用户名: 密码: 验证码:
环管式丙烯本体聚合反应过程建模、控制与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯产品与人们的生产生活息息相关,不少专家学者从聚丙烯的反应机理、工艺流程、催化剂开发等方面对聚丙烯生产过程进行了深入研究,但是到目前为止,对丙烯聚合反应过程,尤其在新工艺基础上的先进控制与优化算法及策略的研究相对较少,国内公开发表和应用的成果有限,而这方面的研究同样可以给国内聚丙烯工业的发展提供较大的突破空间。因此,在前人研究的基础上,本学位论文针对环管工艺丙烯本体聚合反应过程的建模、优化、控制方面展开了较为深入和广泛的研究,取得了相应的研究成果。本文的主要研究工作概括如下:
     1.基于Spheripol环管二代工艺,引入环管反应器非理想特性的思想,并参考实际过程操作数据和工艺参数,建立了非理想环管式丙烯本体聚合反应过程的动态机理数学模型和质量物性模型,及对模型进行了特性分析,这为丙烯聚合过程质量指标建模、非线性预测控制方案设计和聚丙烯产品牌号切换优化控制策略的研究提供了可靠的基准(Benchmark)模型和理论支撑。
     2.针对环管式聚丙烯生产过程的熔融指数质量预报,通过充分发掘和利用聚丙烯工业过程先验知识,并将各种先验知识有机融合,以非线性约束的形式嵌入到前向神经网络中,提出了一种过程多先验知识神经网络软测量模型。同时基于增广拉格朗日乘子法约束处理机制,提出了自适应PSO-SQP算法优化网络权值。该模型不仅有良好的拟合预测能力,而且能避免出现零增益和增益反转,确保模型在实际应用中的安全性能。此外,将过程多先验知识神经网络模型与聚丙烯熔融指数简化机理模型有机结合为调和平均混合模型,增强了模型外推能力,实现模型外推性和对熔融指数预测精度的有机统一。同时还提出用归一化互信息方法对软测量模型的辅助变量和主导变量进行时延估计,较大程度上提升了模型预测的精度。
     3.针对环管聚丙烯生产过程装置多变量、耦合和非线性特性等导致过程不稳定和质量指标波动问题,提出了基于MSSARX-PWL (wiener)模型结构的非线性预测控制算法。利用改进的闭环子空间辨识方法(MSSARX)辨识对象在闭环工况下的线性状态空间模型,同时将线性模型与多变量PWL方法辨识得到的非线性稳态模型结合建立双环管丙烯聚合反应动态过程的非线性预测模型,并将非线性模型反转为线性模型,在线性预测控制算法框架下用二次线性规划方法(QP)优化控制器,而无须用非线性规划方法(NLP)求解。该算法在保证模型和控制精度的同时,提高了计算效率。
     4.针对双环管式丙烯本体聚合牌号切换生产过程,提出了一种多牌号切换轨迹优化模型及切换策略。该轨迹优化模型综合考虑了牌号切换过程的经济收益和装置稳定性,在此模型基础上,基于一种变时间尺度控制向量参数化方法(VTS-CVP)和内点优化方法(Interior-Point Optimization, IPOPT)求解动态优化问题,能同时优化控制参数和时间节点,大大减少了牌号切换时间和过渡料的耗费。
     5.针对在过程不确定因素和扰动的影响下,聚丙烯牌号切换过程实际对象输出与上层离线优化参考轨迹出现偏差而影响生产的问题,提出了一种双层递阶结构聚丙烯牌号切换优化和控制联立策略。其中,上层的切换轨迹采用变尺度控制向量参数化方法实现动态优化,下层的跟踪控制器基于MSSARX-PWL (wiener-type)模型预测控制器,对上层的切换优化参考轨迹进行快速跟踪及克服过程高频扰动。此外,还引入了轨迹偏差检测和在线更新最优轨迹机制,保证了整个切换过程平稳过渡。
Polypropylene products are closely related to people's production and life, many experts and scholars have already focused on the improvements of propylene polymerization process, such as polypropylene reaction mechanism, process and catalyst development, reaction device and so on. However, on the other hand, published fruits about modeling, control and optimization of advanced control/optimization algorithms and strategies for polypropylene production process are relatively few, especially in China, which can also contribute to the industrial polypropylene production in this respect. Therefore, on the basis of previous studies, this thesis pays more attention on modeling, optimization, and control strategies for double-loop propylene bulk polymerization process. The main research work is summarized as follows:
     1. Dynamic mechanism mathematical model and quality properties model of non-ideal loop reactor propylene bulk polymerization process are constructed by the introduction of the non-ideal characteristics, as well as referred to the actual process operating data and process parameters.Then, dynamic and steady state characteristics are analyzed based on this model. The model developed may provide a reliable benchmark model and guiding role for modeling of quality indicators of propylene polymerization process, designing of nonlinear model predictive control scheme and product grade transition optimization.
