用户名: 密码: 验证码:
半刚接钢框架内填RC墙结构滞回性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半刚接钢框架内填RC墙结构(简称PSRCW)是一种新型组合结构体系,具有抗侧刚度大,承载力高,可修复等优点,在地震区具有良好的工程应用前景。由于钢框架同内填墙之间复杂的相互作用,PSRCW结构传力机理、破坏模式等仍不明晰。我国规范对此类结构的设计规定基本空白。因此,开展对PSRCW结构滞回性能的研究不仅具有理论意义,还具有工程价值。本文采用试验研究、有限元模拟及理论分析三者相结合的方式对PSRCW进行了系统研究,主要完成了下列有特色的工作:
     (1)设计制作了11榀两层、单跨1/3缩尺的PSRCW试件,对其进行了低周反复加载试验。通过试验系统研究了PSRCW结构的传力机理、破坏模式、滞回性能、刚度退化、变形及延性、耗能能力等。考察了抗剪连接件类型、抗剪连接件数量、内填墙配筋率、内填墙厚度、内填墙形式、梁柱节点形式、混凝土强度等参数对PSRCW结构滞回性能的影响。
     (2)基于试验研究及结构变形分析,提出了PSRCW结构的楼层抗侧刚度及整体抗侧刚度公式,对比分析了本文试验试件的抗侧刚度,验证了公式合理性。
     (3)利用虚功原理、PSRCW结构理想的破坏模式,提出了不同荷载分布模式下多层、多跨PSRCW结构的塑性机构分析法。通过试验证明了可采用塑性机构法评估产生理想破坏PSRCW结构的最大水平承载力。
     (4)提出了PSRCW结构的斜向板带宏观有限元模型,并采用斜向板带模型对本文部分试件滞回性能进行了有限元模拟,与试验结果对比表明该模型可以对PSRCW结构的滞回性能、水平承载力、抗侧刚度、变形及内力分配等性能进行合理评价。斜向板带模型避开了由于混凝土剪切本构关系研究不成熟而导致有限元模拟精度低的问题,同时大幅度减小结构总刚矩阵,提高了求解效率,为PSRCW结构滞回性能研究提供了一条有效途径。
     (5)共设计了8个系列26个PSRCW试件,采用斜向板带模型系统分析了系列试件的滞回性能、刚度退化规律、内力分配关系等,研究了内填墙厚度、混凝土强度等级、梁柱连接抗弯能力、竖向荷载、高跨比等设计参数对PSRCW结构整体性能的影响,并根据分析结果得出了重要结论。
     (6)提出了PSRCW结构的两阶段设计方法,其中,第一阶段采用基于力的弹性方法设计PSRCW结构主要构件截面。第二阶段采用基于能力设计法对带墙榀周边框架进行能力校核,确保PSRCW结构发生内填墙压碎的延性破坏,使PSRCW结构出现理想的破坏模式,获得最大的变形能力。
Partially-restrained steel frame with reinforced concrete walls (PSRCW) is a new composite structural system, which possesses large stiffness and lateral strength. The uppermost advantage is that the bad damaged infill walls after earthquake can be replaced because the surrounding steel frame still keeps its integrality. These advantages show PSRCW structure is suitable as an earthquake-resistant system located in seismic regions. However, due to the complex interactive action between steel frame and infill walls, some behaviors are still needed to be studied continually, such as force distribution and transferring mechanism, failure modes and so on. Besides, the relevant investigation of PSRCW is vacancy in our relative structural code. So the study on the hysteretic behavior of PSRCW structure has important value on its theory and practice. This dissertation investigates systematically the hysteric behavior of PSRCW based on test, finite element and theory methods, and the main characteristic contribution is as follows:
     (1) Eleven one-bay, two-story test specimens on one-third scale are designed and tested under low reversed cyclic loading. The force transfer mechanism, failure mode, hysteretic behavior, stiffness degradation, deformation and ductility, and energy dissipation are discussed based on experimental results. The main design parameters of PSRCW are investigated, including of the type of shear connector, quantity of shear connector, reinforcement ratio, thickness and type of infill wall, type of PR connection and concrete grade etc.
