用户名: 密码: 验证码:
福州市郊菜地氮磷面源污染的施肥控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对蔬菜不合理施肥导致菜地土壤氮磷过量累积及理化性状恶化、蔬菜的硝酸盐含量超标、菜地地下水的硝酸盐污染和地表水的富营养化等一系列农业面源污染问题,以福州市郊菜地为研究对象,采用实地调查、室内分析、土培盆栽、温室模拟土柱及田间径流小区试验等方法,调查了福州市郊蔬菜的施肥现状、菜地土壤养分累积特征、蔬菜硝酸盐污染现状、菜地田面水及地下水的氮磷面源污染现状;研究了7种不同硝、铵态氮用量配比(即,NO_3~--N / NH_4~+-N比为:3/1,2/1,3/2,1/1,2/3,1/2和1/3)及与3种硝化抑制剂(即,双氰胺、咪唑、吡啶)配施对蔬菜产量、硝酸盐含量及蔬菜内源硝酸盐有效利用性的影响;探讨了7种不同施肥模式(即,不施肥、化肥基施、化肥基追肥各半、化肥和双氰胺基施、化肥和双氰胺基追肥各半、化肥和有机肥基追肥各半、有机肥基施)与蔬菜生长、硝酸盐含量、营养累积、肥料利用率、菜地氮(磷)随渗漏水淋失及地表径流流失的关系规律;建立了以蔬菜丰产、优质、高效且环境友好为目标的优化施肥模式,为解决蔬菜生产上的高氮磷面源污染风险问题提供理论依据。主要研究结果如下:
     1、福州市郊蔬菜地以施用化肥为主、有机肥为辅,不同类型蔬菜的平均施肥水平(N、P_2O_5和K_2O总养分)在493.6~1 212.2 kg·hm~(-2)·茬~(-1),N:P_2O_5:K_2O比例为1:0.58~0.98:0.55~0.92,平均为1:0.77:0.75,氮磷钾比例不协调,磷肥施用量明显偏高;不同轮作制度下蔬菜的平均施肥量(N、P_2O_5和K_2O总养分)在2 002.3~3 455.2 kg·hm~(-2)·a~(-1)。与林坡地自然土壤相比,菜地土壤的全磷(2.04 g·kg~(-1))、速效磷(182.9 mg·kg~(-1))、CaCl_2-P(1.02 mg·kg~(-1))明显累积,分别高出3.16、6.87和12.3倍;有机质(37.4 g·kg~(-1))和全氮(2.18 g·kg~(-1))平均含量分别提高33.43%和17.16%;全钾含量变化不明显;而碱解氮(200 mg·kg~(-1))、速效钾(243.8 mg·kg~(-1))、CEC(14.7 cmol·kg~(-1))和pH(5.97)则分别降低15.01%、38.2%、3.14 %和9.7%。
     2、福州市郊菜地氮磷面源污染现状:(1)处于严重污染(NO_3~-≥3 100 mg·kg~(-1))的蔬菜样品占检测总数的13.33%,处于重度污染(NO_3~-≥1 440 mg·kg~(-1))以上的蔬菜样品占检测总数的32.5%,处于中度污染以上(NO3-≥785 mg·kg~(-1))的蔬菜样品占检测总数的50.83%。(2)氨氮含量超过地表水Ⅲ类(1 mg·L~(-1))和Ⅴ类(2 mg·L~(-1))水质标准的菜地田面水样数量分别占调查总量的62.5%和56.25%;硝态氮含量超过国家集中式生活饮用水地表水标准(10 mg·L~(-1))的菜地田面水样数量占调查总量的12.5%;总氮平均含量和最高含量分别为10.99和33.80 mg·L~(-1),分别是地表水Ⅴ类水质氮标准(2 mg·L~(-1))的5.5和16.9倍;总磷平均含量和最高含量分别为4.75和12.75 mg·L~(-1),分别是地表水Ⅴ类水质磷标准(0.4 mg·L~(-1))的11.9和31.9倍。(3)氨氮含量超过Ⅴ类水质标准(0.5 mg·L~(-1))的地下水样数量占调查总量的18.18%;硝态氮含量处于超标级别(≥10 mg·L~(-1))以上的地下水样数量占调查总数的54.55%,处于严重超标级别(≥20 mg·L~(-1))以上的地下水样数量占调查总量的27.27%;总氮含量全部超过Ⅴ类水质标准(2 mg·L~(-1),GB3838~(-2)002),超标率为100%;总磷含量超过Ⅴ类水质标准(0.4 mg·L~(-1),GB3838~(-2)002)的占调查总量的81.82%。
     3、优化施肥模式控制蔬菜硝酸盐污染:(1)在试验设计的硝、铵态氮配比水平范围(3/1~1/3)内,随硝/铵态氮施用量比值的降低,小白菜植株株高、株重及产量均大体表现出先升高而后降低的趋势,而小白菜植株硝酸盐含量则大体表现出先升高而后降低再升高的趋势。与硝铵比3/1处理相比,硝铵比2/3处理可分别提高小白菜植株株高、株重及产量15.57%、45.05%和13.67%,同时降低蔬菜的硝酸盐含量37.49%。因此,硝/铵比为2/3处理比较适宜土培小白菜的生长及蔬菜硝酸盐含量的降低。(2)以硝铵比2/3为对照,在此基础上分别添加3种硝化抑制剂(即,双氰胺、咪唑、吡啶)组成的3种优化施肥模式可提高小白菜产量6.06%~28.55%,降低蔬菜硝酸盐含量2.69%~19.66%,提高植株氮累积量2.38%~38.42%,小白菜叶片硝酸还原酶活性(NRA)、硝态氮还原代谢库大小(MPS)和硝态氮还原贮藏库大小(SPS )分别提高24.28%~77.32%、29.45%~272.17%和2.78%~17.38%,并增加代谢库/贮藏库(MPS/SPS)比值0.04%~0.59%,从而提高了小白菜内源硝酸盐的有效利用性。
     4、优化施肥模式控制菜地氮磷淋溶损失:(1)土壤磷素淋失“阈值”及淋失潜能研究表明,Langmuir等温方程可以很好拟合供试菜地土样对磷的吸持特征(R2=0.991**~0.998**)。据Langmuir方程求得菜地土壤指导施磷量范围为11.62~67.37 (P)kg·hm~(-2),平均为27.18 (P)kg·hm~(-2);菜地土壤的速效磷和全磷含量均显著高于由回归方程求得的土壤发生磷素淋失的速效磷临界值(56.96 mg·kg~(-1))和全磷的临界值(1.146 g·kg~(-1));菜地土壤的磷吸持饱度(DPS)平均为23.12%,已经接近容易淋失的阈值(25%),其中4片菜地土样的DPS已经超过容易淋失的阈值。因此,福州市郊菜地土壤磷素具有很高的淋失潜能。(2)温室模拟土柱试验结果表明,“化肥和双氰胺基施”和“有机肥基施”2种施肥模式,不仅可比“不施肥”处理改善蔬菜植株的农艺性状,分别提高蔬菜产量113%~301%和238%~250%,提高蔬菜植株氮累积量194%~336%和208%~227%,磷累积量93.5%~133%和144%~229%,提高氮磷肥料利用率,还可比“化肥基施”处理分别降低蔬菜硝酸盐含量10.9%~39.6%和6.8%~34.3%,减少蔬菜种植期间模拟土柱中硝态氮和铵态氮的淋溶损失53.4%和46.6%、水溶性总磷的淋溶损失17.0%和11.3%,从而有效地减少了菜地土壤的氮、磷对地下水水体造成的农业面源污染。
     5、优化施肥模式控制菜地氮磷随地表径流流失:“化肥和双氰胺基施”和“化肥和有机肥基追肥各半”2种施肥模式,不仅可比“不施肥”处理改善蔬菜植株的农艺性状,分别提高蔬菜产量93%~226%和143%~154%,提高蔬菜植株氮累积量231%~320%和153%~216%,磷累积量131%~417%和169%~1167%,肥料利用率较高,蔬菜硝酸盐含量较低,还可比“化肥基施”处理分别减少蔬菜种植期间菜地土壤随地表径流流失的硝铵态氮总量46.46%和48.10%、水溶性总磷量21.02%和10.73%,从而有效地减少了菜地土壤的氮、磷对地表水水体造成的农业面源污染。
Excessive fertilizers are often applied on vegetable fields in order to pursue higher yields. In some areas, the amounts of chemical fertilizers and manures so applied are several times of that needed by vegetables. Nitrogen (N) and phosphorus (P) have been obviously accumulated in the vegetable soils, resulting in excessive nitrate and poor quality of vegetables. Furthermore, a series of environmental problems are produced, i.e., the deterioration of physical and chemical properties of vegetable soils, the nitrate’s pollution of vegetables, groundwater and the eutrophication of surface water. A series of field investigations over the vegetable fields in the suburb of Fuzhou City, Fujian Province and studies in laboratory were carried out to deal with the above environmental problems caused by the exessive fertilization for vegetables. The fertilization status quo of vegetable fields, accumulative characteristics of nutrients in vegetable-field soils, the concentration of nitrate in vegetable, non-point source pollution of surface-field water and groundwater in vegetable fields were analyzed. Pot experiments with 7 different ratios of nitrate-N and