     2. Melt index inferential model plays an important role in the control and optimization of polypropylene production, a novel multiple-priori-knowledge based neural network (MPKNN) inferential model for melt index prediction is developed. The prior knowledge from the industrial propylene polymerization process is fully exploited and embedded into the construction of multi-layer perceptron neural network in the form of nonlinear constraints. Meanwhile, an adaptive PSO-SQP (Particle Swarm Optimization-Sequential Quadratics Programming) is proposed to optimize the network weights. The proposed MPKNN model has good fitting and prediction ability. Meanwhile, it can avoid unwanted zero value and wrong signal of the model gains. By embedding priori knowledge, the model ensures the safety in the quality control of Melt Index. In addition, a hybrid model combining the MPKNN model with a simplified mechanism model is proposed to enhance the extrapolation capability. A normalized mutual information method is employed to estimate the delay between independent variables and dependent variables.
     3. A nonlinear model predictive control algorithm based on MSSARX-PWL (wiener type) model is proposed for loop polypropylene production process with multivariale, coupled and unstable nonlinear characteristics. The MSSARX-PWL model structure, in which linear state space model under the closed-loop conditions is identified by the improved closed-loop subspace identification method (MSSARX), combined with the nonlinear steady-state model identified by the multivariate PWL method, is established for the nonlinear predictive model of double loop propylene polymerization process. Furthermore, the non-linear model can be inversed to linear model that without Non-linear Programming methods (NLP) solver but only the linear Quadratic Programming (QP) optimization controller is needed. The algorithm proposed can not only guarantee the accuracy of model and control, but also improve the computational efficiency.
     4. A multi-grade transition trajectory optimization model and transition strategy for the grade transition of double loop polypropylene bulk polymerization production process is developed. The trajectory optimization model took into account the economic benefits and plant stability during the grade transition process. Meanwhile, a variant time scale based control vector parametric methods (VTS-CVP) and (Interior-Point Optimization, IPOPT)algorithm, which can optimize the control parameters and time node together, are both used for solving dynamic optimization problem, that can greatly reduce the grade transition time and material consuming.
     5. A two-layer hierarchical structure and strategy of optimization and control for polypropylene grade transition is raised to overcome process uncertainties and disturbances that lead to the deviation between the open-loop reference trajectory and the actual process. In the upper layer, the variant time scale based control vector parametric methods (VTS-CVP) is used for dynamic optimization of transition trajectory, while tracking controller based on MSSARX-PWL (wiener-type) model predictive controller in the lower layer is tracking fast to the reference trajectory from the upper layer and overcome high-frequency disturbances. Besides, a mechanism about trajectory deviation detection and optimal trajectory updating online are introduced to ensure a smooth transition for the entire process.
引文
[1]安芳成.聚丙烯行业发展现状及市场分析.化工进展,2012,31:246-251.
    [2]洪定一.聚丙烯-原理、工艺与技术.北京:中国石化出版社,2002.
    [3]金学兰.聚烯烃物性的在线实时计算.博士学位论文.北京:中国石油大学,2005.
    [4]冯连芳.丙烯聚合反应器与过程模型化研究.博士学位论文.杭州:浙江大学,2006.
    [5]Sarkar P. and Gupta S.K., Simulation of propylene polymerization:an efficient algorithm. Polymer,1992,33:1477-1485.
    [6]Sau M. and Gupta S.K., Modelling of a semibatch polypropylene slurry reactor. Polymer,1993,34:4417-4426.
