in low-carbon steel[J]. Tetsu-To-Hagane,1999,85(8):620-627.
    31.鸟冢史郎,井上忠信,长井寿.多方向加工にょる組織制御[J]. CAMP-ISIJ,2000,13(3): 644-651.
    32. Torizuka S, Inoue T, Nagai K. Uniform formation of fine grained ferrite structure through multi-directional deformation [J]. 鉄と鋼,2000,86(12):17-22.
    33. Johnlewis J, Jonas J, Mintz B. The formation of deformation induced ferrite during mechanical testing[J]. ISIJ Inter.,1998,38(3):300-312.
    34.张郑,席明哲,王经涛.7475铝合金的ECAP组织细化研究[J].轻合金加工技术,2000,28(10):37-39.
    35.王立忠,王经涛,王媛,等.等径弯曲通道变形制备超细晶低碳钢的热稳定性[J].材料热处理学报,2004,25(2):11-14.
    36. Shin D, Kim B C, Kim Y S, et al. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing[J]. Acta Mater.,2000,48(9):2247-2255.
    37. Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plasticdeformation[J]. Progress in Materials Science,2000,45(2):103-109.
    41. Beynon J H, Gloss R, Hodgson P D. The production of ultrafine equiaxed ferrite in a low carbon steels microalloyed steel by thermomechanical[J]. Materials Forum,1992,16(1): 37-42.
    42. Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel[J]. Scripta Mater.,1999,40(10):1179-1184.
    43. Weng Y Q. Physical metallurgy for ultra-fine grain steels[C]//Proceedings on HIPERS-21. Pohang:POSCO,2000:12-18.
    44.杜林秀,高彩茹,张彩碚.低碳钢形变诱导铁素体相变发生的温度条件[J].金属学报,2002,38(10):1031-1036.
    45. Hong S C, Lee K S. Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J]. Materials Science and Engineering A,2002,323(2): 148-159.
    46.刘朝霞.低碳钢形变诱导铁素体相变过程中碳的扩散行为[J].金属学报,2004,40(9):930-936.
    47.翁宇庆.超细晶钢理论及技术进展[J].钢铁,2005,40(3):1-8.
    48. Du L X, Xiong M X, Yi H L, et al. Investigation on the nanocrystalliztion of steels through deformation and transformation[J]. Iron and Steel,2005,45(Suppl.):223-227.
    49.牧正志.加工热处理的组织控制[C]//高洁净超细晶微合金化高强高韧钢文集3.北京:钢铁研究总院,1999:45-48.
    50.董瀚,刘清友, 侯豁然.超细晶粒钢及其性能[C]//高洁净超细晶微合金化高强韧钢文集1.北京:钢铁研究总院,1998:11-18.
    51.翁宇庆,董翰,.新一代超细晶粒钢及其力学性能特征[C]//新一代钢铁材料重大基础研究论文集(上册).北京:北京科技大学,2000:34-38.
    52.雷毅,刘志义,李海.超塑性预处理在20Mn2钢晶粒超细化及强韧化中的应用[J].钢铁,2003,39(6):46-49.
    53.邸洪双,赫冀成,鲍培玮,等.电磁场作用下塑性变形组织细化实验研究[J].东北大学(自然科学版),2000,21(6):645-647.
    54.王金录,邸洪双,张晓明,等.电磁场对钢材组织性能的影响[J].钢铁研究,2001,13(6):37-40.
    55.冯光宏,周少雄,杨钢,等.恒温磁场对低碳锰铌钢晶粒细化的影响[J].钢铁研究学报,2000,12(4):27-30.
    56.杨钢,冯光宏.磁场热处理铁素钢或珠光体钢时的传热现象[J].钢铁研究学报,2000,12(3):31-35.
    57. Yu Q B, Liu X H, Wang G D. Effect of delayed time after hot rolling on the grain size of ferrite[J]. ISIJ Int.,2004,44(4):710-714.
    58.宋洪伟.微米、亚微米与纳米超细晶粒钢的研究进展[J].世界科技研究与发展,2002,24(6):31-35.