ammonium-N and 3 kinds of nitration inhibitors (dicyandiamide, imidazole and pyridine, respectively) were conducted to test the effects on the yield, nitrate’s concentration of vegetable and the available metabolism of endogenous nitrate of vegetable. An experiment with 7 different fertilization models (none fertilization, basal application of chemical fertilizer, half-basal application and half-top-dressing of chemical fertilizer, basal application of chemical fertilizer and dicyandiamide, half-basal application and half-top-dressing of chemical fertilizer and dicyandiamide, half-basal application and half-top-dressing of chemical fertilizer and organic manure, basal application of organic manure) was carried out to verify the effects of different fertilization modes on the growth of vegetables, nitrate’s content, N and P-accumulation of vegetables, the utilization ratio of fertilizer, and the loss of N and P from the field. The aim of this dissertation was to establish an optimized fertilization model which is suitable for the production of higher yield & quality of vegetable, and friend with the environment. The main results were as follows:
     1. Fertilizers applied on the vegetable fields in the suburb of Fuzhou were mainly chemical fertilizers with a small part of organic manure. The average fertilization rate (N、P_2O_5 and K_2O) of different kinds of vegetables was between 493.6~1 212.2 kg·hm~(-2)·stubble ~(-1). The proportion of N:P_2O_5:K_2O was 1:0.58~0.98:0.55~0.92 with an average of 1:0.77:0.75, indicating the inbalanced fertilization of N:P_2O_5:K_2O and apparent over-fertilization of phosphorus. The range of average fertilization rate (N、P_2O_5 and K_2O) for vegetable was 2 002.3~3 455.2 kg·hm~(~(-2))·a~(-1) under various kinds of rotation systems. The average contents of total phosphorus (2.04 g·kg~(-1)), Oslen-P(182.9 mg·kg~(-1)) and CaCl2-P (1.018 mg·kg~(-1)) of the vegetable soils were 3.16、6.87 and 12.3 times higher than those in the natural soils sampled from the neighbouring hills, respectively. The average organic matter content (37.4 g·kg~(-1)) and total nitrogen (2.178 g·kg~(-1)) were increased by 33.43% and 17.16%, respectively; The content of total potassium changed a little. However, the average contents of alkaline hydrolyzable nitrogen (200.2 mg·kg~(-1)), available potassium (243.8 mg·kg~(-1)), CEC (14.7 cmol·kg~(-1)) and pH (5.97) were decreased by 15.01%, 38.2%, 3.14 % and 9.7%, respectively.
     2. N and P non-point source pollution status quo of the vegetable fields in the suburb of Fuzhou city: (1) The proportions of the vegetable samples of which the nitrate contents were above the very severely polluted level (NO_3~-≥3 100 mg·kg~(-1)), severely polluted level (NO_3~-≥1 440 mg·kg~(-1)) and moderately polluted level (NO_3~-≥785 mg·kg~(-1)) were 13.33%, 32.5% and 50.83%, respectively. (2) The proportions of the surface-field water samples of which the ammonia-N contents were above theⅢclass surface water limitation (1 mg·L~(-1)) andⅤclass (2 mg·L~(-1)) were 62.5% and 56.25%, respectively. 12.5% of the surface-field water samples of which the nitrate-N contents was above the limitation of Chinese surface water of collective living-drinking water (10 mg·L~(-1)). The average and maximal N concentrations of the vegetable surface-field water samples were 10.99 and 33.80 mg·L~(-1), respectively, and 5.5 and 16.9 times of the theⅤclass limitation of the surface water quality standard (N 2 mg·L~(-1)), respectively. The average and maximal total P contents of the vegetable surface-field water samples were 4.75 and 12.75 mg·L~(-1), respectively, and 11.9和31.9 times of theⅤclass limitation of the surface water quality standard (P 0.4 mg·L~(-1)), respectively. (3) The proportion of the vegetable field groundwater samples of which the ammonia-N content was beyond the V class water quality limitation (0.5 mg·L~(-1)) was 18.18%. The Proportions of groundwater samples of which the nitrate content was super-scale (≥10 mg·L~(-1)) and seriously super-scale (≥20 mg·L~(-1)) were 54.55% and 27.27%, respectively. The total N of all the groundwater samples were beyond the V class water quality limitation (N 2 mg·L~(-1),GB3838~(-2)002). The proportion of the vegetable field groundwater samples of which the total P was beyond the V class water quality limitation (P 0.4 mg·L~(-1), GB3838~(-2)002) was 81.82%.