    [7]Sarkar P. and Gupta S.K., Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors. Polymer Engineering & Science,2004, 33:368-374.
    [8]Soares J. and Hamielec A., General dynamic mathematical modelling of heterogeneous Ziegler-Natta and metallocene catalyzed copolymerization with multiple site types and mass and heat transfer resistances. Polymer Reaction Engineering,1995,3:261-324.
    [9]Mattos Neto A. and Pinto J., Steady-state modeling of slurry and bulk propylene polymerizations. Chemical Engineering Science,2001,56:4043-4057.
    [10]DubM A., Soares J.B.P., Penlidis A., and Hamielec A.E., Mathematical modeling of multicomponent chain-growth polymerizations in batch, semibatch, and continuous reactors:a review. Industrial & engineering chemistry research,1997,36:966-1015.
    [11]Zacca J.J. and Ray W.H., Modelling of the liquid phase polymerization of olefins in loop reactors. Chemical Engineering Science,1993,48:3743-3765.
    [12]Ferrero M.A. and Chiovetta M.G., Preliminary design of a loop reactor for bulk propylene polymerization. Polymer-Plastics Technology and Engineering,1990, 29:263-287.
    [13]Brandolin A., Lacunza M., Ugrin P., and Capiati N., High pressure polymerization of ethylene. An improved mathematical model for industrial tubular reactors. Polymer Reaction Engineering,1996,4:193-241.
    [14]Reginato A.S., Zacca J.J., and Secchi A.R., Modeling and simulation polymerization in nonideal loop reactors. AIChE Journal,2003,49:2642-2654.
    [15]Touloupides V, Kanellopoulos V., Pladis P., Kiparissides C., Mignon D., and Van-Grambezen P., Modeling and simulation of an industrial slurry-phase catalytic olefin. Chemical Engineering Science,2010,65:3208-3222.
    [16]Choi K.Y. and Ray W.H., The dynamic behavior of continuous stirred-bed reactors for the solid catalyzed gas phase polymerization of propylene. Chemical Engineering Science,1988,43:2587-2604.
    [17]McAuley K.B., Talbot J.P., and Harris T.J., A comparison of two-phase and well-mixed models for fluidized-bed polyethylene reactors. Chemical Engineering Science,1994,49:2035-2045.
    [18]Hatzanton is H., Yiannoulakis H., Yiagopoulos A., and Kiparissides C., Recent developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors:The effect of bubble size variation on the reactor's performance. Chemical Engineering Science,2000,55:3237-3259.
    [19]Kiashemshaki A., Mostoufi N., and Soludeh-Gharebagh R., Two-phase modeling of a gas phase polyethylene fluidized bed reactor. Chemical Engineering Science,2006, 61:3997-4006.
    [20]McAuley K.B. and MacGregor J.F., On-line inference of polymer properties in an industrial polyethyl-ene reactor. AICHE Journal,1991,37:825-835.
    [21]Watanabe F., Ogawa M., Obshima M., and Hasbimoto I., Quality control system for an industrial high-density polyethylene process. In AIChE meeting St Louis,1993; pp 149.
    [22]Ogawa M., Ohshima M., Morinaga K., and Watanabe F., Quality inferential control of an industrial high density polyethylene process. Journal of Process Control,1999, 9:51-59.
    [23]Kim M., Lee Y.H., Han I.S., and Han C., Clustering-based hybrid soft sensor for an polypropylene process with grade changeover operation. Industrial and Engineering Chemistry Research,2005,44:34-42.
    [24]Lee E.H., Kim T.Y., and Yeo Y.K., Prediction and quality control of the melt index during production of high-density polyethylene. Korean Journal of Chemical Engineering,2008,25:613-622.
    [25]Ohshima M. and Tanigaki M., Quality control of polymer production processes. Journal of Process Control,2000,10:135-148.
    [26]Shi J. and Liu X.G., Melt index prediction by neural soft-sensor based on multiscale analysis and principal component analysis. Chinese Journal of Chemical Engineering, 2005,13:849-852.
    [27]Shi J., Liu X.G., and Sun Y.X., Melt index prediction by neural networks based on independent compo-nent analysis and multi-scale analysis. Neurocomputing,2006, 70:280-287.
