用户名: 密码: 验证码:
不同种属动物肠道糖基化模式及其对大豆凝集素敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共包括四个部分:研究了不同种属动物猪、鸡、兔等肠道糖基化模式,分离鉴定了肠道大豆凝集素受体,建立高效廉价的大豆凝集素亲和层析体系并纯化大豆凝集素,研究了日粮添加大豆凝集素对不同种属动物肠道糖基化的影响。
     本试验利用定量凝集素组织化学技术以生物素标记的大豆凝集素(SBA)、麦胚凝集素(WGA)、刀豆凝集素(ConA)、蓖麻凝集素(RCA)、荆豆凝集素(UEA)为探针对1/4性成熟猪、鸡、兔三种动物的十二指肠、空肠前段、空肠中段、空肠后段、回肠等各段糖基组成进行了刻画,并对各种属动物肠道部位、细胞类型等的糖基化进行了比较。结果:生物素标记的WGA、WGA、ConA、RCA与猪、兔和鸡的肠道组织都有结合,UEA只与外猪、兔肠道组织结合,而未与鸡肠道组织结合。凝集素结合的细胞类型主要为杯状细胞、柱状上皮细胞和少量淋巴细胞,但不同凝集素与同种细胞类型结合存在量的差异;同种动物的不同消化道区段各凝集素在的结合规律也不尽相同;不同种属动物的同一消化道区段也存在差异。结果表明:猪、兔和鸡的肠道各段均存在N-乙酰基葡萄糖胺、N-乙酰基-D-半乳糖胺、半乳糖、甘露糖糖基,而岩藻糖糖基仅存在猪和兔消化道各段,并不存在于鸡消化道各段。N-乙酰基葡萄糖胺、半乳糖、甘露糖糖基、N-乙酰基-D-半乳糖胺糖在猪、兔和鸡不同种属动物肠道的杯状细胞、柱状细胞和少量淋巴细胞均有分布。岩藻糖基除鸡也外分布于上述细胞。在各细胞类型中N-乙酰基-D-半乳糖胺主要分布于肠道上皮的柱状细胞和杯状细胞膜的游离侧面。各种属动物小肠各段优势糖基存在差异:如猪肠道为岩藻糖和甘露糖,鸡肠道为N-乙酰基葡萄糖胺和半乳糖,兔肠道为岩藻糖和N-乙酰基葡萄糖胺。另外肠道各段糖基的组成比例也存在差异。各种属动物糖基化水平也存在差异如鸡肠道除岩藻糖为阴性外,其他糖基化水平相对含量均高于猪、兔肠道各段。
     试验选取新生未哺乳的猪和兔及新生未采食的仔鸡,分离肠道上皮组织并提取膜蛋白,采用大豆凝集素亲和层析技术,从上述膜蛋白粗提物中分离能与大豆凝集素特异性结合糖蛋白(大豆凝集素受体),用双向电泳将“糖捕获”法分离获得的大豆凝集素受体蛋白的分子量和等电点等信息并将各组分进一步分离,最后选取代表性的双向电泳斑点进行质谱(MS-TOF/TOF)鉴定。结果:大豆凝集素亲和层析结合双向电泳技术分离获得了猪、鸡、兔的肠道上皮组织蛋白大豆凝集素受体蛋白的表达谱。猪的大豆凝集素受体蛋白多分布于PI5-8,MW30kD-97.2kD区域,切取13蛋白点,经质谱鉴定和IPI数据库搜库分析比对,共获得11个已验证蛋白,分别为内源凝集素1β蛋白、内源凝集-2、Ⅰ和Ⅱ型细胞支架蛋白、膜联蛋白A4、模板激活蛋白、78kD葡萄糖调节蛋白、71kD同源热休克蛋白、钙激活的氯化物通道调节蛋白。鸡的大豆凝集素受体多分布在PI5-8,MW29.0kD-64.2kD区域,切取18蛋白点,经串联质谱鉴定和IPI数据库检索,获得12个已验证蛋白,有9个具有催化功能的酶蛋白:L-乳酸脱氢酶、蛋白质二硫化异构酶A3、磷酸丙糖异构酶、叶酸合成蛋白、视黄醛脱氢酶1、U型肌酸激酶、ATP合成酶p亚基、苹果酸脱氢酶、膜联蛋白2,1个与细胞结构功能相关的蛋白,细胞骨架蛋白,1个热休克蛋白。兔的大豆凝集素受体蛋白多分布于PI5-8,MW26.0kD-90.0kD区域,质潜鉴定和IPI数据库检索分析,获得3个蛋白,分别为解螺旋蛋白、肌动蛋白、Ⅰ型细胞骨架蛋白。
     为获取大量纯化的大豆凝集素已满足动物实验需要,本试验以D-半乳糖胺为配基,以FF-sepharose4B为固定相,制备大豆凝集素亲和层析填料。建立了高效廉价的大豆凝集素纯化体系,测定了所纯化大豆凝集素的纯度、免疫原性和凝集活性,并与Sigma标准品进行了比较。结果:所用纯化体系具有高纯化效率,每毫升GalN-FF-sepharose-4B层析填料能结合10mg大豆凝集素;所得的大豆凝集素亚基的分子量为30kD, SDS-PAGE测定纯度在98%以上,Western blot结果为阳性,1mg/mL SBA血集效价为1/210,各指标与理论值相符,且与Sigma大豆凝集素标准品一致。
     本实验选限1/4性成熟猪、鸡、兔,各分成5组,分别饲喂含大豆凝集素质量浓度为0,0.025%,0.25%,0.5%和1%的纯合日粮,饲喂结束后,以生物素标记的大豆凝集素为探针检测了上述三种动物不同肠段的N-乙酰基D-半乳糖胺的变化情况。结果:日粮中添加大豆凝集素能够引起动物肠道内N-乙酰基D-半乳糖胺的变化,三种动物肠道的N-乙酰基D-半乳糖胺随日粮大豆凝集素的浓度升高表达量增加,1%大豆凝集素添加组不同种属动物肠道各段N-乙酰基D-半乳糖胺表达量显著高于对照组(P<0.05)。猪肠道N-乙酰基D-半乳糖胺含量从十二指肠到回肠呈现降低趋势,十二指肠和空肠前段N-乙酰基D-半乳糖胺对大豆凝集素敏感性较空肠中、后段和回肠强。鸡肠道N-乙酰基D-半乳糖胺含量从十二指肠到回肠呈现上升趋势,同一肠段随着大豆凝集素刺激剂量的升高糖基化水平也呈逐渐升高的趋势,空肠前段和中段敏感性较其他肠段强。兔肠道各段随大豆凝集素剂量的增加N-乙酰基D-半乳糖胺含量呈现上升趋势,空肠前段和中段对高浓度大豆凝集素的刺激糖基变化较敏感。
     本论文研究表明,不同种属动物肠道糖基类型、糖基含量、优势糖基均存在种属差异。研究发现所选哺乳类代表动物猪和兔的肠道中含有测试的5种糖基,禽类代表动物鸡肠道中含有4种糖基,不含有岩藻糖糖基。三种动物肠道大豆凝集素结合的N-乙酰基-D-半乳糖胺主要结合于肠上皮的柱状细胞和杯状细胞膜的游离侧面。根据三种动物肠道糖基化模式可知,N-乙酰基-D-半乳糖胺不是三种动物肠道的优势糖基。根据鉴定的不同种属肠道上皮结合的大豆凝集素受体蛋白的结构和功能信息,可将其分为三类,一类是细胞膜结构蛋白,一类为功能性调节蛋白,另一类为具有催化活性的酶蛋白。预示大豆凝集素的抗营养作用可能与其结合的蛋白功能有关。大豆凝集素刺激下不同种属动物肠道N-乙酰基D-半乳糖胺的糖基化水平均显著提高,说明大豆凝集素能够对不同种属动物肠道N-乙酰基D-半乳糖胺糖基化水平起到上调作用,肠道N-乙酰基D-半乳糖胺糖基化水平与大豆凝集素的抗营养作用相关,且不同种属动物肠道各段N-乙酰基D-半乳糖胺对大豆凝集素敏感性存在差异。
This research is composed of4parts, the depiction of intestinal glycosylation patterns in different animal species, isolation and identification of SBA receptors, establishment of a kind of affinity chromatography method with high efficiency for SBA purification and detection of the effects of SBA on the intestinal glycosylation of different animal species.