     3. The optimized fertilization models for controlling nitrate pollution of vegetable: (1) Within the ranges of ratios of NO_3~--N / NH_4~+-N (3/1~1/3), with the decreasing ratios of NO_3~--N / NH_4~+-N, the plant’s tallness, weight and yield of vegetable were increased firstly and decreased afterwards while the content of nitrate in the vegetable was increased firstly, decreased after and increased again. As compared with the ratio of NO_3~--N / NH_4~+-N of 1/3, the ratio of NO_3~--N / NH_4~+-N of 2/3 resulted in the increase in the tallness, weight and yield of Pakchoi by 15.57%、45.05% and 13.67%, respectively, and in the reduce in the nitrate of Pakchoi by 37.49%. Therefore, the ratio of NO_3~--N / NH_4~+-N of 2/3 was better for the growth and the decrease of nitrate of Pakchoi. (2) When three kinds of nitration inhibitors, dicyandiamide, imidazole and pyridine, were applied with the fertilization model (NO_3~--N / NH_4~+-N = 2/3), the yields of Pakchoi were increased by 6.06%~28.55%, the nitrate concentration was decreased by 2.69%~19.66%, the N amount of Pakchoi was increased by 2.38%~38.42%, the leaf’s NRA (Nitrate Reductase Activity) was increased by 24.28%~77.32%, MPS (Metabolic Pool Size) was increased by 29.45%~272.17%,, SPS (Storage Pool Size) and MPS/SPS were increased by 2.78%~17.38% and 0.04%~0.59%, respectively. Consequently, the availability of endogenous nitrate in Pakchoi was improved.
     4. The optimized fertilization models for controlling the leaching of N and P: (1) The phosphrous adsorption characteristics of the vegetable field soils can be well fitted by Langmuir isotherm equation (R2=0.991**~0.998**). The range of the instructive phosphorus application rates estimated from the Langmuir equation were between 11.62~67.37 (P)kg·hm~(-2) with an average of 27.18 (P)kg·hm~(-2). The contents of the available and total phosphorus of the vegetable soils were much higher than the leaching thresholds (56.96 mg·kg~(-1) and 1.146 g·kg~(-1)) estimated by regression equation. The average DPS of the vegetable soils was 23.12%, close to the easily leaching threshold (25%) of the soil. The DPS of 4 pieces of the vegetable fields investigated had already been beyond the threshold. It is obvious that the phosphorus lost potential of the vegetable soils in the suburb of Fuzhou City is rather high. (2) The soil colum experiment in greenhouse showed that“Basal application of chemical fertilizer and dicyandiamide”and“Basal application of organic fertilizer”were better than the other models because they not only improved the vegetable’s agronomic properties, increased the yields (by 113%~301% and 238%~250% compared with none fertilization) and the N accumulation (by 194%~336% and 208%~227% compared with none fertilization treatment), P accumulation (by 93.5%~133% and 144%~229% compared with none fertilization treatment) by the vegetable and therefore the utilization ratio of the fertilizer, but also reduced the nitrate concentration of the vegetable (by 10.9%~39.6% and 6.8%~34.3% compared with the basal application of chemical fertilizer treatment) and the leaching loss of NO_3~--N and NH4_+~-N (by 53.4% and 46.6%% compared with the basal application of chemical fertilizer treatment) and water-soluble P (by 17%% and 11.3% compared with the basal application of chemical fertilizer treatment ) during the vegetable growth period and hence reduced the risk of agricultural non-point source pollution.
     5. The optimized fertilization models for controlling the loss of N and P along with the surface runoff:“Basal application of chemical fertilizer and dicyandiamide”and“half-basal application and half-top-dressing of chemical fertilizer and organic manure”were better than the other models because they not only improved the vegetable’s agronomic properties, increased the yields (by 93%~226% and143%~154% compared with none fertilization teatment) and the N accumulation (by 231%~320% and 153%~216% compared with none fertilization treatment) and P accumulation (by 131%~417% and 169%~1167% compared with none fertilization treatment) by the vegetable and the utilization ratios of fertilizer by the vegetables, but also reduced the loss of the NO_3~--N and NH_4~+-N (by 46.46% and 48.10% compared with basal application of chemical fertilizer treatment) and water-soluble P (by 21.02% and 10.73% compared with basal application of chemical fertilizer treatment) from the field along with the surface runoff during the vegetable growth period and hence reduced the risk of agricultural non-point source pollution.
引文
[1]贾继文,李文庆.山东省蔬菜大棚土壤养分状况与施肥状况的调查研究[M]//谢建昌,陈际型.菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社, 1997: 73~75
    [2]中华人民共和国国家统计局. 2007年中国统计年鉴[M].北京:中国统计出版社, 2007
    [3]王朝辉,宗志强,李生秀.菜地和一般农田土壤主要养分累积的差异[J].应用生态学报, 2002, 13(9): 191~194
    [4]陈晓群,姚军,朱文清,等.设施蔬菜地土壤硝态氮的变化及其对环境的影响[J].宁夏农林科技, 2004(5): 4~5