     (2) The initial stiffness functions of story and overall structure are established on the basis of the experimental investigation and deformation analysis of PSRCW, and theory results agree well with the results of test.
     (3) Based on the virtual work theory and ideal plastic mechanism mode, plastic mechanism analytical method of PSRCW taking into account different lateral load distribution pattern is proposed. Theory calculating results conform well with real measuring ones, which indicates that plastic mechanism analytical method can be adopted to evaluate the maximum lateral strength of PSRCW structure.
     (4) As to the mechanical character of infill walls of PSRCW, inclined strip model is put forward, and is used to model the specimens of this dissertation. Through comparing with test results, this model can evaluate reasonably the general performance of PSRCW including of hysteretic behavior, strength, lateral stiffness, deformation and force distribution and so on. The proposed approach can avoid low simulating accuracy using micro finite element methods due to limitation of cyclic constitutive model for concrete, and reduces the total stiffness matrix, and improves resolution efficiency, thus laying a foundation for the study of the hysteretic behavior of PSRCW.
     (5) After verification of macro inclined strip model, a total of 26 specimens of 8 series are designed and simulated. The hysteric behavior, stiffness degradation, and force distribution etc of PSRCW are analyzed through taking into account the main design parameters including of thickness of infill walls, concrete grade, moment of PR connection, vertical load, height span ratio, and so on. Some advisable conclusions are proposed derived from this analysis.
     (6) Two phase design method of PSRCW is proposed at present. At the first phase, these sections of main component of PSRCW are determined according to elastic design method. At the second phase, surrounding steel frame with infill walls is calibrated based on the capacity design method in order to ensure that PSRCW produce ductile failure due to crush of infill walls and the maximum deformation capacity is obtained.
引文
1 Vincent Caccese, Mohamed Elgaaly, Ruobo chen. Experimental Study of Thin Steel Plate Shear Walls under Cyclic Load [J]. Journal of Structural Engineering, 1991, 119(2): 573-587.
    2 Sheng-jin Chen, Chyuan Jhang. Cyclic Behavior of Low Yield Point Steel Plate Walls [J]. Thin-Walled Structures, 2006, 44(3): 730-738.
    3 Hong-Gun Park, Jae-Hyuk Kwack, Sang-Woo Jeon, Won-Ki Kim, In-Rak Choi. Framed Steel Plate Wall Behavior under Lateral Loading[J]. Journal of Structural Engineering, 2007, 133(3): 378-388.
    4 Bing Qu, Michel Bruneau, Chih-Han Lin, Keh-Chyuan tsai. Testing of Full-Scale Two-Story Steel Plate Shear Wall with Reduced Beam Section Connections and Composite Floors[J]. Journal of Structural Engineering, 2008, 134(3): 364-373.
    5武藤清著,腾家禄译.结构物动力设计[M].北京:中国建筑工业出版社, 1984: 87-92.
    6廉晓飞,邹超英.带竖缝混凝土剪力墙板在低周反复荷载作用下的工作性能试验研究[J].哈尔滨建筑大学学报, 1996, 29(1): 31-36.
    7廉晓飞,邹超英.高层建筑钢结构中带竖缝混凝土剪力墙板设计方法建议[J].哈尔滨建筑大学学报, 1996, 29(2): 13-19.
    8米旭峰,支撑框架与竖缝剪力墙抗震设计研究[D].杭州:浙江大学博士学位论文, 2007: 95-172.
    9童根树,米旭峰.钢框架内嵌带竖缝钢筋混凝土剪力墙的内力计算模型[J].建筑结构学报, 2006, 27(5): 39-46.
    10童根树,米旭峰.钢框架内嵌带竖缝钢筋混凝土剪力墙的补充计算和构造要求[J].建筑结构学报, 2006, 27(5): 47-55.
    11 Xiangdong Tong. Seismic Behavior of Composite Steel Frame-reinforced Concrete Infill Wall Structural System[D]. Doctor Thesis, Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, April, 2001: 1-11.