     In this research, biotin labeled SBA, WGA, Con A, RCA, and UEA were used as probes in Lectin-histochemical staining to depict the glycosylation patterns in duodenum, pre-jejunum, mid-jejunum, post-jejunum, ileum in pig, chicken and rabbit at1/4sexual maturity stage. The comparison of glycosylation patterns was performed between different intestinal tracts and cell types. Results:biotin labeled SBA, WGA, ConA, RCA and UEA can bind to all tracts of intestine in pig and rabbit. In chicken, all biotin labeled lectins except UEA can bind to all tracts of intestine. The main cell types that lectins can bind to are goblet cells, Columnar epithelial cells and some lymphocytes. Meanwhile, significant differences can be found between the positive signals of different lectins in one cell type. Our results also show that had differences in the quality of positive signals of one lectin between different intestinal tracts in one kind of animal and between the same intestinal tracts in different kinds of animals. It showed that in all intestinal tracts in pigs, rabbits and chickens, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, galactose, mannose can be detected, and fucose can be found in pigs and rabbits but not in chickens. N-acetyl-D-galactosamine residues that can be recognized by SBA are distributed in the free surface of goblet cells and columnar epithelial cells. Differences can be found between the main glycol-residues in different kinds of animals, in pig intestine, the main residues are fucoses and mannoses, in rabbits, are fucose and N-acetyl-D-glucosamine. and in chicken are N-acetyl-D-glucosamine and galactose, respectively. In chikens, there are more N-acetyl-D-glucosamine, N-Acetyl-D-galactosamine, galactose, mannose than other two kinds of animals.
     Then new born and not breast-feeding pigs, rabbits and chickens were chosen in this research, and crude membrane proteins were isolated from intestinal tissue and then SBA receptors in the intestine in these animals were purified by SBA affinity chromatography;2-D electrophoresis was performed and MW and pI of SBA receptors that purified by glycol-capture method were obtained. At last, glycoproteins were identified through MS-TOF/TOF. Results:the expression map of SBA receptors was obtained by the means of SBA affinity chromatography and2-D electrophoresis. pI of SBA receptors in piglets are distributed in the range of5-8, and MV30kD-97.2kD. Among those glycoproteins13proteins were chosen for MS-TOF/TOF, after identification and blast in IPI base,11known protein were identified, which were named as Intelectin-1β,Keratin, pattern Ⅱ cytoskeletal1, Keratin, pattern Ⅰ cytoskeletal10,Annexin A4, Protein SET,78kD glucose-regulated protein, Heat shock cognate71kD protein, Calcium-activated chloride channel regulator1. pI of SBA receptors in chickens is located in the range of5-8, and MW29.0kD-64.2kD. Among those proteins18dots were cut, after MS-TOF/TOF identification and blast in IPI base,12known proteins were identified, and among which9proteins were enzyme proteins with catalytic activity such as L-lactate dehydrogenase A chain. Protein disulfide-isomerase A3, Triosephosphate isomerase, Folic acid synthesis protein FOL1, Creatine kinase U-pattern, mitochondrial, ATP synthase subunit β,mitochondrial, Malate dehydrogenase, Annexin A2. A cell structure and function of protein, Keratin, pattern Ⅱ cytoskeletal1, and one HSP. PI of SBA receptors in rabbits intestine was located in the range of5-8, and MV in the range of26.0kD-90.0kD, after MS-TOF/TOF and blast in IPI base,3protein were identified with the names of helix-destabilizing protein,actin, type Ⅰ cytoskeletal9.
     In order to obtain enough SBA for animal experiment, D-galactose-FF-sepharose4B was synthesized as an affinity adsorbent for affinity chromatography. SBA was purified in this system, and the purity, immunogenicity, hemagglutinational activity were detected and compared with standard SBA. Results:the affinity activity of GalN-FF-sepharose-4B is lOmgSBA per ml. The MV of the SBA we purified is30kD, purity is98%. Western blot shows the purified SBA is active. hemagglutinational activity value is1/210. There are no difference of the purity, immunogenicity and hemagglutinational activity between theSBA that we obtained and the standard SBA.
     In this research,1/4sexual maturity piglets, chickens and rabbits were, and divided into five groups and then were feed with diet containing SBA with the concentration of0,0.025%,0.25%,0.50%and1.00%respectively. Lectin-histochemical staining was performed as described in experiment Ⅰ. the change of N-acetyl-D-glucosamine was detected through the biotin labeled SBA as probe. Results:N-acetyl-D-glucosamine in the intestine can be changed by feed diet containing SBA. N-acetyl-D-glucosamine in all the animals intestine can be increased by SBA, and in1%group, all intestinal tracts in all kind of animals, the expression of N-acetyl-D-glucosamine glycosylation is significantly higher than that of control group(P<0.05). The trend of N-Acetyl-D-galactosamine in piglet intestine is decreased from duodenum to ileum, and the sensitivities in duodenum and pre-jejunum, were higher than that of mid-jejunum, post-jejunum and ileum. In the intestine of chickens, the trend of N-Acetyl-D-galactosamine was increased from duodenum to ileum, and the sensitivities of pre-jejunum and mid-jejunum were higher than other tracts. In rabbits, N-Acetyl-D-galactosamine was increased by the raise SBA contention.
     This study showed that there are many differences in the glycol-patterns, quantity of glycol-residues, and dominant glycol-residues between different animal species. It showed that in intestine in piglets and rabbits which stand for mammalian, all5kinds of glycol-residues can be detected and in chickens which stand for poultry only4kinds of glycol-residues can be detected. The distribution of glycol-residues is located in the free surface of goblet cells, Columnar epithelial cells in all animals that were used in this study According to intestinal glycol-pattern in these three kinds of animals, N-Acetyl-D-galactosamine residues are not the dominant glycol-residues. According to the structural and functional information, the proteins can be divided into3classes, cell membrane structural proteins, functional regulating proteins, and enzyme proteins with catalytic activities. These results elucidated that the anti-nutrition activities of SBA may be mediated by their binding proteins. The increase of N-Acetyl-D-galactosamine in intestine of different animals illustrate that SBA can regulate the level of the expression of N-Acetyl-D-galactosamine, that may associated with the anti-nutrition of SBA, and the sensitivity to SBA is dependent on the kind of animals and the tracts of the intestine.
引文
[1]Qin G.X. Processing soybeans of different origins. Responses of a Chinese and a western pig breed to dietary inclusion:[D]. Wageningen, The Netherland:Wageningen Agricultural University.1996.
    [2]Christopher T. Cordle. Soy Protein Allergy:Incidence and Relative Severity. Fifth International Symposium on the Role of Soy in Preventing and Treating Chronic Disease. J. Nutr[J].2004,134:1213-1219.
    [3]Pusztai A, Ewen S W, Grant G, et al. Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion[J],1990,46(2):308-316.
    [4]Grant G, Watt W B, Stewared J C S, Pusztai A. Effects of dietary soybean (Glycine max) lectin and trypsin inhibitors upon the pancreas of rat[J]. Med. Sci. Res.,1987,15:1197-1198.
    [5]De Oliveira J T A, Pusztai A, Grant G. Changes in organs and tissues induced by feeding of purified kidney (phaseolus vulgaris) lectin[J]. Nutri. Res.,1998,8:943-947.
    [6]Li,Zhentian, D. F. Li, Shiyan Qiao and Huang Changhai. Anti-nutritional effects of a moderate dose of soybean agglutinin in the rat[J]. Arch. Anim. Nutr.,2003,57(4):267-277.
    [7]Makind M O,Umapathy E, Akingbem B T I, et al. Effects of dietary soybean and cowpea on gut morphology and faecal composition in creep and non creep fed pigs[J]. J. Vet.Med., Ser. A,1996,43:75-85.
    [8]Douglas M W, Parsons C M, Hymowitz T. Nutritional evaluation of lectin free soybeans for poultry[J].Poult. Sci.,1999,78:91-95.
    [9]Liener 1 E. Effects of processing on antinutritional factors in legumes:the soybean case[J]. J Arch.Latinoam Nutr.,44(suppl.1)48-54.
    [10]Hisayasu S, Orimo H. Migita S, et al. Soybean protein isolate and soybean lectin inhibt iron absorption in rats[J]. J. Nutr.,1992,122:1190-1196.