    59. Matsubara H, Osuka T, Kozasu I, et al. Investigation of metallurgical factors in the production of high strength steel plate with high toughness by controlled rolling[J]. Testu-to-Hagane,1972,6(58):1848-1860.
    60.王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1991:14-38.
    61.唐荻.新形势下对轧钢技术发展方向和钢材深加工的探讨[J].中国冶金,2004,6(8):14-21.
    62.田村今男著,王国栋,刘振宇,熊尚武译.高强度低合金钢的控制轧制与控制冷却[M].北京:冶金工业出版社,1992:264-265.
    63. Richardson G J. Worked examples in metal working[M]. London:The Chameleon Press Limited,1985:97-101.
    64. William F H. Metal forming mechanics and metallurgy[M]. Englewood Cliffs:Prentice-Hall Inc.,1983:46-47.
    65. Sun W P, Hawbolt E B. Comparion between static and metadynamic and metadynamic recystallization and appplication to the hot rolling of steels[J]. ISIJ Int.,1997,37(10): 1000-1009.
    66. Du L X, Yi H L, Liu X H, et al. The austenite dynamic and static recrystallization behavior of a low carbon steel[C]//Proceeding of Symposium on Development of Advanced Steels. Shenyang:The state key laboratory of rolling and automation,2003:32-38.
    67. Du L X, Zhang C B, Ding H, et al. Determination of upper limit temperature of strain-induced transformation of low carbon steels[J]. ISIJ Int.,2002,42(10):1119-1124.
    68.高少东,段小勇.线材生产中的控轧控冷工艺[J].科技情报开发与经济,2001,11(4):112-115.
    69.胡小东,胡林,高朋,等.关于线材斯太尔摩线气雾冷却的研究[J].轧钢,2005,22(7):23-26.
    70.刘相华,陆匠心,张丕军,等.400~500Mpa级碳素钢先进工业化制造技术[J].中国有色金属学报,2004,14(s1):207-210.
    71.刘相华,王国栋,杜林秀,等.钢材性能柔性化与柔性轧制技术[J].钢铁,2006,41(11):32-36.
    72.裴智,张维汇,王润晓.HRB500钢筋的发展与设计施工要点[J].施工技术,2007,36(4):13-16.
    73.冯贺滨,褚建东,吉学军.高速线材斯太尔摩控制冷却过程的数学模型[J].金属热处理学报,2000,21(1):44-48.
    74.李长生.棒线材连轧轧件温度场的有限元解析[D].沈阳:东北大学,1998.
    75. Morales R D, Lopez A G, Olivares L M. Heat transfer analysis during water spray cooling of steel rods[J]. ISIJ Int.,1990,30(1):48-57.
    76. Kundu S, Mukhipadhyay A, Chatterjee S, et al. Modelling of microstructure and heat transfer during controlled cooling of low carbon wire rod[J]. ISIJ Int.,2004,44(7): 1217-1223.
    77. Morales R D, Lopez A G, Olivares L M. Mathematical simulation of Stelmor process[J]. Ironmaking and Steelmaking,1991,18(2):128-138.
    78. Anelli E. Appilcation of mathematical modelling to hot rolling and controlled cooling of wire rods and bars[J]. ISIJ Int.,1992,32(3):440-449.
    79.杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998:135-140.
    80. See S K, Chung H M, Lee C W. Analysis of water cooling mechanism by impinging jet for hot rolled wire rod[J]. ISIJ Int.,2005,45(3):356-365.
    81.袁国,王国栋,刘相华.带钢超快速冷却条件下的换热过程[J].钢铁研究学报,2007,19(5):100-105.
    82. Welty J R, Wicks C E, Wilson R E. Fundamentals of momentum, heat, and mass transfer[M]. New York:Jonh Wiley & Sons, Inc.,1976:36-40.
    83. Rohsenow W M. A method of correlating heat-transfer data for surface boiling of liquids[J]. Trans. ASME,1952,74(8):969-976.