    12 Xiangdong Tong, J F Hajjar, Arturo E Schultz, Carol K Shield. Cyclic Behavior of Steel Frame Structures with Composite Reinforced Concrete Infill Walls and Partially-restrained Connections[J]. Journal of Constructional Steel Research, 2005, Vol.61, 531-552.
    13彭晓彤.半刚性连接钢框架内填钢筋混凝土剪力墙结构体系的滞回性能及抗震设计对策[D].西安:西安建筑科技大学博士学位论文, 2005: 1-12.
    14彭晓彤,顾强,林晨.半刚性节点钢框架内填钢筋混凝土剪力墙结构试验研究[J].土木工程学报, 2008, 41 (1): 64-69.
    15方有珍.半刚接钢框架(柱弱轴)—内填RC剪力墙结构滞回性能[D].西安:西安建筑科技大学博士学位论文, 2006: 1-8.
    16方有珍,顾强,申林.半刚接钢框架-内填RC剪力墙结构试件设计与分析[J].兰州理工大学学报, 2007, 33(4): 126-130.
    17方有珍,顾强,申林.半刚接钢框架(柱弱轴)-内填剪力墙结构滞回性能试验研究[J].建筑结构学报, 2008, 29(2): 41-62.
    18李国华.短端板半刚接钢框架-内填钢筋混凝土剪力墙结构滞回性能[D].南京:河海大学博士学位论文, 2008: 1-14.
    19 Abolhassan Astaneh-Asl. Behavior and Design of Steel and Composite Structures[M]. University of California, Berkeley, 2003.
    20 Qiuhong Zhao, Abolhassan Astaneh-Asl. Cyclic Behavior of Traditional and Innovative Composite Shear Walls[J]. Journal of Structural Engineering, 2004, 130(2): 271-284.
    21 Architectural Institute of Steel Construction (AIJ). Design Recommendation for Composite Construction[M], AIJ, Tokyo, Japan, 1985.
    22 Federal Emergency Management Agency. NEHRP commentary on the guidelines for the seismic rehabilitation of buildings[R]. Report No. FEMA 274, Federal Emergency Management Agency, Washington, D. C, 1997.
    23 Mallick DV, Severn RT. Dynamic Characteristics of Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, 1968, 39: 261-287.
    24 Holmes M. Steel Frames with Brickwork and Concrete Infilling[J]. Proceedings of the Institution of Civil Engineers, 1961, Vol.19, August, 473-478.
    25 Liauw T C, Kwan K H. Plastic Theory of Non-integral Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, part 2,1983,75, Sept. 379-396.
    26 Liauw T C, Kwan K H. Plastic Theory of Infilled Frames with Finite Interface Shear Strength[J]. Proceedings of the Institution of Civil Engineers, part 2,1983,75, Dec. 707-723.
    27 Stafford Smith B. Behavior of Square Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, 1966, Vol.92, Feb, 381-403.
    28 Liauw T C, Lee S W. On the Behavior and Analysis of Multi-story Infilled Frames Subject to Lateral Loading[J]. Proceedings of the Institution of Civil Engineers, part 2, 1977, Vol.63, Sept, 641-656.
    29 Liauw T C, Kwan K H. Non-linear Analysis of Multistory Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, part 2, 1982, 73, June, 441-454.
    30 Liauw T C, Kwan K H. Static and Cyclic Behaviors of Multistory Infilled Frames with Different Interface Conditions[J]. Journal of Sound and Vibration, 1985, 99(2): 275-283.
    31 Liauw T C, C Q Lo. On Multibay Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, part 2, 1988, Vol.85, 469-483.
    32 Liauw TC. Test on Multistory Infilled Frames Subject to Dynamic Lateral Loading[J]. ACI Journal 1979, 76(4): 551-564.
    33 Makino M, Kawano A, Kurobane Y. An Investigation for the Design of Framed Structures with Infill Walls[C]. In: Proceedings of the 7th World Conference on Earthquake Engineering. Istanbul, Turkey, 1980: 369-372.
    34 Makino M. Design of Framed Steel Structures with Infill Reinforced Concrete Walls[C]. In: Roeder CW, editor. Composite and Mixed Construction. New York (NY): ASCE, 1985: 279-287.