    [11]Khalifa F, Bertrand V, Belleville J, et al. Short term effect of feeding raw or heated soya flour and casein meals on lipid intestinal digestion and absorption in rat. J. Nutri. Biochem.,1992,3:224-228.
    [12]Schulze, H., H. S. Saini, J. Huisman, M.et al. Increased nitrogen secretion by inclusion of soya lectin in the diets of pigs[J]. Sci. Food. Agric.1995,69:501-505.
    [13]Jaeger L A, Lammer C H,Turek J J. Lectin binding to small intestinal goblet cells of newborn, sucking and weaned pigs[J]. Am. J. Vet. Res.,1989,50:1984-1987.
    [14]Buttle L G, Burrels A C, Good J E. Williaams P D, Southgate P J, Burrells C. The binding of soybean agglutinin to the intestinal epithelium of Atlanticas salmon, Salmo salar, and rainbow trout, Oncorhynchuss mykiss, fed high levels of soybean meal. Bet[J]. Immunol Immunopathol., 2001.80:237-244.
    [15]Hedemann, M.S., H o jsgaard, S., Jensen, B.B. Small intestinal morphology and activity of intestinal peptidases in piglets around weaning[J]. Journal of Animal Physiology and Animal Nutrition,2003,87, 32-41.
    [16]Li, Zhentian, D. F. Li, and Shiyan Qiao. Effects of soybean agglutinin on nitrogen metabolism and on characterics of intestinal tissues and pancreas in rats[J]. Arch. Anim. Nutr.2003b,57(5):369-380.
    [17]Jaffe, W. G. Uber phytotoxine aus Bohnen (Phaseolus vulgaris)[J]. Arzneimittel Forsch,1960,10: 1012-1016.
    [18]Taatjes, D.J., Roth, J.. Selective loss of sialic acid from rat small intestinal epithelial cells during postnatal development:demonstration with lectin-gold techniques[J]. European Journal of Cell Biology, 1990,53:255-266.
    [19]Hedemann, M.S, S. H(?)jsgaard, B.B. Jensen..Lectin histochemical characterisation of the porcine small intestine around weaning[J]. Research in Veterinary Science,2007,82:257-262.
    [20]王利民,秦贵信.王涛,等.大豆凝集素在猪消化道内活性残留规律的研究[J].吉林农业大学学报,2007.29(3),307-309.
    [21]王利民.大豆凝集素在不同种属动物体内的消化动力学及抗营养作用比较研究[D].长春:吉林农业大 学,2007.
    [22]汤树生,谯仕彦,臧建军.大豆凝集素与大鼠和小鼠小肠黏膜上皮细胞结合规律的研究[J].中国畜牧杂志,2006.42(17):10-12.
    [23]汗玉松,邹思湘,张玉静.现代动物生物化学(第二版)[M].北京:中国农业科技出版社,2002
    [24]Blom N, Sicheritz-Ponten T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence[J]. Proteomics,2004, (4):1633-1649.
    [25]Hart G W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins[J]. Annu Rev Biochem, 1997,66:315-335.
    [26]Blom N, Sicheritz-Ponten T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence[J]. Proteomics,2004, (4):1633-1649.
    [27]Gavel Y, von Heijne G. Statistical studies of N-glycosylated proteins have indicated that the frequency of nonglycosylated Asn-Xaa-(Thr/Ser) sequons increases toward the C terminus[J]. Protein Eng,1990,3: 433-442.
    [28]Blom N, Sicheritz-Ponten T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence[J]. Proteomics,2004, (4):1633-1649.
    [29]Hart G W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins[J]. Annu Rev Biochem, 1997,66:315-335.
    [30]李军,杜鑫,Hosseini Moghaddam S. H,等.蛋白质糖基化修饰研究进展[J].科技通报.2009,25(6),773-779.
    [31]Varki A. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. Glycobiology,1993,3(2):97-130.
    [32]Laine RA.In:Gabius H-J, Gabius S (eds) Glycosciences:status and perspectives. Chapman and Hall, London,1997,pp 1-14
    [33]Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell,2006, 126(5):855-67.
    [34]Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the S WISS-PROT database. Biochim Biophys Acta,1999,1473(1):4-8.
    [35]von der Lieth CW, Freire AA, Blank D, ea tl. EUROCarbDB:An open-access platform for glycoinformatics. Glycobiology,2011,21(4):493-502.
    [36]Julenius K, M(?)lgaard A, Gupta R, ea tl. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology,2005,15(2):153-64.
    [37]Varki A, Cummings R, Esko J, ea tl. Symbol nomenclature for glycan representation. Proteomics,2009,9(24):5398-5399.
    [38]Hofsteenge J, Muller DR, de Beer T, ea tl. New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry,1994, 33(46):13524.
    [39]Haynes PA. Phosphoglycosylation:a new structural class of glycosylation? Glycobiology,1998,8(1):1-5.
    [40]Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell,2006, 126(5):855-867
    [41]Nairn AV, York WS, Harris K, ea tl. Regulation of glycan structures in animal tissues:transcript profiling of glycan-related genes. J Biol Chem,2008,283(25):17298-17313.
    [42]Molinari M, Eriksson KK, Calanca V, ea tl. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell,2004,13(1):125-35.
    [43]Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A,1994,91:913-7.
    [44]Robbins PW, Hubbard SC, Turco SJ, ea tl. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell,1977,12:893-900.
    [45]Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta.1999. 1473(1):67-95.
    [46]Brockhausen I, Dowler T, Paulsen H. Site directed processing:role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Biochim Biophys Acta,2009,1790(10):1244-57.
    [47]Varki A, Schauer R. Sialic Acids. In:Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P,Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology,2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,2009,chap 14.
    [48]Traving C, Schauer R. Structure, function and metabolism of sialic acids. Cell Mol Life Sci, 1998,54(12):1330-49.
    [49]Schauer R.Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol,2009, 19(5):507-14.
    [50]Hinderlich S, Berger M, Schwarzkopf M, ea tl. Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur J Biochem,2000,267(11):3301-8.
    [51]Kean EL. Nuclear cytidine 5'-monophosphosialic acid synthetase. J Biol Chem,1970,245 (9):2301-8.
    [52]Kean EL, Munster-Kuhnel AK, Gerardy-Schahn R. CMP-sialic acid synthetase of the nucleus. Biochimica Biophys Acta,2004,1673(1-2):56-65.
    [53]Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, ea tl. The human sialyltransferase family.Biochimie,2001,83:727-31.
    [54]Kornfeld S, Kornfeld R, Neufeld E, ea tl. The feedback control of sugar nucleotide biosynthesis in liver. Proc Natl Acad Sci U S A,1964,52:371-9.
    [55]Andersson, H., Nilsson, I., von. Heijne, G., FEBS Lett.1996,397:321-324.
    [56]Wujek, P., Kida, E., Walus, M., Wisniewski, K. E. et al., J. Biol.Chem.2004,279:12827-12839.
    [57]Oh-Eda M, Hasegawa M, Hattori K, ea tl. O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J Biol Chem,1990,265:11432-5.
    [58]Langer BG, Weisel JW, Dinauer PA, ea tl. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem,1988,263(29):15056-63.
    [59]Cantell K, Hirvonen S, Sareneva T, ea tl. Differential inactivation of interferons by a protease from human granulocytes. J Interferon Res,1992,12:177-83.
    [60]Wittwer AJ, Howard SC. Glycosylation at Asn-184 inhibits the conversion of single-chain to two-chain tissue-type plasminogen activator by plasmin. Biochemistry,1990,29:4175-80.
    [61]Rudd PM, Joao HC, Coghill E, ea tl. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry,1994,33(1):17-22.
    [62]Ashwell G, Harford J. Carbohydrate-specific receptors of the liver.Annu Rev Biochem,1982.51:531-54.
    [63]Egrie JC, Dwyer E, Browne JK, ea tl. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol,2003,31(4):290-9.
    [64]Ashwell G, Morell AG.The role of surface carbohydrates in the hepatic recognition and transport Schwartz AL.Trafficking of asialoglycoproteins and the asialoglycoprotein receptor.Target Diagn Ther, 1991,4:3-39.
    [65]Chiu MH, Tamura T, Wadhwa MS, ea tl. In vivo targeting function of N-linked oligosaccharides with terminating galactose and N-acetylgalactosamine residues. J Biol Chem,1994.269(23):16195-202.