    84.刘振华.喷雾冷却时沸腾临界热通量的实验研究[J].上海交通大学学报,1997,31(2):61-65.
    85.胡林,胡小东,任玉辉,等.采用全线奥氏体未再结晶区轧制生产超级钢[J].钢铁,2006,41(2):51-54.
    86.梅国晖,孟红记,谢植.喷射方向对喷雾冷却换热的影响[J].东北大学学报(自然科学版),2004,25(4):374-377.
    87.朱丽娟.热轧低碳Si-Mn系TRIP钢板组织性能的预测[D].沈阳:东北大学,2007.
    88.日本钢铁协会,王国栋,吴国良等译.板带轧制理论与实践[M].北京:中国铁道工业出版社,1990:212-215.
    89.宋冬利,顾剑锋,胡明娟,等.基于数值模拟的718塑料模具钢大模块淬火新工艺设计[J].钢铁,2004,39(9):64-68.
    90.袁志学,杨林浩.高速线材生产[M].北京:冶金工业出版社,2005:23-25.
    91. Chen J, Zhu J Q. Investigation of heat transmission during water spray cooling of steel plates[J]. Steel Research,1989,60(12):550-560.
    92. Jacobi H, Kaestle G, Wunnenberg K. Heat transfer in cyclic secondary cooling during solidification of steel[J]. Ironmaking and Steelmaking,1984,11(3):132-144.
    93.贾非,金俊泽.铝合金连续铸造喷水冷却的换热系数[J].中国有色金属学报,2001,11(S1):39-43.
    94. Devadas C, Samarasekera I V. Heat transfer during hot strip of steel strip[J]. Ironmaking and Steelmaking,1986,13(6):311-321.
    95.宋卓斐,张国滨.棒材热连轧椭圆-圆孔型应变分布的有限元模拟[J].河北理工学院学报,2005,27(4):36-40.
    96. Lee Y, Kim H J, Hwang S M. Analytic model for the prediction of mean effective strain in rod rolling process[J]. Journal of Materials Processing Technology,2001,114(2):129-138.
    97. Zhao D W, Wang G D, Bai G R. Theoretical analysis of the wire drawing through two roller dies in tandem[J]. Science in China (Series A),1993,36(5):632-640.
    98.赵德文,白雪峰,王晓文,等.热线理论计算线材精轧机组的温升[J].钢铁,2006,41(10):42-45.
    99.赵德文,谢英杰,刘相华,等.以上界三角形速度场计算线材精轧温升[J].东北大学学报(自然科学版),2006,27(9):983-986.
    100.赵送筠,唐文林.型钢孔型轧制[M].北京:冶金工业出版社,1993:32-35.
    101.《高速轧机线材生产》编写组.高速轧机线材生产[M].北京:冶金工业出版社,1995:47-52.
    102. Shinokura T, Takai K. A new method for calculating spread in rod rolling[J]. Journal of Applied Metalworking,1982,2(2):94-99.
    103. Minutolo F C, Durante M, Langella F, et al. Dimensional analysis in steel rod rolling for different types of grooves[J]. Journal of Materials Engineering and Performance,2005, 14(3):373-377.
    104. Lee Y, Choi S, Kim Y H. Mathematical model and experimental validation of surface profile of a workpiece in round-oval-round pass sequence[J]. Journal of Materials Processing Technology,2000,108(1):87-96.
    105.周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989:223-229.
    106.冯端.金属物理学—金属力学性质[M].北京:科学出版社,1999:360-366.
    107.黄明志,石德珂,金志浩.金属力学性能[M].西安:西安交通大学出版社,1986:30-36.
    108.方健,魏毅静,王承忠.拉伸应变硬化指数的解析测定及力学分析[J].塑性工程学报,2003,10(3):12-17.
    109.宋玉泉,程永春,刘颍.拉伸变形应变硬化指数的力学涵义及其规范测量[J].中国科学(E辑),2000,30(3):200-207.