    35 A K H Kwan, J Q Xia. Shake-table Tests of Large-scale Shear Wall and Infilled Frame Models[J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1995, 110(1), February, 66-77.
    36夏敬谦, Kwan K H,罗学海, Liauw T C.剪力墙结构、框架填充墙结构模型模拟地震试验研究[J].地震工程与工程振动, 1996, 16(2): 55-66.
    37颜鹏.刚性连接钢框架-内填钢筋混凝土剪力墙结构体系的滞回性能及抗震设计对策[D].西安:西安建筑科技大学博士学位论文, 2006: 1-14.
    38 Mallick D V, Severn R T. The Behavior of Infilled Frames Under Static Loading[J]. Proceedings of the Institution of Civil Engineers, 1967, Vol.38, Dec, 639-656.
    39 Riddington J, Stafford Smith B. Analysis of Infilled Frames Subject to Raking with Design Recommendations[J]. Engineering Structure, 1977, Vol.52, No.6, 263-268.
    40 King G J W, Pandey P C. The Analysis of Infilled Frames Using Finite Element[J]. Proceedings of the Institution of Civil Engineers, part 2, 1978, Vol.65, Dec, 749-760.
    41 Kwan K H, Liauw T C. Nonlinear Analysis of Integral Infilled Frames[J]. Engineering Structures, 1984, Vol.6, July. 223-231.
    42 Liauw T C, Kwan K H. Nonlinear Behavior of Non-integral Infilled Frames[J]. Computers & Structures, 1984,18(3), 551-560.
    43方有珍,何若全,申林等.半刚接钢框架(柱弱轴)-内填剪力墙结构滞回性能的有限元分析[J].建筑结构学报, 2008, 29(2): 63-71.
    44 Mallick S K, Barua H K. Behavior of Mortar Infilled Steel Frame under Lateral Load[J]. Building & Environment, 1977, Vol.12, 263-372.
    45 Stafford Smith B. Methods for Predicting The Lateral Stiffness and Strength of Multistory Infilled Frames[J]. Building Science, 1967,Vol.2,247-257.
    46 Stafford Smith B, Carter C. A Method of Analysis for Infill Frames[J]. Proceedings of the Institution of Civil Engineers, 1969, Vol.44,31-48.
    47 Mainstone R J. On the Stiffness and Strengths of Infilled Frames[J]. Proceedings of theInstitution of Civil Engineers, 1971, suppl, paper 7360S, 57-90.
    48 R H Wood. Plasticity, Composite Action and Collapse Design of Unreinforced Shear Wall Panels in Frames[J]. Proceedings of the Institution of Civil Engineers, part 2, 1978, 65, June. 381-411.
    49 Liauw T C, Kwan K H. Plastic Design of Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, part 2, technical note, 1984,Vol.77, 367-377.
    50 Saneinjad A, Hobbs B. Inelastic Design of Infilled Frame[J]. Journal of Structure Engineering, ASCE, V.121, No.4, 1995. 634-650.
    51 Hayahsi M, Yoshinaga K. An Experimental Study of Practical Application of Composite Structures of a Frame and an Earthquake Resistant Wall 3[C]. Synopses of the Conference of Architecture Institute of Japan, AIJ, Tokyo, Japan, October, 1987. 1317-1318.
    52 Hayahsi M, Yoshinaga K. An Experimental Study of Practical Application of Composite Structures of a Frame and an Earthquake Resistant Wall 9[C]. Synopses of the Conference of Architecture Institute of Japan, AIJ, Tokyo, Japan, September, 1994. 1617-1618.
    53 GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001: 26-40.
    54 GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003: 22-119.
    55 JGJ-1999.高层民用建筑钢结构设计规程[S].北京:中国建筑工业出版社,1998: 33-36.
    56 Calado L, De Matteis G, Landolfo R, Mazzolani F M. Cyclic Behavior of Steel Beam-to-Column Connections: Interpretation of Experimental Results[C]. SDSS’99 Stability and Ductility of Steel Structures, Proc. 6th International Colloquium, Timisoara (Romania), (ed. by D. Dubina and M. Ivanyi), Elsevier, 1999: 211-220.