    [66]Chiu MH, Tamura T, Wadhwa MS, ea tl. In vivo targeting function of N-linked oligosaccharides with terminating galactose and N-acetylgalactosamine residues. J Biol Chem,1994.269(23):16195-16202.
    [67]Wang X. Gu J, Ihara H, ea tl. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem.2006,281(5):2572-2577.
    [68]Saito T, Kinoshita A, Yoshiura Ki, ea tl. Domain-specific mutations of a transforming growth factor (TGF)-beta Ⅰ latency-associated peptide cause Camurati-Engelmann disease because of the formation of a constitutively active form of TGF-beta 1. J Biol Chem,2001,276(15):11469-11472.
    [69]Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol,2010,28(9):917-924.
    [70]Shinkawa T, Nakamura K, Yamane N, ea tl. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem,2003,278(5):3466-73.
    [71]Oka T,Hamaguchi T,Sameshima Y,et al. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans[J]. Microbiology,2004,150:1973-1982.
    [72]Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol Gastrointest Liver Physiol 1999,277:G495-9.
    [73]Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Podle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev 2007,87:545-64.
    [74]Ferraris RP, Diamond J. Regulation of intestinal sugar transport. Physiol Rev 1997,77:257-302.
    [75]Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport[J]. Annu Rev Physiol 2006,68:403-429.
    [76]Montreuil J:Primary structure of glycoprotein glucans. Basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem.1980,37:157-227.
    [77]E. Kottgen, B. Volk, F. Kluge,W. Gerok, Gluten, a lectin with oligomannosyl specificity and the causative agent of gluten-sensitive enteropathy[J].Biochem. Biophys. Res. Commun.1982,109:168-173.
    [78]I.E. Liener, Nutritional significance of lectins in the diet, in:I.E. Liener, N. Sharon, I.J. Goldstein (Eds.), The Lectins, Properties, Functions and Applications in Biology and Medicine, Academic Press,1986, 527-552.
    [79]A. Sjolander, K.E. Magnusson, S. Latkovic, The effect of concanavalinA and wheat germ agglutinin on the ultrastructure and permeabilityof rat intestine[J]. A possible model for an intestinal allergic reaction, Int. Arch. Allergy Appl. Immunol.1984,75:230-236.
    [80]J.G. Banwel, D.R. Bolt, J. Meyers, F.L.Weber Jr, Phytohemagglutinin derived from red kidney bean (Phaseolus vulgaris):a cause for intestinal malabsorption associated with bacterial overgrowth in the rat, Gastroenterology,1983,84:506-515.
    [81]A.D. Olson, T.J. Pysher, A. Larrosa-Haro, A. Mahmood, R. Torres-Pinedo, Differential toxicity of RCAII (ricin) on rabbit intestinal epithelium in relation to postnatal maturation, Pediatr. Res.1985,19:868-872.
    [82]G.W. Jones, R. Freter, Adhesive properties of Vibrio cholerae:nature of the interaction with isolated rabbit brush-border membranes and human erythrocypes, Infect. Immun.1976,14:240-245.
    [83]P.A. Orlandi, F.W. Klotz, J.D. Haynes, A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac-a(2-3)-Gal-sequences of glycophorin a, J. Cell Biol.1992,116:901-909.
    [84]D. Bouhours, J.F. Bouhours, Developmental changes of hematoside of rat small intestine. Postnatal hydroxylation of fatty acids and sialic acid, J. Biol. Chem.1983,258:299-304.
    [85]S. Teneberg, P. Willemsen, F.K. De Graaf, K.A. Karlsson, Receptor active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with Escherichia coli K99, FEBS Lett.1990,263:10-14.
    [86]Y. Yuyama, K. Yoshimatsu, E. Ono, M. Saito, M. Naiki, Postnatal change of pig intestinal ganglioside bound by Escherichia coli K99 fimbriae, J. Biochem. (Tokyo) 1993,113:488-499.
    [87]D. Seignole, M. Mouricout, Y. Duval-Iflah, B. Quintard, R. Julien, Adhesion of K.99 fimbriated Eschericia coli to pig intestinal epithelium:correlation of adhesive and non-adhesive phenotypes with the sialoglycolipid content, J. Gen. Microbiol.1991,137:1591-1601.
    [88]E. Meijerink, S. Neuenschwander, R. Fries, A. Dinter, H.U. Bertschinger, G. Stranzinger, P. Vogeli, A DNA polymorphism influencing a(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion, Immunogenetics 2000,52:129-136.
    [89]Mendez, E., S.Lopez, M. A. Cuadras, P. Romero, and C. F. Arias. Entry of rotaviruses is a multistep process. Virology 1999,263:450-459.
    [90]Freitas, M., L. G. Axelsson, C. Cayuela, T. Midtvedt, and G. Trugnan. Indigenousmicrobes and their soluble factors differentially modulate intestinal glycosylation steps in vivo. Use of a "lectin assay" to survey in vivo glycosylation changes. Histochem. Cell Biol.2005,124:423-433.
    [91]Pusztai, A. Characteristics and consequences of interactions of lectins with the intestinal mucosa. Arch. Latinoam[J]. Nutr.,1996,44:10-15.
    [92]Varki A, Cummings R, Freeze H, Hart G,et al. Essentials of Glycobiology[M]. New York:Cold Spring Harbor Laboratory Press,1999.
    [93]S.J. Henning.Postnatal development:coordination of feeding, digestion and metabolism[J].Am. J. Physiol. 1981,241:199-214.
    [94]M.E. Pereira, E.A. Kabat, R. Lotan, et al.Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin[J] Carbohydr. Res.,1976,5:1107-51118.
    [95]E. Nsi-Emvo, L.F. Launay, F. Raul. Is adult-type hypolactasia in the intestine of mammals related to changes in the intracellular processing of lactase[J]. Cell. Mol. Biol.,1987,33:335-344.
    [96]H.Y. Naim, Processing of human pro-lactase-phlorizin hydrolase at reduced temperatures:cleavage is preceded by complex glycosylation[J]. Biochem. J.,1992,285:13-16.
    [97]Pedini V, Scocco P, Gargiulo AM, Ceccarelli P. Carbohydrate histochemistry of lamb duodenum[J]. Acta Histochem 2001;103(3):315323.
    [98]M.S. Hedemann, S. H(?)jsgaard, B.B. Jensen a Lectin histochemical characterisation of the porcine small intestine around weaning[J]. Research in Veterinary Science,2007,82257-82262.
    [99]Pedini V, Scocco P, Gargiulo AM, et al. Carbohydrate histochemistry of lamb duodenum[J]. Acta Histochem 2001,103(3):315-323.
    [100]Schumacher U, Duku M, Katoh M, et al. Histochemical similarities of mucins produced byBrunner's glands and pyloric glands:a comparative study[J]. Anat Rec Pt A, Discov Mol, Cell, Evol Biol 2004,278(2):540-50.
    [101]V.M.S. Jaswat, H.S. Babbar,A. Mahhmood.Effect of malnutrition and hormone treatment on intestinal microvillus membrane glycosylation in suckling rats[J].Ann. Nutr. Metab.,1990,34:114-125.
    [102]Sharma, R., Schumacher, U. The influence of diets and gut microflora on lectin binding patterns of intestinal mucins in rats[J]. Laboratory Investigation,1995,73:558-564.
    [103]Brunsgaard, G. Effects of cereal type and feed particle size on morphological characteristics, epithelial cell proliferation, and lectin binding patterns in the large intestine of pigs[J]. Journal of Animal Science, 1998,76:2787-2798.
    [104]Franklin, M.A., Mathew, A.G., Vickers, J.R., et al. Characterization of microbial populations and volatile fatty acid concentra-tions in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age[J]. Journal of Animal Science,2002,80,2904-2910.
    [105]Jensen, B.B., The impact of feed additives on the microbial ecology of the gut in young pigs. Journal of Animal and Feed Sciences1998.7:45-64.
    [106]169H.S. Babbar, V.M. Jaswal, R. Gupta. A. Mahmood. Intestinal absorption of macromolecules and epithelial cell surface glycosylation in suckling rats nursed on mothers fed low-protein diet-Ⅰ, Biol. Neonate 1990,58:104111.
    [107]M.C. Biol, S. Pintori, B. Mathian, P. Louisot, Dietary regulation of intestinal glycosyl-transferase activities: relation between developmental changes and weaning in rats, J. Nutr.1991,121:114-125.