    110.宋玉泉,海锦涛,管志平.拉伸变形应变硬化指数的力学解析[J].2001,中国科学(E辑)(2):103-108.
    111.马鸣图,吴宝榕.双相钢-物理和力学冶金[M].北京:冶金工业出版社,1988:136-148.
    112.翁文达,陈志国,钟文达.应变硬化指数n值的确定方法[J].物理测试,1991,9(2):35-38.
    113.宋玉泉,管志平,马品奎,等.拉伸变形应变硬化指数的理论和实验规范[J].金属学报,2006,42(7):673-680.
    114.黄明志,骆竟希,贺保平.金属硬化曲线的阶段性和最大均匀应变[J].金属学报,1983,(19)4:291-299.
    115.张旺峰,陈瑜眉,朱金华.亚稳态材料的应变硬化曲线与硬化参量[J].中国有色金属学报,2000,10(1):236-238.
    116.张旺峰,陈瑜眉,朱金华.一种新型的拉伸应力应变曲线规律研究[J].西安交通大学学报,1999,33(10):64-67.
    117.戴天成,韩行霖,姜文挥,等.高锰钢的双n行为[J].沈阳工业大学学报,1994,16(4):68-71.
    118.胡志忠,曹淑珍.形变硬化指数与强度的关系[J].西安交通大学学报,1993,27(6):70-76.
    119.高扬昌.测定金属应变硬化指数n值的探讨[J].现代机械,1996,12(1):11-14.
    120. Lian J, Jiang Z, Liu J. Theoretical model for the tensile work hardening behavior of dual-phase[J]. Materials Science and Engineering A,1991,147(1):55-65.
    121.王聪,焦四海,梁晓军.20MnSiNb钢的显微组织及其对屈服行为的影响[J].理化检验.物理分册,2006,42(6):275-277.
    122.聂雨青.20MnSi螺纹钢筋冷弯脆断和无屈服点的原因研究[J].湖南冶金,1999,5(5):1-7.
    123.谢建军.20MnSi热轧带肋钢筋冷弯脆断和无屈服点原因分析[J].理化检验-物理分册,2002,38(7):286-291.
    124.陆耀臣.关于热轧Ⅱ级带肋钢筋无屈服现象的认识[J].钢铁研究,1995,85(4):18-24.
    125.刘瑞堂,周欣萍,吴青松,等.热处理工艺对某低合金钢组织和力学性能的影响[J].应用科技,2004,32(3):61-64.
    126.陈洪文.热轧带肋钢筋屈服不明显原因分析与探讨[J].湖南冶金,2004,32(2):18-23.
    127.程洪兴,李昱,高山.屈服点不明的20MnSi热轧带肋钢筋金相组织分析[J].山东冶金, 2002,24(6):48-52.
    128.张朝晖,折媛,巨建涛,等.Nb微合金化建筑钢筋微观组织与屈服行为的关系[J].铸造技术,2007,28(10):1309-1313.
    129.李丽.解决20MnSi钢筋冷弯脆断和无屈服点的途径[J].金属制品,2004,30(6):36-38.
    130.吕佐明,王三武.氮对HRB335螺纹钢筋力学性能的影响[J].理化检验—物理分册,2003,39(10):509-513.
    131.哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983:280-295.
    132.何宗彦,黄克智,佘寿文.多晶金属屈服的增殖模型及实验现象分析[J].固体力学学报,1995,16(2):95-105.
    133.何宗彦,黄克智.多晶金属屈服的非线性不可逆增殖模型[J].金属学报,1995,31(3):98-104.
    134.杨顺虎,钱志涛.HRB335钢筋屈服现象不明显原因分析[J].江苏冶金,2003,32(3):46-47.
    135.杜林秀,孙建伦,杨海峰,等.500MPa超级钢的强化方式与显微组织[J].机械工程材料,2006,30(6):30-33.
    136. Zhao M C, Yang K, Xiao F R. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J]. Materials Science and Engineering A,2003, 355(12):126-136.
    137.林慧国,傅代直.钢的奥氏体转变曲线[M].北京:机械工业出版社,1988:115-122.