    57 Bing Guo, Qiang Gu, Feng Liu. Experimental Behavior of Stiffened and Unstiffened End-plate Connections under Cyclic Loading[J]. Journal of Structural Engineering, 2006, 132(9): 1352-1357.
    58 Ghobarah A, Osman A, Korol R M. Behavior of Extended End-plate Connections under Cyclic Loading[J]. Engineering Structures, 1990, 12(1): 15-27.
    59 Hasan R, Kishi N, Chen W F. Evaluation of Rigidity of Extended End-plate Connections[J]. Journal of Structural Engineering, 1997,123 (12): 1595-1602.
    60 Eurocode 3. Design of Steel Structures[S], European Committee for standardization,1992.
    61 Federal Emergency Management Agency. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. Report No. FEMA 273, Federal Emergency Management Agency, Washington, 1997.
    62 Chen W F, Kishi N. Semi-rigid Steel Beam-to-Bottomn Connections: Data Base and Modeling[J]. Journal of Structural Engineering, 1989, 115(1): 105-119.
    63 Fu-Hsiang Wu, Chen WF. A Design Model for Semi-rigid Connections[J]. Engineering Structures, 1990, 12(1): 88-96.
    64 Kishi N, Chen W F. Moment Rotation Relations of Semi-rigid Connections with Angles[J]. Journal of Structural Engineering, 1990, 116(7): 1813-1834.
    65 Kim Y, Chen W F. Design Tables for Top- and Seat-angle with Double Web-angle Connections[J]. Engineering Journal, AISC 1998, 35(2): 50-75.
    66 JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997: 9-15.
    67 GB50152-92混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992: 1-18.
    68 GB/T 2975-1998钢及钢产品力学性能试验取样位置及试验制备[S].北京:中国标准出版社,1999: 4-6.
    69 GB/T 228-2002金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002: 1-18.
    70 Ray Clough, Joseph Penzien.,王光远等译校.结构动力学(第二版修订版)[M].北京:高等教育出版社, 2006: 396-397.
    71过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003: 336-337.
    72孙克俭.钢筋混凝土抗震结构的延性及延性设计[M].呼和浩特:内蒙古人民出版社, 1995: 93-96.
    73 CECS160: 2004建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社,2004: 264-266.
    74李少泉,沙镇平.钢筋混凝土多高层建筑结构在地震作用下的割线刚度分析法[J].土木工程学报, 2003, 36(8): 37-42.
    75 M J N.普瑞斯特雷, F.基勃勒, G. M.卡尔维著,袁万城,胡勃,崔飞,韦晓译.桥梁抗震设计与加固[M].北京:人民交通出版社, 1992: 118-119.
    76翟长海,谢礼立.结构抗震设计中的强度折减系数研究进展[J].哈尔滨工业大学学报, 2007, 39(8): 1177-1184.
    77童根树.钢结构设计方法[M].北京:中国建筑工业出版社, 2007: 72-74.
    78 Mitchell D, Paultre P. Ductility and Overstrength in Seismic Design of Reinforced Concrete Structures[J ]. Canadian Journal of Civil Engineering, 1994, 21: 1049-1060.
    79翟长海,谢礼立.钢筋混凝土框架结构超强研究[J].建筑结构学报, 2007, 28(1): 101-106.
    80周靖,蔡健,方小丹.钢筋混凝土框架结构抗震超强系数分析[J].世界地震工程, 2007, 23(4): 227-233.
    81 Park R. Explicit Incorporation of Element and Structure Overstrength in The Design Process[C]. Proceedings of 11th World Conference of Earthquake Engineering. Acapulco, Mexico: International Association of Earthquake Engineering, 1996, No. 2123.
    82 Elnashai A S, Mwafy A M. Overstrength and Force Reduction Factors of Multistory ReinforcedConcrete Buildings[J]. The Structural Design of Tall Buildings, 2002, 11(5): 329-351.
    83翟长海,谢礼立.结构抗震设计中强度折减系数研究进展[J].哈尔滨工业大学学报, 2007, 39(8): 1177-1184.