    [108]K.A. Balasubramanian, Sialic acid content of intestinal brush border membrane, Indian J. Biochem. Biophys.,1981,18:69-70.
    [109]Sheahan DG, Jervis HR. Comparative histochemistry of gastrointestinal mucosubstances. Am J Anat [J],1976; 146(2):103-31.
    [110]胡海霞,王利民秦贵信.大豆凝集素在鸡肠道内残留规律的研究[J].中国畜牧杂志.2009,45(7):32-35.
    [111]Choi BY, Sohn YS, Choi C, et al. Lectin histochemistry for glycoconjugates in the small intestines of piglets naturally infected with Isospora suis[J]. J Vet Med Sci,2003;65(3):389-92.
    [112]Szentkuti, L., Enss, M.L., Comparative lectin-histochemistry on the pre-epithelial mucus layer in the distal colon of conventional and germ-free rats. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 1998,119,379-386.
    [113]Baum, B., Liebler-Tenorio, E.M., Enss, M.L., Pohlenz, J.F., Breves, G., Saccharomyces boulardii and Bacillus cereus var. Toyoi influence the morphology and the mucins of the intestine of pigs. Zeitschrift fu" r Gastroenterologie 2002,40,277-284.
    [114]Brooks SA, Dwek MV, Schumacher U. Functional and molecular glycobiology. Oxford:BIOS Scientific Publishers Limited; 2002.
    [115]Goldstein, I.J., Hughes, R.C., Monsigny, M. Osawa, T., and Sharon, N.1980. Nature(Lond.) 258:66
    [116]Clark, M.A., Jepson, M.A. Simmons, N. L.,et al. Cytochem.1993,41:1679-1687.
    [117]Ahoy, J., Ucci, A.A. and Periera, M.E.A. Lectin histochemistry:An update. In:R.A. DeLellis (Ed.), Advances in Immunohistochemistry, Raven Press, New York, pp.1988,93-131.
    [118]Gelberg, H., Whiteley, H., Ballard, G., Scott, J., Kuhlenschmidt, M.,1992. Temporal lectin histochemical characterization of porcine small intestine. American Journal of Veterinary Research 53,1873-1880.
    [119]More, J., Fioramonti, J., Benazet, F., Bueno, L., Histochemical characterization of glycoproteins present in jejunal and colonic goblet cells of pigs on different diets. A biopsy study using chemical methods and peroxidase-labelled lectins. Histochemistry 1987,87,189-194.
    [120]Choi, B.Y., Sohn, Y.S., Choi, C., Chae, C.,2003. Lectin histochemistry for glycoconjugates in the small intestines of piglets naturally infected with Isospora suis. Journal of Veterinary Medical Science 65, 389-392.
    [121]M.S. Hedemann, S. H(?)jsgaard, B.B. Jensen a Lectin histochemical characterisation of the porcine small intestine around weaning[J]. Research in Veterinary Science 82 (2007) 257-262
    [122]Anke Gebhard and Andreas Gebert. Brush Cells of the Mouse Intestine Possess a Specialized Glycocalyx as Revealed by Quantitative Lectin Histochemistry:Further Evidence for a Sensory Function[1]. The Journal of Histochemistry & Cytochemistry. Volume 1999,47(6):799-808.
    [123]Jun Hirabayashi, Tomomi Hashidate, and Ken-ichi Kasai Glyco-Catch Method:A Lectin Affinity Technique for Glycoproteomics Journal of Biomolecular Techniques 2002,13:205-218.
    [124]Zhibin Xul, Xinwen Zhou2, Haojie Lu et al. Comparative glycoproteomics based on lectins affinity capture of N-linked glycoproteins from human Chang liver cells and MHCC97-H cells Proteomics 2007,7,2358-2370.
    [125]Linton D, Allan E, Karlyshev AV, Cronshaw AD, Wren BW. Identification of N-acetyl galactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol.2002,43(2), 497-508.
    [126]54 Sparbier K, Wenzel T, Kostrzewa M. Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006,840(1),29-36.
    [127]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社,2003.
    [128]Bruneel A, Robert T, Lefeber DJ et al. Two-dimensional gel electrophoresis of apolipoprotein C-Ⅲ and other serum glycoproteins for the combined screening of human congenital disorders of O-and N-glycosylation. Proteomics Clin. Appl.2007,1:321-324.
    [129]郑小迅,李泽,杜嘉木,等.高效液相色谱法测定寡糖链结构[J].分析化学研究报告.2005,33(3):291-295.
    [130]Wormald MR, Petrescu AJ, Pao YL et al. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, x-ray crystallography, and molecular modelling. Chem. Rev.102(2), 371-386(2002).
    [131]周峻岗,祁庆生,王鹏.酿酒酵母糖基化过程基因工程改造[J].中国资源生物技术与糖工程学术研讨 会论文集.
    [132]谢琴芳.赵晓尔,张琴,等.人偏肺病毒融合蛋自N-糖基化位点的预测及不同N-糖基化修饰突变体的构建[J]实用儿科临床杂志2009,24(22):1714-1716.
    [133]周永达,时春娟,张剑波等.糖类的生物信息学资源[J].中国生物化学与分子生物学报2006,22(3):184-189.
    [134]Lajolo, F.M., Genovese, M.I.,2002. Nutritional significance of lectins and enzyme inhibitors from legumes. J. Agr. Food Chem.50,6592-6598.
    [135]Franz, H. (1988) The ricin story. Adv. Lectin Res.,1,10-25.
    [136]Kocourek, J. V., Horejsi. Note on the recent discussion of the term lectin. [J].1983,9:33-45.
    [137]李德发.大豆抗营养因子[M].北京:中国科学技术出版社,2003:78.
    [138]Edelman, G.M., Cunningham, B.A., Reeke, et al. The covalent and threedimensional structure of concanavalin A[J]. Proc. Natl Acad. Sci. USA.1972,69:2580-2584.
    [139]Hardman, K.D. and Ainsworth, C.F. Structure of concanavalin A at 2.4-A° resolution[J]. Biochemistry, 1972,11:4910-4919.
    [140]Watkins, W.M. and Morgan, W.T.J. Neutralization of the anti-H agglutinin in eel serum by simple sugars[J]. Nature,1952,169:825-826.
    [141]Sharon, N., Lis, H., and Lotan, R. On the structural diversity of lectins[J]. Coll. Int. CNRS.1974,221, 693-709.
    [142]Foriers, A., Wuilmart, C., Sharon, N., et al. Extensive sequence homologies among lectins from leguminous plants[J]. Biochem. Biophys. Res. Commun.1977,75:980-986.
    [143]Drickamer, K. (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins[J]. Biol. Chem.,263,9557-9560.
    [144]Nathan Sharon1 and Halina Lis. History of lectins:from hemagglutinins to biological recognition molecules[J]. Glycobiology vo。2004,14:53-62.
    [145]Srinivasan, N., Rufino, S.D., Pepys, M.B., et al. A superfamily of proteins with the lectin fold. Chemtracts Biochem[J]. Mol. Biol.,1996,6,149-164.
    [146]Sharon, N. Lectin-carbohydrate complexes of plants and animals:an atomic view. Trends Biochem[J]. Sci., 1993,18,221-226.
    [147]陈惠黎.糖复合物的结构和功能[M].上海医科大学出版社,1997.
    [148]余燕泽,石安静.贝类血细胞研究进展[J].动物学杂志,1998,33(5):40-41.
    [149]周柔丽.哺乳动物凝集素及其生物学作用[J].生命的化学,1995,(1).
    [150]Malhotra R, Lu J, Holmskov U, et al. Collectins, collectin receptors and the lectin pathway of complement activation[J]. Immunol Today,1994,15:67
    [151]RP McEver, KL Moore, and RD Cummings. Leukocyte trafficking mediated by selectin-carbohydrate interactions [J]. Biol. Chem..1995,270:11025-11028.
    [152]Eugene C. Butcher, Louis J. et al. Lymphocyte Homing and Homeostasis[J]. Science,1996; 272:60-67.
    [153]Avrameas A, Mcllroy D, Hosmalin A, et al. Expression of a mannose/fucose membrane lectin on human dendritic cells[J].Eur J Immuno l,1996; 26:394-400.