    [28]Li J.B. and Liu X.G., Melt index prediction by RBF neural network optimized with an MPSO-SA hybrid algorithm. Neurocomputing,2011,74:735-740.
    [29]Zhang B.J., Jin Q., and Xu Y., Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks. Chemical Engineering & Technology,2006,29:442-448.
    [30]Han I.-S., Han C., and Chung C.-B., Melt Index Modeling with support vector machines,partial least squares, and artificial neural networks. Journal of Applied Polymer Science,2005,95:967-974.
    [31]Sharmin R., Sundararaj U., Shah S., Griend L.V., and Sun Y.J., Inferential sensors for estimation of polymer quality parameters industrial application of a PLS-based soft sensor for a LDPE plant. Chemical Engineering Science,2006,61:6372-6384.
    [32]Kaneko H., Arakawa M., and Funatsu K., Novel soft sensor method for detecting completion of transition in industrial polymer processes. Computers and Chemical Engineering,2011,35:1135-1142.
    [33]Kadleca P., Gabrys B., and Strandtb S., Data-driven soft sensors in the process industry. Computers & Chemical Engineering,2009,33:795-814.
    [34]Chen L., Bernard O., Bastin G., and Angelov P., Hybrid modelling of biotechnological processes using neural networks. Control Engineering Practice,2000,8:821-827.
    [35]Assis A.J. and Filho R.M., Soft sensors development for on-line bioreactor state estimation. Computers and Chemical Engineering,2000,24:1099-1103.
    [36]Fortuna L., Graziani S., and Xibilia M.G., Soft sensors for product quality monitoring in debutanizer distillation columns. Control Engineering Practice,2005,13:499-508.
    [37]James S., Legge R., and Budman H., Comparative study of black-box and hybrid estimation methods in fed-batch fermentation. Journal of Process Control,2002, 12:113-121.
    [38]车荣杰.聚丙烯熔融指数软测量方法研究.硕士学位论文.北京:中国石油大学,2009.
    [39]Bollas G.M., Papadokonstadakis S., and Michalopoulos J., Using hybrid neural networks in scaling up an FCC model from a pilot plant to an industrial unit. Chemical Engineering & Processing,2003,42:697-713.
    [40]Ng C.W. and Hussain M.A., Hybrid neural network-prior knowledge model in temperature control of a semi-batch polymerization process. Chemical Engineering & Processing,2004,43:559-570.
    [41]Bhutani N., Rangaiah G.P., and Ray A.K., First-Principles, data-Based, and hybrid modeling and optimization of an industrial hydrocracking unit. Industrial and Engineering Chemistry Research,2006,45:7807-7816.
    [42]Hosen M.A., Hussain M.A., and Mjalli F.S., Control of polystyrene batch reactors using neural network based model predictive control (NNMPC):An experimental investigation. Control Engineering Practice,201],45:709-726.
    [43]Shafiee G, Arefi M., Jahed M.M., and Jalali A., Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chemical Engineering Journal,2008,143:282-292.
    [44]Na S.S. and Rhee H.K., An experimental study for property control in a continuous styrene polymerization reactor using a polynomial ARM A model. Chemical Engineering Science,2002,57:1165-1173.
    [451 Vicente M., Leiza J.R., and Asua J.M., Simultaneous control of copolymer composition and MWD in emulsion copolymerization. AlChE Journal,2001, 47:1594-1606.
    [46]Prasad V., Schley M., Russo L.P., and Bequette B., Product property and production rate control of styrene polymerization. Journal of Process Control,2002,12:353-372.
    [47]Song I.H. and Rhee H.K., Nonlinear control of polymerization reactor by Wiener predictive controller based on one-step subspace identification. Industrial& engineering chemistry research,2004,43:7261-7274.
    [48]Ahn S.M., Park M.J., and Rhee H.K., Extended Kalman filler-based nonlinear model predictive control for a continuous MMA polymerization reactor. Industrial & engineering chemistry research,1999,38:3942-3949.
    [49]Ali M, Betlem B., Weickert G., and Roffel B., Non-linear model based control of a propylene polymerization reactor. Chemical Engineering and Processing:Process Intensification,2007,46:554-564.