    [5]王朝辉,宗志强,李生秀,等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学, 2002, 23(3): 79~83
    [6]王平,田长彦,赵振勇.新疆新和县郊区菜地硝态氮的淋洗调查[J].干旱区研究, 2004, 2l(l): 64~66
    [7]张国梁,章申.农田氮素淋失研究进展[J].土壤, 1998(6): 291~297
    [8]黄沈发,陆贻通,沈根祥,等.上海郊区旱作农田氮素流失研究[J].农村生态环境, 2005, 21(2): 50~53
    [9]袁新民,同延安,杨学云,等.不同施氮量对土壤NO3--N累积的影响[J].干旱地区农业研究, 2000, 19(1): 8~l3
    [10]Shrestha R K, Ladha J K. Nitrate in groundwater and integration of nitrogen-catch crop in rice-sweet pepper cropping system[J]. Soil Science Society of America Journal, l998, 62(6): l 6l0~l 6l9
    [11]Stites, Kraft G J. Groundwater quality beneath irrigated vegetable fields in a north-central US sand plain [J]. Journal of Environmental Quality, 2000, 29(5): l 509~l 5l7
    [12]李俊良,朱建华.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生物学报, 200l, 7(2): l26~l29
    [13]周泽义,胡长敏,王敏健,等.中国蔬菜硝酸盐和亚硝酸盐污染因素及控制研究[J].环境科学进展, 1999, 7(5): 1~13
    [14]邱孝煊,黄东风,蔡顺香.福州蔬菜污染及污染源调查治理研究[J].福建农业学报, 2000, 15(3): 16~21
    [15]邹容.国内蔬菜硝酸盐污染及防治研究进展[J].渝西学院学报(自然科学版), 2003, 2(3): 75~77
    [16]刘建玲,廖文华,张风华,等.菜园土各形态磷库的变化及空间分布[J].河北农业大学学报, 2004, 27(6): 6~11
    [17]戴照福,王继增,程炯,等.流溪河流域菜地土壤磷素特征及流失风险分析[J].广东农业科学, 2006(4): 82~84
    [18]刘远金,卢瑛,陈俊林,等.广州城郊菜地土壤磷素特征及流失风险分析[J].土壤与环境, 2002, 11(3): 237~240
    [19]Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication: a symposium overview [J]. Journal of Environmental Quality, 1998, 27: 251~257
    [20]Edwards A C, Withers P J A. Soil phosphorus management and water quality: a UK perspective[J]. Soil Use and Management, 1998, 14: 124~l30
    [21]张维理,武淑霞,冀宏杰,等.中国农业面源污染估计及控制对策I. 21世纪初期中国农业面源污染的形式估计[J].中国农业科学, 2004, 34(7): 1 008~1 017
    [22]Sharpley A N, Gburek W J, Folmar G J, et a1. Sources of phosphorus exported from an agricultural watershed in Pennsylvania[J]. Agricultural Water Management, 1999, 41: 77~89
    [23]Sharpley A N. Identifying sites vulnerable to phosphorus loss in agricultural runoff[J]. Journal of Environmental Quality, 1995, 24: 947~951
    [24]刘方,黄昌勇,何腾兵,等.长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响[J].应用生态学报, 2003, 14(2): 196~200
    [25]鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥, 2003, 18(1): 4~8
    [26]Hesketh N, Brookes P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29: 105~110
    [27]刘建玲,李仁岗,廖文华,等.白菜--辣椒轮作中磷肥的产量效应及土壤磷积累研究[J].中国农业科学, 2005, 38(8): 1 616~1 620
    [28]史春余,张夫道,张俊清,等.长期施肥条件下设施蔬菜地土壤养分变化研究[J].植物营养与肥料学报, 2003, 9(4): 437~441
    [29]王新军,廖文华,刘建玲.菜地土壤磷素淋失及其影响因素[J].华北农学报, 2006, 21(4): 67~70
    [30]王彩绒.太湖典型地区蔬菜地氮磷迁移和控制[D].陕西:西北农林科技大学博士学位论文, 2005
    [31]Micbacsa Rckter.替代农业与环境问题面面观[M].农业与环境.北京:农业出版社, 1992
    [32]常青,黄标,王洪杰,等.城乡交错区小型蔬菜生产系统氮磷钾元素平衡状况--以南京和无锡为例[J].土壤学报, 2008, 45(4): 649~656
    [33]王辉,董元华,安琼,等.高度集约化利用下蔬菜地土壤养分累积状况--以南京市南郊为例[J].土壤, 2006, 38(1): 6l~65
    [34]金雪霞,范晓晖,蔡贵信,等.菜地土氮素的主要转化过程及其损失[J].土壤, 2005, 37( 5): 492~499
    [35]Hills F J, Broadbent F E, Lorenz O A. Fertilizer nitrogen utilization by corn, tomato or sugarbeet[J]. Agronomy Journal, 1983, 75: 423~426
    [36]Henry G T. Petiole sap nitrate sufficiency values for fresh market tomato production. Journal of Plant Nutrition, 2001, 24 (6): 945~959
    [37]陈清,张晓展,张宏彦,等.氮素供应对露地胡萝卜生长及其氮素利用的影响[J].中国蔬菜, 2003(l): 4 ~ 6
    [38]李俊良,陈新平,李晓林,等.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报, 2003, 40(2 ): 261~265
    [39]Garrido F, Henault C, Gailard H, et al. N2O and NO emissions by agricultural soils with low hydraulic potentials[J]. Soil Biology & Biochemistry, 2002, 34: 559~575
    [40]Ryden J C, Lund L J. Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units[J]. Soil Science Society of America Journal, 1980, 44: 505~511
    [41]丁洪,王跃思,项虹艳,等.菜田氮素反硝化损失与N2O排放的定量评价[J].园艺学报, 2004, 31(6): 762~766
    [42]奚振邦,施秀珠,黄伟样,等.应用微气象学方法测定尿素的氨挥发损失[J].上海农业学报, 1987, 3(4): 47~55
    [43]Ryden J C, Lund L J, Letey J, et al. Direct measurement of denitrification loss from soils: I. Development and application of field methods[J]. Soil Science Society of America Journal, 1979, 43(1): 110~118
    [44]Bertelsen F, Jensen E S. Gaseous nitrogen losses from field plots grown with pea or spring barly estimated by 15N mass balance and acetylene inhibition techniques[J]. Plant Soil, 1992, 142: 287~295
    [45]梁东丽,同延安, Ove Emteryd,等.菜地不同施氮量下N2O逸出量的研究[J].西北农林科技大学学报(自然科学版), 2002, 30(2): 73~77
    [46]Jackson L E, Stivers L J, Warden BT, et al. Crop nitrogen utilization and soil nitrate loss in a lettuce field [J]. Fertilizer Research, 1993, 37 (2): 93~105
    [47]Jackson L E. Fates and losses of nitrogen from a nitrogen-15-labeled cover crop in an intensively managed vegetable system[J]. Soil Science Society of America Journal, 2000, 64(4): 1 404~1 412
    [48]Waddell J, Guffa S C, Moncrief J R, et al. Irrigation-and-nitrogen-management impacts on nitrate leaching under potato[J]. Journal of Environmental Quality, 2000, 29(1): 251~261