    [154]陈皓文,牟敦彩,李光友.微生物凝集素的研究[J].自然杂志,2000,22(2):95-100.
    [155]Peumans W J,Van Dalnlne E J M.Lectins as plant defense proteins[J].Plant Physiol,1995,109:347-352.
    [156]Rudiger, H. Chapman & Hall,et al. Structure and function of plant lectins in Glycosciences[J]. Status and perspectives,1997,415-438.
    [157]Sengupta, S., Singh, S., Sengupta, et al. Phytolectins:natural molecules with immense biotechnological potential. Indian J. Exp. Biol.,1997,35,103-110.
    [158]Mostafa M M. Chemical and urtritional changes in soybean during germination[J]. Food Chem.1987,23: 257-275.
    [159]孙册.谈谈凝集素作用的基本原理和糖蛋白的寡糖结构[J].生命的化学.1994,14(2):36-37.
    [160]刘士庄,施承梁.棉花凝集素的分离纯化及其对棉花枯萎病菌的影响,植物病理学报,1996,26(4):311-315.
    [161]Hilder V A,Powell K s,Gatehouse A M R,. Expression of snow crop lectin in transgenic tabsco plants results in added protection against aphids.Transgenic Research,1995,4:18-25
    [162]陈皓文,孙不喜,宋庆云.外源凝集素——水产动物御敌的有力兵器[J].黄渤海海洋,1995,13(3):61.
    [163]罗依惠等.草鱼血清凝集素的研究[J].浙江大学学报理学版,1999,26(2):69-74
    [164]陈惠黎.糖复合物的结构和功能[M].上海医科大学出版社,1997.
    [165]冯佑民,王克夷,顾嘉绷,等.若干外源凝集素对胰岛素与其受体相互作用的影响[J].生物化学与生物物理学报,1981,13(4):391-395.
    [166]王幸,马秋枝,刘强,等.大豆凝集素对小肠上皮细胞和红细胞凝集能力的研究[J].动物营养学报.2008,20(2):234-237.
    [167]孙册.凝集素在生物学和医学的应用[J].新疆医学学报.1986,9(1):82-86.
    [168]Fiete DJ, Beranek MC, Baenziger JU. A cysteine2rich domain of the"mannose receptor"mediates GalNAc-4-SO4 binding [J]. Proc Natl Acad Sci USA.1998,95 (5):2089-2093.
    [169]Halina Lis. Nathan Sharon. Soybean Agglutinin -A Plant Glycoprotein[J]. THE JOURNAL OP BIOLOGICAL CHEMISTRY. U S.A.1976,253 (10):3466-3476,
    [170]戴大章,陈妙月,刘建新,等.大身凝集素的灭活研究[J].粮油加工与食品机械,2003,5:45-47.
    [171]马秋枝.大豆凝集素糖配体的筛选及其对体内结合率的影响[D].南京农业大学,2007.
    [172]DeBoeck H,Lis H,van TilbeurghH,et al. Bingding of simple carbodydarte and some chromoPhored derivatives of soybean agglutinin as follows by titrimetric procedured and stopped-flow kineteds[J]. Biol.Chem.1984,259:7067-7074.
    [173]Sharon, N., Lis, H. How proteins bind carbohydrates:lessons from legume lectins[J]. Agric Food Chem. 2002,50(22):6586-6591.
    [174]刘琳娜,不同种属动物对大豆凝集素敏感性的比较研究[D].吉林农业大学,2005.
    [175]Pusztai, A., Ewen, S. W., Grant, G., et al. Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors[J]. Digestion,46 Suppl 2308-16. 1990.
    [176]Grant G, Watt W B, Stewared J C S, Pusztai A. Effects of dietary soybean (Glycine max) lectin and trypsin inhibitors upon the pancreas of rat. Med. Sci. Res.,1987.15:1197-1198.
    [177]de Oliveira J T A, Pusztai A, Grant G. Changes in organs and tissues induced by feeding of purified kidney (phaseolus vulgaris) lectin. Nutri. Res.,1998,8:943-947.
    [178]Li,Zhentian, D. F. Li, Shiyan Qiao and Changhai Huang. Anti-nutritional effects of a moderate dose of soybean agglutinin in the rat. Arch. Anim. Nutr.,2003a,57(4):267-277'.
    [179]Makind M O,Umapathy E, Akingbem B T I, Manisodza K T, Skadhasuge E. Effects of dietary soybean and cowpea on gut morphology and faecal composition in creep and non creep fed pigs. J. Vet. Med., Ser.A,1996,43:75-85.
    [180]Douglas M W, Parsons C M, Hymowitz T. Nutritional evaluation of lectin free soybeans for poultry. Poult. Sci.,1999,78:91-95.
    [181]Liener I E. Effects of processing on antinutritional factors in legumes:the soybean case. J Arch. Latinoam Nutr.,1996,44(suppl.1)48-54.
    [182]Hisayasu S, Orimo H, Migita S, Ikeda Y, Shinjo S, Hirai Y, Yoshino Y. Soybean protein isolate and soybean lectin inhibt iron absorption in rats. J. Nutr.,1992,122:1190-1196.
    [183]Hisayasu S, Orimo H, Migita S, Ikeda Y, Shinjo S, Hirai Y, Yoshino Y.1992. Soybean protein isolate and soybean lectin inhibt iron absorption in rats. J. Nutr.,122:1190-1196.
    [184]Khalifa F, Bertrand V, Belleville J, et al. Short term effect of feeding raw or heated soya flour and casein meals on lipid intestinal digestion and absorption in rat. J. Nutri. Biochem..1992,3:224-228.
    [185]Schulze, H., H. S. Saini, J. Huisman, M. Hessing, W. V. D. Berg and W. A. Verstegen.1995. Increased nitrogen secretion by inclusion of soya lectin in the diets of pigs. Sci. Food. Agric.69:501-505.
    [186]Jaeger L A, Lammer C H,Turek J J. Lectin binding to small intestinal goblet cells of newborn, sucking and weaned pigs. Am. J. Vet. Res.,1989,50:1984-1987.
    [187]Buttle L G, Burrels A C, Good J E. et al. The binding of soybean agglutinin to the intestinal epithelium of Atlanticas salmon, Salmo salar, and rainbow trout, Oncorhynchuss mykiss, fed high levels of soybean meal. Bet. Immunol. Immunopathol.,2001,80:237-244.
    [188]Hedemann, M.S., H∮jsgaard, S., Jensen, B.B., Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. Journal of Animal Physiology and Animal Nutrition 2003,87, 32-41.
    [189]Jaffe, W. G. Uber phytotoxine aus Bohnen (Phaseolus vulgaris). Arzneimittel.Forsch.10,012-1016. Taatjes, D.J., Roth, J.,1990. Selective loss of sialic acid from rat small intestinal epithelial cells during postnatal development:demonstration with lectin-gold techniques. European Journal of Cell Biology 1960,53,255-266.
    [190]Li, Zhentian, D. F. Li, and Shiyan Qiao.2003b. Effects of soybean agglutinin on nitrogen metabolism and on characterics of intestinal tissues and pancreas in rats. Arch. Anim. Nutr.,57(5):369-380.
    [191]Pusztai, A., Ewen, S. W., Grant, G., et al. Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors[J]. Digestion,1990,46 Suppl 2308-16..
    [192]李振田.大豆凝集素的检测、纯化和对大鼠抗营养机理的研究[D].中国农业大学.2003.
    [193]Salgado, P., Freire, J. P. B., Mourato, M., et al. Comparative effects of different legume protein sources in weaned piglets:nutrient digestibility,intestinal morphology and digestive enzymes.[J].Livest. Prod.Sci, 2002,74191-202.
    [194]Fasina, Y. O., Garlich, J. D., Classen, H. L., et al. Response of turkey poults to soybean lectin levels typically encountered in commercial diets.1. Effect on growth and nutrient digestibility [J]. Poult Sci, 2004.83 (9):1559-71.
    [195]Liener I E. Effects of processing on antinutritional factors in legumes:the soybean case[J]. Arch. Latinoam Nutr.1996,44(Suppl.1):48-54.
    [196]Douglas M W. Parsons C M. Hymowitz T. Nutritional evaluation of lectin-free soybeans for poultry[J]. Poult. Sci.1999,78:91-95.