    [50]英亮.聚丙烯连续生产过程的牌号切换研究.硕士学位论文.杭州:浙江大学,2006.
    [51]王靖岱.连续聚合过程中产品过渡的最优化策略研究.硕士学位论文.杭州:浙江大学,1999.
    [52]McAuley K.B. and MacGregor J.F., Optimal grade transitions in a gas phase polyethylene reactor. AIChE Journal,1992,38:1564-1576.
    [53]Cozewith C., Transient response of continuous flow stirred-tank polymerization reactors. AICHE Journal,1988,34:272-282.
    [54]Debling J.A., Han G, Kuijpers F., Verbury J., Zacca J., and W. H.Ray, Dynamic modeling of product grade transitions for olefin polymerization processes. AIChE Journal,1994,40:506-520.
    [55]Rahimpour M.R., Fathikalajahi J., Moghtaderi B., and Farahani A.N., A grade transition strategy for the prevention of melting and agglomeration of particles in an ethylene polymerization reactor. Chemical Engineering & Technology,2005, 28:831-841.
    [56]Takeda M. and Ray W.H., Optimal-grade transition strategies for multistage polyolefin reactors. AIChE Journal,1999,45:1776-1793.
    [57]Wang Y., Seki H., Ohyama S., Akamatsu K., Ogawa M., and Ohshima M., Optimal grade transition control for polymerization reactors. Computers and Chemical Engineering,2000,24:1555-1561.
    [58]Ali M.A.-h., Optimal grade transition control for liquid-propylene polymerization reactor. Asian Journal of Control,2010,12:413-425.
    [59]Kadam J.V., Marquardt W., Srinivasan B., and Bonvin D., Optimal grade transition in industrial polymerization processes via NCO tracking. AIChE Journal,2007., 53:627-639
    [60]Wurth L., Hannemann R., and Marquardt W., A two-layer architecture for economically optimal process control and operation. Journal of Process Control,2011, 21:311-321.
    [61]Padhiyar N., Bhartiya S., and Gudi R.D., Optimal grade transition in polymerization reactors:a comparative case study. Industrial & engineering chemistry research, 45:3583-3592,2006.
    [62]Cervantes A., Tonelli S., Brandolin A., Bandoni A., and Biegler L., Large-scale dynamic optimization of a low density polyethylene plant. Computers and Chemical Engineering,2000,24:983-989.
    [63]Cervantes A., Tonelli S., Brandolin A., Bandoni A., and Biegler L., Large-scale dynamic optimization for grade transitions in a low density polyethylene plant. Computers and Chemical Engineering,2002,26:227-237.
    [64]Yi H.-S., Kim J.H., Han C, Lee J., and Na S.-S., Plantwide optimal grade transition for an industrial high-density polyethylene plant. Industrial & engineering chemistry research,2003,42:91-98.
    [65]Harjunkoski I., Nystrom R., and Horch A., Integration of scheduling and control-theory or practice? Computers & Chemical Engineering,2009,33:1909-1918.
    [66]王天普.聚烯烃生产过程优化策略研究.博士学位论文,杭州:浙江大学,2003.
    [67]Tousain R.L. and Bosgra O.H., Market-oriented scheduling and economic optimization of continuous multi-grade chemical processes. Journal of Process Control,2006,16:291-302.
    [68]Prata A., Oldenburg J., Kroll A., and Marquardt W., Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor. Computers and Chemical Engineering,2008,32463-476.
    [69]Terrazas-Moreno S. and Flores-Tlacuahuac A., Simultaneous design, scheduling, and optimal control of a methyl-methacrylate continuous polymerization reactor. AIChE Journal,2008,12:3160-3170.
    [70]Chu Y. and You F., Integration of scheduling and control with online closed-loop implementation:Fast computational strategy and large-scale global optimization algorithm. Computers & Chemical Engineering,2012,28:2357-2363.
    [71]Dinkelbach W., On nonlinear fractional programming. Management Science,1967, 13:492-498.
    [72]Nystrom R.H., Harjunkoski I., and Kroll A., Production optimization for continuously operated processes with optimal operation and scheduling of multiple units. Computers & Chemical Engineering,2006,30:392-406.