    [49]De Neve S, De Hofman G. N mineralization and nitrate leaching from vegetable crop residues under field conditions: a model evaluation[J]. Soil Biology and Biochemistry, 1998, 30(14): 2 067~2 075
    [50]汤丽玲,陈清,张宏彦,等.不同灌溉措施对露地菜田土壤无机氮残留的影响[J].植物营养与肥料学报, 2002, 8(3): 282~287
    [51]Cookson W R, Rowarth J S, Cameron K C. The effect of autumn applied 15N-labelled fertilizer on nitrate leaching in a cultivated soil during winter[J]. Nutrient Cycling in Agroecosystems, 2000, 56: 99~107
    [52]黄宗楚,郑祥民,姚春霞.上海旱地农田氮磷随地表径流流失研究[J].云南地理环境研究, 2007, 19(1): 6~10
    [53]朱继业,高超,朱建国,等.不同农地利用方式下地表径流中氮的输出特征[J].南京大学学报(自然科学), 2006, 42(6): 621~627
    [54]李国栋,胡正义,杨林章,等.太湖典型菜地土壤氮磷向水体径流输出与生态草带拦截控制[J].生态学杂志, 2006, 25(8): 905~910
    [55]崔力拓,李志伟,王立新,等.农业流域非点源磷素迁移转化机理研究进展[J].农业环境科学学报, 2006, 25(增刊): 353~355
    [56]杨珏,阮晓红.土壤磷素循环及其对土壤磷流失的影响[J].土壤与环境, 2001, 10(3): 256~258
    [57]徐晓锋,苗艳芳,郭大勇,等.蔬菜保护地土壤磷积累与转化研究[J].干旱地区农业研究, 2008, 26(1): 25~28, 36
    [58]Shen J, Li R, Zhang F, et al. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil[J]. Field Crop Research, 2004, 86: 225~238
    [59]刘建玲,张福锁,杨奋翮.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报, 2000, 6(2): 179~186
    [60]高超,朱继业,朱建国,等.不同土地利用方式下的地表径流磷输出及其季节性分布特征[J].环境科学学报, 2005, 25(11): 1 543~1 549
    [61]Sharpley A N, Menzer R G. The impact of soil and fertilizer phosphorus on the environment[J]. Advanced Agronomy, 1987, 41: 297~324
    [62]Blake L, Hesketh N, Fortune S, et al. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2002, 18: 199~207
    [63] Nair V D, Graetz D A, Portier K M. Forms of phosphorus in soil profiles from dairies of south Florida[J]. Soil Science Society of America Journal, 1995, 59: 1 244~1 249
    [64]鲁如坤.植物营养与施肥原理[M].北京:农业出版社, 2000: 201~202
    [65]段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究[J].土壤, 2005, 37 (1): 48~51
    [66]段永惠,张乃明,张玉娟.农田径流氮磷污染负荷的田间施肥控制效应[J].水土保持学报, 2004, 18(3): 130~132
    [67]于红梅,李子忠,龚元石.传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J].农业工程学报, 2007, 23(2): 54~59
    [68]于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学, 2005, 38(9): 1 849~1 855
    [69]梁新强,陈英旭,李华,等.雨强及施肥降雨间隔对油菜田氮素径流流失的影响[J].水土保持学报, 2006, 20(6): 14~17
    [70]黄东风,王果,李卫华,等.不同施肥模式对蔬菜产量、硝酸盐含量及菜地氮磷流失的影响[J].水土保持学报, 2008, 22(5): 95~100
    [71]俞巧钢,陈英旭,张秋玲,等. DMPP对菜地土壤氮素淋失的影响研究[J].水土保持学报, 2006, 20(4): 40~43
    [72]杜建军,王新爱,冯新,等. PAA对土壤水肥保持作用的研究[J].仲恺农业技术学院学报, 2004, 17(2): 1~5
    [73]赵言文,刘常珍,胡正义,等.元素硫和双氰胺对蔬菜地土壤硝态氮淋失的影响[J].应用生态学报, 2005, 16(3): 496~500
    [74]章明奎,郑顺安,王丽平.粪肥添加明矾对降低农田磷和重金属流失的作用[J].水土保持学报, 2007, 21(1): 65~67, 175
    [75]Wyland L J, Jackson L E, Schulbach K E. Soil-plant nitrogen dynamics following incorporation of mature rye cover crop in a lettuce production system[J]. Journal of Agricultural Science (Cambridge), 1995, 124: 17~25
    [76]Ritter W F, Scarborough R, Chirnside A E M. Winter cover crops as a best management practice for reducing nitrogen leaching[J]. Journal of Contaminant Hydrology, 1998, 34(1-2): 1~15
    [77]任智慧.京郊露地菜田土壤硝酸盐累积及阻控对策[D].北京:中国农业大学环境科学与工程系, 2003
    [78]王丽娜.春玉米-蔬菜轮作与春玉米单作农学、环境和经济效益评价[D].北京:中国农业大学植物营养系, 2006
    [79]王静,张维理,郑毅,等.滇池流域环境友好作物轮作模式的选择[J].云南农业大学学报, 2006, 21(5): 663~669
    [80]夏天翔,李文朝.抚仙湖北岸有机与常规种植菜地土壤氮、磷流失及累积特征[J].中国生态农业学报, 2008, 16(3): 560~564
    [81]谢标,王晓蓉,丁竹红.有机农业的环境效益评估[J].水土保持通报, 2002, 22(2): 71~74
    [82]章明奎,王丽平,张慧敏.利用农田系统中源汇型景观组合控制面源磷污染[J].生态与农村环境学报, 2007, 23(3): 46~50
    [83]Dillaha T A, Reneau R B, Mostaghimi S, et al. Vegetative filter strips for agricultural non-point source pollution control[J].Trans. ASAE, 1989, 32(2): 513~519
    [84]Lee D T, Dillaha A, Sherrard J H. Modeling phosphorus transport in grass buffer strips[J]. Journal of Environmental Engineering, 1989, 115(2): 409~427
    [85]Eghball B, Gilley J E, Kramer L A, et al.窄草篱对径流中氮、磷的影响[J].水土保持科技情报, 2001(4): 7~13
    [86]Daniels R B, Gilliam J W. Sediment and chemical load reduction by grass and riparian filters[J]. Soil Science Society of America Journal, 1993, 60(1): 246~251
    [87]Patty L, Rheal B, Gril J J. The use of grass buffer strips to remove pesticides, nitrate and soluble phosphorus compounds from runoff water[J]. Pesticide Science, 1997, 49(3): 243~251
    [88]Santamaria P, Elia A and Serio F. Fertilization strategies for lowering nitrate contents in leafy vegetables: Chicory and rocket salad cases[J]. Journal of Plant Nutrition, 1998, 2l(9): 1 791~1 803
    [89]宋菲,郭玉文,刘孝义,等.土壤中重金属镉锌铅复合污染的研究[J].环境科学学报, 1996, 16(4): 431~435
    [90]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径[J].园艺学报, 1991, 18(2): 159~162
    [91]薛继澄,毕德义,李家金,等.设施蔬菜地栽培蔬菜生理障碍的土壤因子与对策[J].土壤肥料, 1994(1): 4~7
    [92]李文庆,骆洪义,丁方军,等.大棚栽培后土壤盐分的变化[J].土壤, 1995, 27(4): 203~205
    [93]全国农业技术推广服务中心编著.中国有机肥料养分志[M].北京:中国农业出版社, 1999 [94孙曦.中国农业大百科全书(农业化学卷) [M].北京:中国农业出版社, 1996
    [95]徐福利,梁银丽,杜社妮,等.杨凌示范区日光温室蔬菜施肥现状及存在问题对策[J].西北农业学报, 2003, 12(3): 124~128
    [96]陈伦寿,陆景陵.蔬菜营养与施肥技术[M].北京:中国农业出版社, 2002
    [97]谢建昌,陈际型.菜园土壤肥力与蔬菜合理施肥[M].南京:河海大学出版社, 1997: 41~46