    [197]Sisson J W. Tolman H. Antinutritional properties of soybean antigens in calves[J]. Toxic Factors in Crop Plants.1991,62-85
    [198]Lalles J P., Tukur H., Toullec R.. et al. Analytical criteria for predicting apparent digestibility of soybean protein in preruminant calves. J. Dairy Sci.1996,79:3475-3482.
    [199]Schahidi E. beneficial health effects and drawbacks to antinutfents and phytochimicals in foods, an overview[R]. Sci., Food. Agric.,1995,69:501-505.
    [200]Moreira, R.A., Cavada, B.S. Lectin from Canavalia brasiliensis (Mart.) Isolation, characterization and behavior during germination. Biol. Plantarum 1984,26 (2),113-120.
    [201]Bento, C.A.M., Cavada, B.S., Oliveira, J.T.A., et al. Rat paw edema and leukocyte immigration induced by plant lectins. Agents Actions 1993,38,48-54.
    [202]臧建军.大豆凝集素对大鼠胰腺生长及胰酶活性的影响[D].中国农业大学,2006.
    [203]Greer, F., Pusztai, A. Toxicity of kidney bean(phaseolus vulgaris) in rats:Changes in intestinal permeability[J]. Digestion,1985,32 (42-46):305-10.
    [204]Howard GA.Schnebli H P. Proc Natl Acad Sci USA 1977,74:818.
    [205]Hoson T.,Masuda Y. Physiol Plant.1987.71:1.
    [206]Krugluger,W.,T. Lucas.,M. Koller et al. Soybean agglutinin binds a 160-kD a rat macrophage membrane glycoprotein and enhances cell differentiation and activation[J]. Immunol. Lett.1996,52:53-56.
    [207]Zhu,Q. L.,J. Meisinger,D. H. VanThiel et al. Efects of soybean extract onmorphology and survival of Caco-2,SW620,andHT-29cells[J]. Nutr. Cancer2002,42:131.
    [208]王利民,秦贵信,刘林娜,等.三种亲和层析体系纯化大豆凝集素的比较研究[J].大豆科学,2007,26(01):51-54.
    [209]Vretblad, P. Purification of lectins by biospecific affinity chromatography[J]. Biochim Biophys Acta, 1976,434(1):169-76.
    [210]Pusztai A,WattW B, Stewart J C. A comp rehensive scheme for the isolation of tryp sin inhibitors and the agglutinin from soybean seeds[J]. Journal of Agricultural and Food Chemistry,1991,39:862-866.
    [211]Agundis C, Pereyra A, Zenteno R, et al. Quantification of lectin in freshwater p rawn (Macrobrachium rosenbergii) hemolymph by EL ISA [J]. Comparison Biochemical Physiology,2000,127:165-172.
    [212]Kadam SS, Smithard RR, Eire MD, et al. Effects of heat treatments of antinutritional factors and quality of protein in winged bean[J]. J Sci Food Agric,1987,39:267-275.
    [213]Umezawa Y, Sato Y, Naganuma T, et al. Stability of soyabean lectin during food processing and in digestive tract[J]. Soy Protein Res.1999,2:59-64.
    [214]Umezawa Y, Sato Y, Naganuma T, et al. Stability of soyabean lectin during food processing and in digestive tract[J].Soy Protein Res.1999,2:59-64.
    [215]杨丽杰,霍贵成.挤压膨化对全脂大豆中的胰蛋白酶抑制因子和凝集素的影响[J].饲料工业,1998,19:22.
    [216]Diaa M, Farag H. The nutritive value for chicks of full fat soybeans irradiated at up to 60kGy[J].Anim Feed Sci Technol,1998,73:319-328.
    [217]戴大章,陈妙月,叶均女等.理化处理对大豆凝集素活性的影响[J].营养学报.2004,26(3):223-226.
    [218]王海仁,徐誉泰,杨秀梅,等.麦胚凝集素在小麦体内的的存在及消长[J].山东大学学报.1985,3:90-94.
    [219]Talmadge KW, Burger MM:Carbohydrates and cell surface phenomenon[J]. Int Rev Sci(Biochem Ser) 1978,3:43-93.
    [220]Montreuil J:Primary structure of glycoprotein glucans. Basis for the molecular biology of glycoproteins[J]. Adv Carbohydr Chem Biochem.1980,37:157-227.
    [221]Varki A, Cummings R, Freeze H, Hart G, Marth J (eds). Essentials of Glycobiology. New York:Cold Spring Harbor Laboratory Press,1999.
    [222]Y. Tojyo, Developmental changeover in rat duodenal alkaline phosphatase, Comp[J]. Biochem. Physiol.77 1984,437-441.
    [223]E. Kottgen, W. Reutter, W. Gerok, Two different c-glutamyltransferases during development of liver and small intestine:a fetal (sialo-) and an adult (asialo-) glycoprotein[J].Biochem. Biophys. Res. Commun. 1976,72,61-66.
    [224]H.A. Buller, E.H.H.M. Rings, D. Pajkrt, R.K. Montgomery, R.J. Grand, Glycosylation of lactase-phlorizin hydrolase in rat small intestine during development[J].Gastroenterology 1990,98,667-675.
    [225]G.W. Jones, R. Freter, Adhesive properties of Vibrio cholerae:nature of the interaction with isolated rabbit brush-border membranes and human erythrocypes[J]. Infect. Immun.1976,14,240-245.
    [226]P.A. Orlandi, F.W. Klotz, J.D. Haynes, A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac-a(2-3)-Gal-sequences of glycophorin a, [J]. Cell Biol.1992,116,901-909.
    [227]Jaeger L A, Lammer C H,Turek J J. Lectin binding to small intestinal goblet cells of newborn, sucking and weaned pigs. Am.[J]. Vet. Res.,1989,50:1984-1987.
    [228]Buttle L G, Burrels A C, Good J E,et al. The binding of soybean agglutinin to the intestinal epithelium of Atlanticas salmon, Salmo salar, and rainbow trout, Oncorhynchuss mykiss, fed high levels of soybean meal[J]. Bet. Immunol. Immunopathol.,.2001,80:237-244.
    [229]Hedemann, M.S., Hjsgaard, S., Jensen, B.B. Small intestinal morphology and activity of intestinal peptidases in piglets around weaning[J]. Animal Physiology and Animal Nutrition,2003.,87,32-41.
    [230]Pedini V, Scocco P, Gargiulo AM, Ceccarelli P. Carbohydrate histochemistry of lamb duodenum[J]. Acta Histochem 2001; 103(3):315-323.
    [231]M.S. Hedemann, S. Hojsgaard, B.B. Jensen a Lectin histochemical characterisation of the porcine small intestine around weaning[J]. Research in Veterinary Science 2007.82:257-262.
    [232]Pusztai, A., Ewen. S. W., Grant, G., et al. Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors[J]. Digestion,1990,46 Suppl 2308-16.
    [233]Mendez, E., S. Lopez, M. A. Cuadras, P. Romero, and C. F. Arias. Entry of rotaviruses is a multistep process[J]. Virology,1999,63:450-459.
    [234]Grant G, Watt W B, Stewared J C S, Pusztai A. Effects of dietary soybean (Glycine max) lectin and trypsin inhibitors upon the pancreas of rat[J]. Med. Sci. Res.,1987,15:1197-1198.
    [235]de Oliveira J T A, Pusztai A, Grant G. Changes in organs and tissues induced by feeding of purified kidney (phaseolus vulgaris) lectin[J]. Nutri. Res.,1998,8:943-947.
    [236]Li,Zhentian, D. F. Li, Shiyan Qiao and Changhai Huang. Anti-nutritional effects of a moderate dose of soybean agglutinin in the rat[J]. Arch. Anim. Nutr.,2003,57(4):267-277.
    [237]Makind M O,Umapathy E, Akingbem B T I, Manisodza K T, Skadhasuge E. Effects of dietary soybean and cowpea on gut morphology and faecal composition in creep and non creep fed pigs[J]. Vet.Med., Ser. A,1996,43:75-85.
    [238]Douglas M W, Parsons C M, Hymowitz T. Nutritional evaluation of lectin free soybeans for poultry[J].Poult. Sci.,1999,78:91-95.
    [239]Hisayasu S, Orimo H, Migita S, Ikeda Y, Shinjo S, Hirai Y, Yoshino Y. Soybean protein isolate and soybean lectin inhibt iron absorption in rats[J]. Nutr.,1992,122:1190-1196.