    138. Matja J, Kuziak R, Pietrzyk M, et al. Use of the computer simulation to predict mechanical properties of C-Mn[J]. Journal of Materials Processing Technology,1996,60(1):581-588.
    139. Koichi M. Effects on mechanical properties of fine grain steels through heavy deformation in dual-phase region[J]. CAMP-ISIJ,2000,13(6):1191-1198.
    140.沈显璞,雷廷权,刘剑壮.碳素双相钢拉伸断裂过程的动态观察[J].金属学报,1985,21(3):151-152.
    141.沈显璞,雷廷权.一种新的双相钢强度表达式[J].金属学报,1984,20(4):271-277.
    142.冯运莉,齐常发,郭健,等.HRB400级Φ6~Φ10mm热轧带肋钢筋的研制[J].河北冶金,2000,115(1):17-20.
    143.朱瑞富,李士同,刘玉先,等.Fe-Mn-C合金中的C-Mn偏聚及其对相变和形变的影响[J].中国科学(E辑),1997,27(3):193-198.
    144.黄贞益,陈光,牛亚然,等.连铸坯凝固偏析和高强热轧盘条的组织遗传性[J].钢铁研究学报,2007,19(1):44-47.
    145.孙群,张波,赵晨光,等.连铸坯中心偏析的研究[J].工业加热,2007,36(6):38-40.
    146.程饴萱,郦剑,陈理淳.钢的相变显微组织[M].杭州:浙江大学出版社,1989:23-26.
    147.杜林秀,高彩茹,张彩碚,等.低碳钢应变诱导相变发生的温度条件[J].金属学报,2002,38(10):1031-1036.
    148.董瀚,孙新军,刘清友,翁宇庆.变形诱导铁素体相变—现象与理论[J].钢铁,2003,38(10):56-67.
    149.李智超,刘鹏砚,王明罡.MS点的碳当量计算法[J].辽宁工程技术大学学报(自然科学版),1998,17(3):293-295.
    150. Ferry M, Thompson M, Manohar P A. Decomposion of coarse grained austenite during accelerate dcooling of C-Mn steel[J]. ISIJ Int.,2002,42(1):86-93.
    151. Liu S K, Zhang J. The influence of the Si and Mn concentrations on the kinetics of the transformation in Fe-C-Si-Mn alloys[J]. Metallurgical Transactions A,1990,21(6): 1517-1525.
    152. Yamashita T, Torizuka S, Nagai K. Effect of manganese segregation on fine-grained ferrite structure in low-carbon steel slabs[J]. ISIJ Int.,2003,43(11):1833-1841.
    153. Bradley J R, Aaronson H I. Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys[J]. Metallurgical Transactions A,1981,12(10):1729-1741.
    154.周荣锋,杨王玥,孙祖庆.不同Mn含量低碳钢过冷奥氏体形变过程中铁素体相变[J].金属学报,2004,40(1):1-7.
    155.周荣锋,杨王玥,孙祖庆.碳锰含量对低碳(锰)钢过冷奥氏体形变过程转变动力学的影响[J].金属学报,2004,40(10):1055-1063.
    156.赵德文.连续体成形力数学解法[M].沈阳:东北大学出版社,2003:445-460.
    157. Zhao D W, Xie Y J, Wang X W, et al. Derivation of plastic work rate done per unit volume for mean yield criterion and its application[J]. JMST,2005,21(4):433-436.
    158.王国栋,赵德文.现代材料成形力学[M].沈阳:东北大学出版社,2004:71-78.
    159.李长城,任余辉,张立芬,等.高速无扭线材轧机500mm粗轧机组测试与研究[J].钢铁,2002,37(2):59-63.
    160.童洁娜,周网才.金属材料不同标距延伸率换算分析[J].上海冶金高等专科学校校报,1999,20(1):40-44.
    161.王连伟,毛征东.过冷奥氏体转变温度对16Mn钢珠光体退化的影响[J].钢铁,2002,37(2):47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700