    [98]吕英华.无公害施肥技术[M].北京:中国农业出版社, 2003
    [99]郭全忠.安康市设施蔬菜施肥现状及土壤养分累积特性研究[J].安徽农业科学, 2007, 35(20): 6 194~6 195
    [100]张学军,陈晓群,王黎民,等.宁夏大棚蔬菜生产现状及施肥中存在的问题和对策[J].宁夏农林科技, 2004(2): 44~47
    [101]徐福利,梁银丽,陈志杰,等.延安市日光温室蔬菜施肥现状与环境效应[J].西北植物学报, 2003, 23(5): 797~801
    [102]王晓春,唐敏.呈贡县大棚蔬菜施肥现状及经济效益分析[J].现代农业科技, 2008(8): 14, 15, 20
    [103]段立珍,汪建飞,于群英.长期施肥对菜地土壤氮磷钾养分积累的影响[J].中国农学通报, 2007, 23 (3): 293~296
    [104]古巧珍,杨学云,孙本华,等.日光温室蔬菜地土壤主要养分含量及其累积特征分析[J].西北农林科技大学学报(自然科学版), 2008, 36(3): 129~134
    [105]任祖淦,林炎金,邱孝煊,等.福州蔬菜硝酸盐和重金属含量的卫生评价[J].福建农业科技, 1996(2): 18~19
    [106]黄东风,罗涛,邱孝煊.福州市蔬菜卫生品质状况及其面对入世的对策探讨[J].福建农业科技, 2002(5): 17~19
    [107]高树芳.福州市场蔬菜中硝酸盐含量分析与评价[J].武夷科学, 2006, 22(10): 99~102
    [108]国家环境保护总局水和废水监测分析海洋法编委会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002
    [109]沈明珠,翟宝杰,东惠茹.蔬菜硝酸盐累积的研究.不同蔬菜硝酸盐和亚硝酸盐含量评价[J].园艺学报, 1982, 9(4): 41~48
    [110]McLay C D A, Dragten R. Predicting Groundwater Nitrate Concentration in a Region of Mixed Agricultural Land Use: A Comparison of Three Approaches[J]. Environment Pollution, 2001, 115: 191~204
    [111]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, l (2): 80~87
    [112]刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报, 2006, 43(3): 405~413
    [113]尹凯丹.蔬菜硝酸盐污染现状分析及控制对策[J].广东农工商职业技术学院学报, 2008, 24(3): 4~6
    [114]熊艳,尹增松,马艳兰,等.蔬菜中硝酸盐污染现状及其防治措施[J].云南农业大学学报, 2003, l8(3): 304~308
    [115]张漱茗,江丽华,闫华,等.济南市售蔬菜硝酸盐含量及施肥影响[J].土壤肥料, 1997(5): 22~24
    [116]王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响[J].植物营养与肥料学报, 1998, 4(1): 22~28
    [117]陆正松,赵玲,张硕,等.土壤污染、施肥对稻米和蔬菜品质的影响[J].土壤肥料, 2001 (4): 13~16
    [118]Cao Z. H., Huang J. F., Zhang C. S., et al. Soil quality evolution after land use change from paddy soil to vegetable land[J]. Environmental Geochemistry and Health, 2004, 26(2): 97~103
    [119]曹志洪.施肥与水体环境质量--论施肥对环境的影响[J].土壤, 2003, 35(5): 353~363
    [120]Nolan B T, Ruddy B C, Hitt K J, et al. Risk of nitrate in ground-waters of the United States-A national perspective[J]. Environmental Science and Technology, 1997, 31(8): 2 229~2 236
    [121]Burkart M R, Stoner J D. Nitrate in aquifers beneath a cultural systems[J]. Water Science and Technology, 2002, 45(9): 19~28
    [122]Zhang M, Geng S, Smallwood K S. Assessing groundwater nitrate contamination for resource and landscape management[J]. Ambio, 1998, 27(3): 170~174
    [123]Babiker I S, Kato K, Ohta K, et al. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system[J]. Environment International, 2004, 29(8): 1 009~1 017
    [124]高旺盛,黄进,吴大付,等.黄淮海平原典型集约农区地下水硝酸盐污染初探[J].生态农业研究, 1999, 7(4): 41~43
    [125]董章杭,李季,孙丽梅.集约化蔬菜种植区化肥施用对地下水硝酸盐污染影响的研究--以“中国蔬菜之乡"山东省寿光市为例[J].农业环境科学学报, 2005, 24(6): 1 139~1 144
    [126]陈秀虎,杨敏,黎晓峰.保护地小白菜硝酸盐积累的效应分析与调控[J].中国农学通报, 2007, 23(6): 438~441
    [127]汪李平,向长萍,王运华.我国蔬菜硝酸盐污染状况及防治途径研究进展[J].长江蔬菜, 2000(4): 1~4
    [128]Dich J, Jrvinen R, Knck P. Dietary intakes of nitrate, nitrite and NDMA in the finish mobile clinic health examination survey[J]. Food Add Contam, 1996, 13: 541~552
    [129]王利群,董英,黄达明,等.蔬菜硝酸盐的积累及其生理机制研究进展[J].江苏农业科学, 2002(6): 78~81
    [130]田霄鸿,王朝辉,李生秀.不同氮素形态及配比对蔬菜生长和品质的影响[J].西北农业大学学报, 1999, 27(2): 6~10
    [131]王健,孙兴祥,沈其荣,等.增铵对菠菜生长及品质的影响[J].土壤通报, 2006, 37(2): 326~329
    [132]张春兰,高祖明,张耀栋,等.氮素形态和NH4+-N与NO3--N配比对菠菜生长和品质的影响[J].南京农业大学学报, 1990, 13(3): 70~74
    [133]陈巍,罗金葵,姜慧梅,等.不同氮素形态比例对不同小白菜品种生物量和硝酸盐含量的影响[J].土壤学报, 2004 (3): 420~425
    [134]Marshner H. Mineral Nutrition of Higher Plants[M]. London: Academic Press. 1995: 229~312
    [135]李生秀,付会芳,袁虎林,等.几种反映旱地土壤供氮能力方法的比较[J].土壤, 1990, 22(4): 194~197
    [136]黄继茂,段昆生,林碧香,等.低硝酸盐优质高产叶菜的营养配方研究[J].土壤, 1990, 22(4): 222~225
    [137]周艺敏,任顺荣.氮素化肥对蔬菜硝酸盐积累的影响[J].华北农学报, 1989, 4(1): 110~115
    [138]汪建飞,董彩霞,沈其荣.不同铵硝比对菠菜生长、安全和营养品质的影响[J].土壤学报, 2007, 44(4): 683~688
    [139]何文寿,李生秀,李辉桃.铵、硝态氮配比对作物生长量的影响[J].宁夏农学院学报, 1996, 17(4): 16~20
    [140]张攀伟,罗金葵,陈巍,等.硝铵比例影响小白菜生长和叶绿素含量的原因探究[J].植物营养与肥料学报, 2006, 12 (5): 711~716
    [141]杨成君,朴凤植.氮素形态及其配比对营养液培生菜生长与硝酸盐含量的影响[J].北方园艺, 2007(5): 5~7
    [142]罗金葵,陈巍,沈其荣.不同小白菜器官对氮素形态响应的生理差异[J].南京农业大学学报, 2004, 27(3): 50~53
    [143]王波,沈其荣,赖涛,等.不同铵硝比营养液对生菜生长发育影响的研究[J].土壤学报, 2007, 44(3): 561~565
    [144]Heberer J A, Below F E. Mixed nitrogen nutrition and productivity of wheat grown in hydroponics[J]. Annal of Botany, 1989, 63: 643~649
    [145]Below F E, Heberer J A. Time of availability influences mixed-nitrogen-induced increases in growth and yield of wheat[J].Journal of Plant Nutrition, 1990, 13: 667~676
    [146]Wang X, Below F E. Root growth, nitrogen uptake, and tillering of wheat induced by mixed–nitrogen source[J]. Crop Science, 1992, 32: 997~1 002
    [147]Chen W, Luo J K, Shen Q R. Effect of NH4+-N : NO3--N ratios on growth and some physiological parameters of Chinese cabbage cultivars[J]. Pedosphere, 2005, 15(3): 310~318
    [148]Santamaria P, Elia A, Gonnella M. Changes in nitrate accumulation and growth of Endive plants during light period as affected by nitrogen level and form[J]. Journal of Plant Nutrition, 1997, 20(10): 1255~1266