    [240]Khalifa F, Bertrand V, Belleville J, Sarda L, Prost J. Short term effect of feeding raw or heated soya flour and casein meals on lipid intestinal digestion and absorption in rat. J. Nutri. Biochem.,1992,3: 224-228.
    [241]Schulze, H., H. S. Saini, J. Huisman, M. Hessing, W. V. D. Berg and W. A. Verstegen. Increased nitrogen secretion by inclusion of soya lectin in the diets of pigs[J]. Sci. Food. Agric.1995,69:501-505,
    [242]Li, Zhentian, D. F. Li, and Shiyan Qiao. Effects of soybean agglutinin on nitrogen metabolism and on characterics of intestinal tissues and pancreas in rats[J]. Arch. Anim. Nutr.,2003b,57(5):369-380.
    [243]Jaeger LA, Lammer C H.Turek J J. Lectin binding to small intestinal goblet cells of newborn, sucking and weaned pigs. Am. [J]. Vet. Res.,1989,50:1984-1987.
    [244]Buttle L G, Burrels A C, Good J E. Williaams P D, Southgate P J, Burrells C. The binding of soybean agglutinin to the intestinal epithelium of Atlanticas salmon, Salmo salar, and rainbow trout, Oncorhynchuss mykiss, fed high levels of soybean meal. Bet. Immunol. Immunopathol.,.2001,80:237-244.
    [245]Hedemann, M.S., H∮jsgaard, S., Jensen, B.B. Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. Journal of Animal Physiology and Animal Nutrition,2003,87, 32-41.
    [246]张柏林,秦贵信,孙泽威,等.大豆凝集素处理对肉仔鸡生长性能及小肠发育的影响[J].大豆科学,2010,29(2),291-293.
    [247]Banwell, J. G., D. H. Boldt, J. Meyers, and F. L. Weber Jr. Phytohemagglutinin derived from red kidney bean (Phaseolus vulgaris):A cause for intestinal malabsorption associated with bacterial overgrowth in the rat. Gastroenterology 1983,84:506-515.
    [248]Pusztai, A.1996. Characteristics and consequences of interactions of lectins with the intestinal mucosa. Arch. Latinoam. Nutr.44:10S-15S.
    [249]E. Kottgen, B. Volk, F. Kluge,W. Gerok, Gluten, a lectin with oligomannosyl specificity and the causative agent of gluten-sensitive enteropathy, Biochem. Biophys. Res. Commun.109 (1982) 168-173.
    [250]I.E. Liener, Nutritional significance of lectins in the diet, in:I.E. Liener. N. Sharon, I.J. Goldstein (Eds.), The Lectins, Properties. Functions and Applications in Biology and Medicine, Academic Press,1986, pp.527-552.
    [251]A. Sjolander, K.E. Magnusson, S. Latkovic, The effect of concanavalinA and wheat germ agglutinin on the ultrastructure and permeability of rat intestine. A possible model for an intestinal allergic reaction, Int. Arch. Allergy Appl. Immunol.1984,75:230-236.
    [252]J.G. Banwel, D.R. Bolt, J. Meyers, F.L.Weber Jr, Phytohemagglutinin derived from red kidney bean (Phaseolus vulgaris):a cause for intestinal malabsorption associated with bacterial overgrowth in the rat, Gastroenterology 1983,84:506-515.
    [253]A.D. Olson, T.J. Pysher, A. Larrosa-Haro, A. Mahmood, R. Torres-Pinedo, Differential toxicity of RCAII (ricin) on rabbit intestinal epithelium in relation to postnatal maturation, Pediatr. Res.19 (1985) 868-872.
    [254]A.D. Olson, T.J. Pysher, A. Larrosa-Haro, A. Mahmood, R. Torres-Pinedo, Differential toxicity of RCAII (ricin) on rabbit intestinal epithelium in relation to postnatal maturation, Pediatr. Res.19 (1985) 868-872.
    [255]Talmadge KW, Burger MM:Carbohydrates and cell surface phenomenon. Int Rev Sci(Biochem Ser) 1978,3:43-93.
    [256]Montreuil J:Primary structure of glycoprotein glucans. Basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem.1980,37:157-227.
    [257]Liener, I.E., M. J. Pallansch. Purification of a toxic substance from the defatted soybean flour[J] Biol.Chem,1952,197:29-36.
    [258]Sharon, N., Lis, H. Lectins. Chapman and Hall:London, UK,1989,89-90.
    [259]张洪渊,刘克武,杨守忠,等.大豆凝集素、脲酶和胰蛋白酶抑制剂的分离纯化[J].中国油料作物学报,1991,(1):43-47.
    [260]李振田,谯仕彦,李德发,等.间接抑制酶联免疫吸附法测定大豆凝集素方法的建立[J].中国畜牧杂志,2004,40(8):9-11.
    [261]Vretblad P. Purification of lectins by biospecific affinity chromatography[J].Biochem.BioPhys. Aeta,1976,434:169-176.
    [262]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    [263]Sharon,N.,and I.J.Goldstein.Lectin:More than insecticides.Science,1998,282:1049.
    [264]汤树生,谯仕彦,臧建军.大豆凝集素与大鼠和小鼠小肠黏膜上皮细胞结合规律的研究[J].中国畜牧杂志,2006,(17):10-13.
    [265]臧建军.大豆凝集素对大鼠胰腺生长及胰酶活性的影响[D].北京:中国农业大学,2006.
    [266]Matsumoto Isamu, ItoYuki and Seno Nobuko. Preparation of Affinity Adsorbents with Toyopearl Gels. Journal of Chromafography,239 (1982) 747-754.
    [267]Jaffe, W. G. Haemaggutinins.In Toxic Constituents in Plant Foodstuffs[M]. Academic Press, New York, 1980.
    [268]Torres-Pinedo R, Mahmood A:Postnatal changes in biosynthesis of microvillus membrane glycans of rat small intestine. I Evidence of a developmental shift from terminal sialylatioin to fucosulation. Biochem Biophys Res Commun 1984,125:547-553.
    [269]H.A. Buller, E.H.H.M. Rings, D. Pajkrt, R.K. Montgomery, R.J. Grand, Glycosylation of lactase-phlorizin hydrolase in rat small intestine during development, Gastroenterology 1990,98:667-675.
    [270]T.P. King, R. Begbie, D. Slater, M. McFadyen, A. Thorn, D. Kelly, Sialylation of intestinal microvillar membranes in newborn, sucking and weaned pigs, Glycobiology 1995,5:525-534.
    [271]M.S. Hedemann, S. H(?)jsgaard, B.B. Jensen a Lectin histochemical characterisation of the porcine small intestine around weaning[J]. Research in Veterinary Science 2007,82:257-262.
    [272]Franklin, M.A., Mathew, A.G., Vickers, J.R., Clift, R.A.,2002. Characterization of microbial populations and volatile fatty acid concentra-tions in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age. Journal of Animal Science 80,2904-2910.
    [273]Jensen, B.B., The impact of feed additives on the microbial ecology of the gut in young pigs. Journal of Animal and Feed Sciences 1998,7:45-64.
    [274]Sharma, R., Schumacher, U.. The influence of diets and gut microflora on lectin binding patterns of intestinal mucins in rats. Laboratory Investigation 1995,73:558-564.
    [275]Brunsgaard, G., Effects of cereal type and feed particle size on morphological characteristics, epithelial cell proliferation, and lectin binding patterns in the large intestine of pigs. Journal of Animal Science 1998,76:2787-2798.
    [276]Szentkuti. L., Enss, M.L., Comparative lectin-histochemistry on the pre-epithelial mucus layer in the distal colon of conventional and germ-free rats. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 1998,119:379-386.
    [277]Baum, B., Liebler-Tenorio, E.M., Enss, M.L., Pohlenz, J.F., Breves, G., Saccharomyces boulardii and Bacillus cereus var. Toyoi influence the morphology and the mucins of the intestine of pigs. Zeitschrift fu" r Gastroenterologie 2002,40:277-284.
    [278]Choi BY, Sohn YS, Choi C, Chae C. Lectin histochemistry for glycoconjugates in the small intestines of piglets naturally infected with Isospora suis. J Vet Med Sci2003,65(3):389-92.
    [279]Pusztai A, Ewen SW, Grant G. Peumans WJ, Van Damme EJ. Coates ME, Bardocz S.Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat[J]. Glycoconj.1995,12(1):22-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700