    [73]Nystrom R.H., Franke R., Harjunkoski I., and Kroll A., Production campaign planning including grade transition sequencing and dynamic optimization. Computers & Chemical Engineering,2005,29:2163-2179.
    [74]Flores-Tlacuahuac A. and Grossmann I.E., Simultaneous scheduling and control of multiproduct continuous parallel lines. Industrial and Engineering Chemistry Research,2010,49:7909-7921.
    [75]Flores-Tlacuahuac A. and Grossmann I.E., Simultaneous cyclic scheduling and control of tubular reactors:parallel production lines. Industrial and Engineering Chemistry Research,2011,50:8086-8095.
    [76]Flores-Tlacuahuac A. and Grossmann I.E., Simultaneous cyclic scheduling and control of a multiproduct CSTR. Industrial & engineering chemistry research,2006, 45:6698-6712.
    [77]Kosanovich K.A. and Piovoso M.J., A dynamical supervisor strategy for multi-product processes. Computers & Chemical Engineering,1997,21:S149-S154.
    [78]Sato C., Ohtani T., and Nishitani H., Modeling, simulation and nonlinear control of a gas-phase polymerization process. Computers and Chemical Engineering,2000, 24:945-951.
    [79]Jaeckle C.M. and MacGregor J.F., Industrial applications of product design through the inversion of latent variable models. Chemometrics and Intelligent Laboratory Systems,2000,50:199-210.
    [80]Doyle Ⅲ F.J., Kwatra H.S., and Schwaber J.S., Dynamic gain scheduled process control. Chemical Engineering Science,1998,53:2675-2690.
    [81]Feather D., Harrell D., Lieberman R., and Doyle Ⅲ F.J., Hybrid approach to polymer grade transition control. AIChE Journal,2004,50:2502-2513.
    [82]Bonvin D., Bodizs L., and Srinivasan B., Optimal grade transition for polyethylene reactors via NCO tracking. Chemical Engineering Research and Design,2005, 83:692-697.
    [83]BenAmor S., Doyle Ⅲ F.J., and McFarlane R., Polymer grade transition control using advanced real-time optimization software. Journal of Process Control,2004, 14:349-364.
    [84]Asteasuain M., Sarmoria C., Brandolin A., and Bandoni A., Integration of control aspects and uncertainty in the process design of polymerization reactors. Chemical Engineering Journal,2007,131:135-144.
    [85]Bandoni J., Romagnoli J., and Barton G., On optimising control and the effect of disturbances:calculation of the open-loop backoffs. Computers & Chemical Engineering,1994,18:S505-S509.
    [86]Bahri P.A., Bandoni J.A., and Romagnoli J.A., Effect of disturbances in optimizing control:Steady-state open-loop backoff problem. AIChE Journal,1996, 42:983-994.
    [87]Raspanti C., Bandoni J., and Biegler L., New strategies for flexibility analysis and design under uncertainty. Computers & Chemical Engineering,2000,24:2193-2209.
    [88]Wiirth L., Hannemann R., and Marquardt W., A two-layer architecture for economically optimal process control and operation. Journal of Process Control,2011, 21:311-321.
    [89]Chatzidoukas C., Perkins J.D., Pistikopoulos E.N., and Kiparissides C., Optimal grade transition and selection of closed-loop controllers in a gas-phase olefin polymerization fluidized bed reactor. Chemical Engineering Science,2003, 58:3643-3658.
    [90]Chatzidoukas C., Pistikopoulos S., and Kiparissides C., A hierarchical optimization approach to optimal production scheduling in an industrial continuous olefin polymerization reactor. Macromolecular Reaction Engineering,2009,3:36-46.
    [91]Flores-Tlacuahuac A. and Biegler L.T., Integrated control and process design during optimal polymer grade transition operations. Computers and Chemical Engineering, 2008,32:2823-2837.
    [92]Asteasuain M., Bandoni A., Sarmori C., and Brandolin A., Simultaneous process and control system design for grade transition in styrene polymerization. Chemical Engineering Science,2006,61:3362-3378.
    [93]Terrazas-Moreno S., Flores-Tlacuahuac A., and Grossmann I.E., Lagrangean heuristic for the scheduling and control of polymerization reactors. AIChE Journal,2008, 54:163-182.