    84 Chia Ming Uang. Establishing R (or Rw) and Cd Factors for Building Seismic Provision[J]. Journal of Structural Engineering, 1991,117 (1): 19-28.
    85 Lam N, Wilson J, Hutchinson G. The Ductility Reduction Factor in The Seismic Design of Buildings[J]. Earthquake Engineering and Structural Dynamics, 1998, 27 (7): 749-769.
    86 Lee L H, Han S W. Determination of Ductility Factor Considering Different Hysteretic Models[J]. Earthquake Engineering and Structural Dynamics, 1999, 28 (9): 957-977.
    87 Kappos A J. Evaluation of Behavior Factor on The Basis of Ductility and Overstrength Studies[J]. Engineering Structues, 1999, 21 (9): 823-835.
    88 Tiwari A K, Gupta V K. Scaling of Ductility and Damaged-based Strength Reduction Factors for Horizontal Motions[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(7): 969-987.
    89 Newmark N M, Hall W J. Earthquake Spectra and Design[R]. California: EERI Monograph Series, 1982.
    90 Krawinkler H, Nassar A A. Seismic Design Based on Ductility and Cumulative Damage Demand and Capacities[C]. Fajfar, Krawinkler(ED.), Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, New York: Elsevier Applied Science, 1992: 215-217.
    91 Vidic T, Fajfar P, Fischinger M. Consistent Inelastic Design Spectra: Strength and Displacement [J]. Earthquake Engineering and Structural Dynamic, 1994, 23(5): 507-521.
    92 Miranda E. Site Dependent Strength Reduction Factors[J]. Journal of Structural Engineering, 1993, 119(12): 3503-3519.
    93 Chakraborti A, Gupta V K. Scaling of Strength Reduction Factors for Degrading Elasto- Plastic Oscillators[J]. Earthquake Engineering and Structural Dynamic, 2005, 34(2): 189-206.
    94 Ordaz M, Perez-Rocha L E. Estimation of Strength-Reduction Factors for Elastoplastic Systems: A New Approach[J]. Earthquake Engineering and Structural Dynamic, 1998, 27(9): 889-901.
    95 Borzi B, Elnashai A S. Refined Force Reduction Factors for Seismic Design[J]. Engineering structures, 2000, 22(10): 1244-1260.
    96 Tong G S, Huang J Q. Seismic Force Modification Factor for Ductile Structures[J]. Journal of Zhejiang University Science A, 2005, 6A(8): 813-825.
    97 Petti L, Iuliis M D, Palazzo B. Strength Reduction Factors for Performance Based Seismic Design[J]. Proceeding of The Conference on Behavior of Steel Structures in Seismic Areas,Naples, Italy, 2003.
    98 Mahmoud R M, Akbari R. Seismic Behavior Factor R for Steel X-braced and Knee-braced RC Buildings[J]. Engineering structures, 2003, 25(12): 1505-1513.
    99 Kim J, Choi H. Response Modification Factors of Chevron Braced Frames[J]. Engineering structures, 2005, 27(2): 285-300.
    100 Fathi M, Daneshjoo F, Melchers R E. A Method for Determining the Behavior Factor of Moment Resisting Steel Frame with Semi-rigid Connections[J]. Engineering structures, 2006, 28(4): 514-531.
    101 Whittaker A, Hart G, Rojahn C. Seismic Response Modification Factors[J]. Journal of Structural Engineering, 2003, 125(4): 438-444.
    102 Balendra T, Huang X. Overstrength and Ductility Factors for Steel Frames Designed According to BS5950[J]. Journal of Structural Engineering, 2003, 129(8): 1019-1035.
    103刘曙,尹静,朱洪波.钢框架顶底角钢带腹板双角钢连接的能试验研究[J].华中科技大学学报(自然科学版), 2004, 32(7): 108-110.
    104 William K Saari, Jerome F Hajjar, Arturo E Schultz, Carol K Shield. Behavior of Shear Studs in Steel Frames with Reinforced Concrete Infill Walls[J]. Journal of Constructional Steel Research, 2004,Vol.60, 1453-1480.