    [149]朱祝军,蒋有条.不同形态氮素对不结球白菜生长和硝酸盐积累的影响[J].植物生理学通讯, 1994, 30(3): 198~201
    [150]段立珍,汪建飞,赵建荣.不同氮素形态配比对菠菜氮素营养代谢的影响[J].安徽科技学院学报, 2007, 21(2): 24~26
    [151]Ullrieh W R. Transport of nitrate and ammonium through plant membranes[M].// Mengel K, Pilbeam D J, eds. Nitrogen Metabolism of P1ants. Oxford: Clarendon Press, 1992: 121~137
    [152]Andriesse A J, Weisbeek P J, Van Arkel G A. Biochemistry and regulatory aspects and genetics of nitrate assimilation in cyanobaeteria[M].//Wray J L, Kinghom J R. eds. Molecular and Genetic Aspects of Nitrate Assimilation. Oxford: Oxford Science Publications, 1989: 40~50
    [153]Trenkel M. Improving fertilizer use efficiency controlled-release and stabilized fertilizers in agriculture [M]. Paris: International Fertilizer Industry Association, 1997
    [154]Barth G, Tucher S, Schmidhaher U. Influence of soil parameters on the effect of 3,4–dimethylpyrazole--phosphate as a nitrification inhibitor[J]. Biology and Fertility of Soils, 2001, 34: 98~102
    [155]孙爱文,石元亮,张德生,等.硝化/脲酶抑制剂在农业中的应用[J].土壤通报, 2004, 35(3): 357~361
    [156]黄益宗,冯宗炜,王效科,等.硝化抑制剂在农业上应用的研究进展[J].土壤通报, 2002, 4 (33): 310~315
    [157]黄益宗,冯宗炜,张福珠.硝化抑制剂硝基吡啶在农业和环境保护中的应用[J].土壤与环境, 2001, 10(4): 323~326
    [158]余光辉,张杨珠.三种硝化抑制剂对小白菜产量及品质的影响[J].土壤通报, 2006, 37(4): 737~740
    [159]戴廷波,曹卫星.不同小麦品种苗期对混合形态氮素的反应[J].南京农业大学报, 2000, 23(1): 14~18
    [160]吕国华.氮索形态及配比与大白菜体内硝酸盐的积累[J].石河子农学院报, 1995(2): 29~32
    [161]孙权,丁富荣.氮肥对大白菜硝酸盐累积的影响及合理施用量研究[J].土壤, 2003, 35(3): 255~258
    [162]张树清,魏小平.蔬菜作物对硝铵态氮吸收能力比较研究[J].兰州大学学报(自然科学版), 2002, 38(4): 77~84
    [163]Ferrari T E, Yoder O C, Filner P. Anaerobic nitrite production by plant cells and tissues: Evidence for two nitrate pools [J]. Plant Physiologyogy, 1973, 51: 423~431
    [164]Campbell W H. Nitrate reductase and its role in nitrate assimilation in plants[J]. Physiology Plant, 1988, 74: 214~219
    [165]许长蔼,倪晋山.小麦叶内硝酸还原的代谢库[J].植物生理学报, 1990, 16(3): 277~283
    [166]刘忠,王朝辉,陈宝明,等.菠菜叶片中硝态氮还原与叶柄中硝态氮累积的关系[J].植物生理学通讯, 2004, 40(3): 281~284
    [167]黄东风,罗涛,邱孝煊.氮抑制剂对蔬菜产量和硝态氮含量的影响[J].中国蔬菜, 2005(12): 14~16
    [168]王朝辉,李生秀.蔬菜不同器官的硝态氮含量与水分、全氮、全磷含量的关系[J].植物营养与肥料学报, 1996, 2(2): 144~152
    [169]陈宝明,王朝辉,李生秀.菠菜叶片中硝态氮代谢库的测定[J].植物生理学通讯, 2002, 8(2): 124~126
    [170]周树,郑相穆.硝酸还原酶体内分析方法的探讨[J].植物生理学通讯, 1985(1): 47~49
    [171]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000
    [172]史瑞和.植物营养原理[M].南京:江苏科技出版社, 1989: 242
    [173]Echeverria E D. Vesicle-mediated solute transport between the vacuole and the plasma membrane[J]. Plant Physiology, 2000, 123: 1 217~1 226
    [174]Malzer G L. Performance of dicyandiamide in the north central states, Commun[J]. Commun in Soil Sci Plant Anal, 1989, 20(19&20): 2 001~2 122
    [175]Montemurro F. Effects of urease and nitrification inhibitors application on urea fate in soil and nitrate accumulation in lettuce[J]. Journal of Plant Nutrition, 1998, 21: 245~252
    [176]伍少福,吴良欢,石其伟.硝化抑制剂对降低蔬菜硝酸盐积累的影响及其影响因素的研究进展[J].土壤通报, 2006, 37(6): 1 236~1 242
    [177]傅柳松,刘超,吴方正.钼和双氰胺降低蔬菜硝酸盐积累的效应研究[J].环境污染与防治, 1994, 16(3): 4~6
    [178]胡勤海,傅柳松.双氰胺对蔬菜硝酸盐积累抑制作用的研究[J].环境污染与防治, 1991, 13(1): 6~8
    [179]Magnard D N. Nitrate in the Environment. Soil-Plant-Nitrogen Relationship[M].// Donald R. Nielson J G, Mac Donald, eds. New York: Academic Press, 1978: 221~234.
    [180]余光辉,张杨珠.三种硝化抑制剂对小白菜产量及品质的影响[J].土壤通报, 2006, 37(4): 737~740
    [181]许超,吴良欢,张立民,等.含硝化抑制剂DMPP氮肥对小白菜硝酸盐累积和营养品质的影响[J].植物营养与肥料学报, 2005, 11(1): 137~139
    [182]史奕,徐星凯,周礼恺,等.抑制剂及其组合对尿素N在小麦-土壤系统中的行为和归宿的影响[J].应用生态学报, 1998, 9(2): 168~170
    [183]许超,吴良欢,冯涓,等. DMPP对菜园土壤铵态氮与硝态氮含量的影响[J].湖南农业大学学报, 2003, 29(5): 388~340
    [184]孙羲.植物营养原理[M].北京:中国农业出版社, 1997: 25
    [185]Ward M R, Grimes H D, Huffaker R C. Latent nitrate reductase activity is associated with the plasma membrane of corn roots [J]. Planta. 1989, 177: 470~475
    [186]Martinoia E, Heck U, Wiemker A. Vacuoles as storage compartments for nitrates in barley leaves[J]. Nature, 1981: 289, 292~293
    [187]刘忠,王朝辉,李生秀.菠菜叶片硝态氮还原对叶柄硝态氮含量的影响[J].植物营养与肥料学报, 2007, 13(2): 313~317
    [188]余光辉,张杨珠,万大娟.几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响[J].应用生态学报, 2006, 17(2): 247~250
    [189]许超,吴良欢,郑旭颖,等.硝化抑制剂DMPP对菜园土供肥特性的影响[J].农业环境科学学报, 2007, 26(1): 269~272
    [190]Mcdowell R, Sharpley A N. Approximating phosphorus release from soils to surface runoff and subsurface drainage[J]. Journal of Environmental Quality, 2001, 30: 508~520
    [191]高超,张桃林,吴蔚东.农田土壤中的磷向水体释放的风险评价[J].环境科学学报, 2001, 2l(3): 344~348
    [192]谢学俭,陈晶中,汤莉莉,等.三种水稻土对磷的吸附解吸特性[J].土壤通报, 2008, 39(3): 597~601
    [193]高超,张桃林.太湖地区丘陵旱地土壤磷的吸持解吸特征[J].湖泊科学, 2001, 13(13): 255~260
    [194]Quang V D, Thai V C, Linh T T T, et al. Phosphorus sorption in soils of the Mekong Delta (Vietnam) described by the binary Langmuir equation[J]. European Journal of Soil Science, 1996, 47: 113~123
    [195]吕家珑,张一平,张君常,等.土壤磷运移研究[J].土壤学报, 1999, 36 (1): 75~82