    [94]Terrazas-Moreno S., Flores-Tlacuahuac A., and Grossmann I.E., Simultaneous cyclic scheduling and optimal control of polymerization reactors. AIChE Journal,2007, 53:2301-2315.
    [95]Zhuge J. and Ierapetritou M.G., Integration of scheduling and control with closed loop implementation. Industrial & engineering chemistry research,2012,51:8550-8565.
    [96]盛华.聚丙烯工艺技术工业过程建模及仿真研究.硕士学位论文.山东:中国石油大学(华东),2009.
    [97]李双彬.聚丙烯环管反应器的建模研究.硕士学位论文.杭州:浙江大学,2006.
    [98]高倩.丙烯聚合建模研究.硕士学位论文.杭州:浙江大学,2003.
    [99]何德峰,俞立,邹涛.聚丙烯熔融指数的最小二乘建模与自适应预报.高技术通讯,2010,20:642-646.
    [100]朱豫才.过程控制的多变量系统辨识.长沙市:国防科技大学出版社,2005.
    [101]Turner P., Automated product grade transitions, exposing the inherent and latent dangers of neural networks in manufacturing process control-an industrial case study. Neural Comput & Applic.,2007,16:27-32.
    [102]Abu-Mostafa Y.S., Hints and VC dimension. Neural Computation,1993,5:278-288.
    [103]Hartman E., Training feedforward neural networks with gain Constraints. Neural Compulation,2000,12:811-829.
    [104]Barnard E. and Casasent D., Invariance and Neural Nets. IEEE Transactions on Neural Networks,1991,2:498-508.
    [1051 Minina A. and Velikova M., Comparison of universal approximators incorporating partial monotonicity by structure. Neural Networks,2010,23:471-475.
    [106]Schapire R.E., Rochery M., and Rahim M., Boosting with prior knowledge for call classification. IEEE Transactions on speech and audio processing,2005,13:174-181.
    [107]Han F. and Huang D.S., A new constrained learning algorithm for function approximation by encoding a priori information into feedforward neural networks. Neural Computing and Applications,2008,17:433-439.
    [108]Gnecco G. and Sanguineti M., The weight-decay technique in learning from data an optimization point of view. Computational Management Science,2009,6:53-79.
    [109]Chen D. and Zhao C., Particle swarm optimization with adaptive population size and its application. Applied Soft Computing,2009,9:39-48.
    [110]Schwaab M., Biscaia E.C., Jr. Jose L.M., and Pinto J.C., Nonlinear parameter estimation through particle swarm optimization. Chemical Engineering Science,2008, 63:1542-1552.
    [111]Tang Y. and Guan X., Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos, Solitons and Fractals,2009,40:1391-1398.
    [112]Tang Y., Wang Z., and Fang J., Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Systems with Applications,2011,38:2523-2535.
    [113]Jansen P.W. and Perez R.E., Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach. Computers & Structures,2011,89:1352-1366.
    [114]Rocha A.M.A.C., Martins T.F.M.C., and Fernandes E.M.G.P., An augmented Lagrangian fish swarm based method for global optimization. Journal of Computational and Applied Mathematics,2011,235:4611-4620.
    [115]刘瑞兰.软测量技术若干问题的研究及工业应用.博士学位论文.杭州:浙江大学,2004.
    [116]Shakil M., Elshafei M., Habib M.A., and Maleki F.A., Soft sensor for NOx and O2 using dynamic neural networks. Computers and Electrical Engineering,2009, 35:578-586.
    [117]Jr. Ludwig O., Nunes U., Araujo R., Schnitman L., and Lepikson H.A., Applications of information theory, genetic algorithms, and neural models to predict oil flow. Commun Nonlinear Sci Numer Simulat,2009,14:2870-2885.
    [118]Simon G. and Verleysen M., High-dimensional delay selection for regression models with mutual information and distance-to-diagonal criteria. Neurocomputing,2007, 70:1265-1275.
    [119]Cover T.M. and Thomas J.A., Elements of information theory.New York:Wiley,2004.