    105 William K Saari. Behavior of Shear Connectors in Steel Frames with Reinforced Concrete Infill Walls[D]. Masters Thesis, Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, February. 66-91.
    106 Shervin Maleki, Saman Bagheri. Behavior of channel shear connectors, PartⅠ: Experimental study[J]. Journal of Constructional Steel Research, 2008,Vol.64, 1333-1340.
    107朱聘儒.钢-混凝土组合梁设计原理(第二版)[M].北京:中国建筑工业出版社, 2006: 148-150.
    108徐增全.钢筋混凝土薄膜元理论[J].建筑结构学报, 1995, 16(5): 10-19.
    109 Thomas T C Hsu. Nonlinear-Analysis of Concrete Membrane Elements[J]. ACI Structural Journal, 1991, 88(5): 552-561.
    110 Pang X B D, Thomas T C Hsu. Behavior of Reinforced Concrete Membrane Elements in Shear[J]. ACI Structural Journal, 1995, 92(6): 665-679.
    111 Belarbi A, Thomas T C Hsu. Constitutive Laws of Softened Concrete in Biaxial Tension Compression [J]. ACI Structural Journal, 1995, 92(5): 562-573.
    112 Thomas T C Hsu, Zhang L X. Nonlinear Analysis of Membrane Elements by Fixed-Angle Softened-Truss Model [J]. ACI Structural Journal, 1997, 94(5): 483-492.
    113 Taijun Wang, Thomas T C Hsu. Nonlinear Finite Element Analysis of Concrete StructuresUsing New Constitutive Models[J]. Computers and Structures, 2001, 79: 2781-2791.
    114 Mansour M, Thomas T C Hsu. Cyclic Stress-strain Curves of Concrete and Steel Bars in Membrane Elements[J]. Journal of Structural Engineering, 2001, 127(12): 1402-1411.
    115 Mansour M, Thomas T C Hsu. Behavior of Reinforced Concrete Elements under Cyclic Shear I: Experiments[J]. Journal of Structural Engineering, 2005, 131(1): 44-53.
    116 Mansour M, Thomas T C Hsu. Behavior of Reinforced Concrete Elements under Cyclic Shear.Ⅱ: Theoretical Model[J]. Journal of Structural Engineering, 2005, 131(1): 54-65.
    117季韬,郑作樵,郑建岚.一种新的钢筋混凝土软化桁架模型[J].建筑结构学报, 2001, 22(1): 69-75.
    118 Mitchell D, Collins M P. Diagonal Compression Field Theory-A Rational Model for Structural Concrete in Pure Torsion[J]. ACI Structural Journal, 1974, 71(8): 396-408.
    119 Vecchio F J, Collins M P. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear[J]. ACI Structural Journal, 1986, 83(2): 219-231.
    120 Vecchio F J. Nonlinear Finite-Element Analysis of Reinforced-Concrete Membranes[J]. ACI Structural Journal, 1989, 86(1): 26-35.
    121 Vecchio F J. Reinforced Concrete Membrane Element Formulations[J]. Journal of Structural Engineering, 1990, 116(3): 730-750.
    122 Vecchio F J, Selby R G. Toward Compression-Field Analysis of Reinforced-Concrete Solids[J]. Journal of Structural Engineering, 1991, 117(6): 1740-1758.
    123 Vecchio F J. Finite-Element Modeling of Concrete Expansion and Confinement[J]. Journal of Structural Engineering, 1992, 118(9): 2390-2406.
    124 Darwin D, Pecknold D A. Nonlinear Biaxial Stress-strain Law for Concrete[J]. Journal of Structural Engineering, 1977, 103: 229-241.
    125 Elgaaly M, Caccese V, Du C. Post Buckling Behavior of Steel Plate Shear Walls under Cyclic Loads[J]. Journal of Structural Engineering, 1991, 119(2): 588-605.
    126 Driver R G, Lilal G L, Elwi A E, Laurie Kennedy D J. FE and Simplified Models of Steel Plate Shear Wall[J]. Journal of Structural Engineering, 1998, 124(2): 121-130.