    [196]吕家珑.农田土壤磷素淋溶及其预测[J].生态学报, 2003, 23(12): 2 089~2 095
    [197]Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J]. Journal of Environmental Quality, 1995, 24: 904~910
    [198]Maguire R O and Sims J T. Observations on leaching and subsurface transport of phosphorus on the Delmarva Peninsula, USA. Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorus Transfer Workshop 2001: 20
    [199]Barberis E, Ajmone-Marsan F, Preta M, et al. Phosphorus leaching from five heavily fertilized soils. Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorus Transfer Workshop. 2001: 25
    [200]Bohm K E, Spiegel H, Hosch J. Do different sowing and ploughing dates of cover crops have an effect on the phosphorus loss into groundwater? Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorus Transfer Workshop. 2001: 27
    [201]Godlinski F, Leinweber P, Meissner R. Phosphorus status of soil and leaching losses: results of long-term lysimeter studies. Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorus Transfer Workshop. 2001: 37
    [202]Toor G S, Condron L M, Di, H J, et al. Chemical nature of phosphorus in leachate from a grassland soil. Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorus Transfer Workshop. 2001: 60
    [203]Heckrath N, Brookes, P C. Development of an indicator for Risk of Phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29 (1): 105~110
    [204]McDowell R W, Sharpley A N. Approximating phosphorus release from soils to surface runoff and subsurface drainage[J]. Journal of Environmental Quality, 2001, 30: 508
    [205]刘利花,杨淑英,吕家珑.长期不同施肥土壤中磷淋溶“阈值”研究[J].西北农林科技大学学报, 2003, 31(3): 123~126
    [206]钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估I.淋失临界值[J].生态学报, 2004, 24(10): 2 275~2 280
    [207]王彩绒,胡正义,杨林章,等.太湖典型地区蔬菜地土壤磷素淋失风险[J].环境科学学报, 2005, 25(1): 76~80
    [208]张英鹏,林咸永,章永松,等.杭州市郊菜园土壤的养分状况及其障碍因子研究[J].浙江大学学报(农业与生命科学版), 2003, 29 (3): 244~250
    [209]龚子同.中国土壤系统分类:理论·方法·实践[M].北京:科学出版社, 1999
    [210]Fox RL, Kamprath E J. Phosphate isotherms for evaluating the phosphate requirement of soils[J]. Soil Science Society of America Journal, 1970, 34: 902~904
    [211]戴照福,王继增,程炯,等.流溪河流域菜地土壤磷素特征及流失风险分析[J].广东农业科学, 2006(4): 82~84
    [212]Maguire R O, Sims J T. Soil testing to predict phosphorus leaching[J]. Journal of Environmental Quality, 2002, 31(5): 1601~1609
    [213]Breeuwsma A, ReijerinkJ G A, Schoumana O F. Impact of manure on accumulation and leaching of phosphorus in areas of intensive livestock farming[C]. // Steele, K. Animal waste and the land-water interface. New York: CRC, 1995: 239-251
    [214]贾继元,吴建军,张苗.肥料结构对红壤氮素淋失的影响及防治措施[J].农机化研究, 2005(1): 56~58
    [215]宋玉芳,任丽萍,许华夏.不同施肥条件下旱田养分淋溶规律实验研究[J].生态学杂志, 2001, 20(6): 20~24
    [216]庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡[J].土壤, 1997, 29(2): 80~83
    [217]Aminuddin B Y, Wan Abdullah W Y, Zulkefli M, et al. Monitoring of inorganic constituents in surface water and groundwater in selected agroecosystems in the Cameron Highlands[C]// Ramsis B. Salama and Rai S. Kookana, eds. Agrochemical pollution of water resources: Proceedings of a conference held at Hat Yai, Thailand on 16-18 February 2000. Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR), 2001: 32~44
    [218]Spalding R F, Waltts DG, Schepers J S, et a1. Controlling nitrate leaching in irrigated agriculture[J]. Journal of Environmental Quality, 2001, 30: 1 184~1 194
    [219]袁东海,王兆赛,陈欣,等.不同农作方式红壤坡耕地上土壤氮素流失特征[J].应用生态学报, 2002, 13(7): 863~866
    [220]张兴昌,邵明安.坡地土壤氮素与降雨--径流的相互作用机理及模型[J].地理科学进展, 2000, 19(2): 128~134
    [221]张志剑,胡勤海,朱荫湄.农业面源污染与水体保护[J].杭州科技, 1999(6): 23~24
    [222]潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J].环境科学, 2003, 24(3): 91~95
    [223]申秀英,许晓路.蔬菜硝酸盐积累机制及影响因素[J].农业环境与发展, 1998, 57(3): 4~20
    [224]滕葳,柳琪,郭栋梁,等.国内蔬菜硝酸盐污染原因分析及防治对策[J].食品研究与开发, 2003, 24(6): 38~42
    [225]邱孝煊,黄东风,蔡顺香,等.施肥对蔬菜硝酸盐累积的影响研究[J].中国生态农业学报, 2004, 12(2): 111~114
    [226]李会合,王正银,李宝珍.蔬菜营养与硝酸盐的关系[J].应用生态学报, 2004, 15(9): 1 667~1 672
    [227]高祖明,张耀栋,张道勇,等.氮磷钾对叶菜硝酸盐积累和硝酸还原酶、过氧化物酶活性的影响[J].园艺学报, 1980, 7(4): 294
    [228]杨少海,徐培智,刘国坚.降低蔬菜硝酸盐含量的农业措施[J].土壤与环境, 1999(3): 235~237
    [229]刘义新,韩移旺,王彦亭,等.结晶有机肥与复合肥、尿素在土壤中养分淋失的比较研究[J].华中农业大学学报, 2002, 21(3): 238~241
    [230]杨丽霞,杨桂山,苑韶峰,等.不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征[J].环境科学, 2007, 28(8): 1763~1769
    [231]胡志平,郑祥民,黄宗楚,等.上海地区不同施肥方式氮磷随地表径流流失研究[J].土壤通报, 2007, 38(2): 310~313
    [232]王振学,党伟,来敬伟,等.施肥对保护地蔬菜品质与产量的影响[J].北京农业, 2006 (11): 12~13
    [233]陈笃生.硝化抑制剂[J].化肥设计, 1998, 36(1): 62~64
    [234]陈利军,武志杰,姜勇.与氮转化有关的土壤酶活性对抑制剂施用的响应.应用生态学报, 2002, 13(9): 1 099~1 103
    [235]谢红梅,朱波,朱钟麟.无机与有机肥配施下紫色土铵态氮、硝态氮时空变异研究--夏玉米季[J].中国生态农业学报, 2006, 14(1): 118~121
    [236]谢红梅,朱波,朱钟麟.紫色土无机--有机肥配施下作物生物效应及土体NO3--N运移特点[J].西南农业学报, 2004, 17(6): 755~759
    [237]王正银,青长乐.紫色土氮素矿化与作物效应的研究[J].中国农业科学, 1994, 27(2): 213~237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700