    127 Elgaaly M. Thin Steel Plate Shear Walls Behavior and Analysis[J]. Thin-Walled Structures, 1998, 32: 151-180.
    128 Lubell A S, Prion H G L, Ventura C E, Rezai M. Unstiffened Steel Plate Shear Wall Performance under Cyclic Loading[J]. Journal of Structural Engineering, 2000, 126(4): 453-460.
    129 Berman J, Bruneau M. Plastic Analysis and Design of Steel Plate Shear Walls[J]. Journal of Structural Engineering, 2003, 129(11): 1448-1456.
    130 Berman J W, Bruneau M. Experimental Investigation of Light-gauge Steel Plate Shear Walls[J]. Journal of Structural Engineering, 2005, 131(2): 259-267.
    131 Saeid S G, Carios E, Ventura M A, et al. Shear Analysis and Design of Ductile Steel Plate Walls[J]. Journal of Structural Engineering, 2005, 131(6): 878-889.
    132邵建华,顾强,申永康.钢板剪力墙的弹塑性抗剪承载力分析[J].河海大学学报(自然科学版), 2006, 34(5): 537-541.
    133邵建华,顾强,申永康.基于等效拉杆原理的钢板剪力墙结构有限元分析[J].武汉理工大学学报, 2008, 30(1): 75-78.
    134邵建华,顾强,申永康.多层多跨钢板剪力墙水平极限承载力分析[J].重庆建筑大学学报, 2008, 30(2): 71-74.
    135 Shishkin J J, Driver R G, Grondin G Y. Analysis of Steel Plate Shear Walls Using the Modified Strip Model[R]. Department of Civil and Environmental Engineering University of Alberta, Edmoton, Alberta, Canada, 2005: 33-61.
    136北京金土木软件技术有限公司等编著. SAP2000中文版使用指南[M].北京:人民交通出版社,2004: 56-60.
    137 Toshikazu Takeda, Sozen M A, Nielsen N N. Reinforced Concrete Response to Simulated Earthquakes[J]. Journal of the Structural Division, 1970, 96(12): 2557-2573.
    138 Robert K, Dowell, Frieder S, Edward L Wilson. Pivot Hysteresis Model for Reinforced Concrete Members[J]. ACI Structrual Journal, 1998, 95(5): 607-617.
    139刘永华,张耀春.钢框架高等分析研究综述[J].哈尔滨工业大学学报, 2005, 37(9): 1283-1290.
    140李文岭,郝际平,王连坤等.改进塑性铰法在钢框架高等分析中的应用[J].重庆建筑大学学报, 2005, 27(2): 128-133.
    141 Federal Emergency Management Agency. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. Report No. FEMA 356, Federal Emergency Management Agency, Washington, 2000.
    142陈骥.钢结构稳定理论与应用[M].北京:科学技术文献出版社, 1994: 20-21.
    143 European Convention for Constructional Steelworks (ECCS). Recommended Testing Procedures for Assessing the Behaviour of Structural Elements under Cyclic Loads [R]. Technical Committee 1, TWG 1.3-Seismic Design, No.4, 1986.
    144 GB50009-2001.建筑结构荷载规范[S].北京:中国建筑工业出版社,2001: 1-11.
    145 GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002: 189-197.
    146 Li Q T, Nethercot D A. Determination of Rotation Capacity Requirements for Steel and Composite Beams[J]. Journal of Construction Steel Research, 1995, 32: 303-332.
    147 Nethercot D A, Li Q T, Choo B S. Required Rotations and Moment Redistribution for Composite Frames and Continuous Beams[J]. Journal of Construction Steel Research, 1995, 35: 121-163.
    148 Nethercot D A, Li Q T, Ahmed B. Unified Classification System for Beam-to-Column Connections[J]. Journal of Construction Steel Research, 1998, 45: 39-65.
    149 T鲍雷, M J N普里斯特利著,戴瑞同,陈世鸣,林宗凡等译.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社, 1999: 24-28.
    150 AISC. Design Guide 20-Steel Plate Shear Wall[M]. San Franscisco, American Institute of Steel Construction, 2007: 142-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700