    [120]Doymaz F., Bakhtazad A., Romagnoli J.A., and Palazoglu A., Wavelet-based robust filtering of process data. Computers & Chemical Engineering,2001,25:1549-1559.
    [121]Lin B., Recke B.K., J(?)rgen K.H., and Jorgensen S.B., A systematic approach for soft sensor development. Computers & Chemical Engineering,2007,31:419-425.
    [122]Chiang L.H. and Seasholtz M.B., Exploring process data with the use of robust outlier detection algorithms. Journal of Process Control,2003,13:437-449.
    [123]Egrioglu E., Aladag C.A.D.H., and Nay S.L.G., A new model selection strategy in artificial neural networks. Applied Mathematics and Computation,2008,195:591-597.
    [124]Suykens J.A.K. and Vandewalle J., Least squares support vector machines classifiers. Neural Network Letters,1999,19:293-300.
    [125]Yan W., Shao H., and Wang X.F., Soft sensing modeling based on support vector machine and Bayesian model selection. Computers & Chemical Engineering,2004, 28:1489-1498.
    [126]Gonzaga J.C.B., Meleiro L.A.C., Kiang C., and Filho R.M., ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers & Chemical Engineering,2009,33:43-49.
    [127]Lanouette R., Thibault J., and Valade J.L., Process modeling with neural networks using small experi-mental datasets. Computers & Chemical Engineering,1999, 23:1167-1176.
    [128]Rahrooh A. and Shepard S., Identification of nonlinear systems using NARMAX model. Nonlinear Analysis,2009,71:1198-1202.
    [129]Kishor N., Nonlinear predictive control to track deviated power of an identified NNARX model of a hydro plant. Expert Systems with Applications,2008, 35:1741-1751.
    [130]Kishor N. and Singh S.P., Nonlinear predictive control for a NNARX hydro plant model. Neural computing and applications,2007,16:101-108.
    [131]Maner B.R., Doyle F.J., Ogunnaike B.A., and Pearson R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica,1996,32:1285-1301.
    [132]Gruber J.K., Guzman J.L., Rodnguez F., Bordons C., Berenguel M., and Sanchez J.A. Nonlinear MPC based on a Volterra series model for green house temperature control using natural ventilation. Control Engineering Practice,2011,19:354-366.
    [133]Alvarez L.A. and Odloak D., Robust integration of real time optimization with linear model predictive control. Computers & Chemical Engineering,2010,34:1937-1944.
    [134]Bamieh B. and Giarre L., Identification for linear parameter varying models. International Journal of Robust and Nonlinear Control,2002,12:841-853.
    [135]Xu Z., Zhao J., Qian J., and Zhu Y., Nonlinear MPC using an identified LPV model. Industrial & engineering chemistry research,2009,48:3043-3051.
    [136]Giri F., Block-oriented nonlinear system identification. Springer,2010.
    [137]Ding F., Liu X.P., and Liu G., Identification methods for Hammerstein nonlinear systems. Digital Signal Processing,2011,21:215-238.
    [138]Norquay S.J., Palazoglu A., and Romagnoli J.A., Model predictive control based on Wiener models. Chemical Engineering Science,1998,53:75-84.
    [139]Deshpande S., Patwardhan S.C., Methekar R., and Rengaswamy R., Development of a closed form nonlinear predictive control law based on a class of Wiener models. Industrial & engineering chemistry research,2009,49:148-165.
    [140]Saha P., Krishnan S., Rao V., and Sachin C.P., Modeling and predictive control of MIMO nonlinear systems using Wiener-Laguerre models. Chemical Engineering Communications,2004,191:1083-1119.
    [141]Song I.H., Oh R.J., Park M.J., Rhee H.K., and Yoo K.Y., Control of a continuous polymerization reactor by Wiener input/output data-based predictive controller with direct inverse identification. Chemical Engineering Communications,2006, 193:782-800.
    [142]Ding B. and Ping X., Dynamic output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model. Journal of Process Control, 2012,22:1773-1784.
    [143]Aguirre L., Coelho M., and Correa M., On the interpretation and practice of dynamical differences between Hammerstein and Wiener models, Control Theory and Applications,2005,12:349-356.
    [144]Hsu Y.L. and Wang J.S., A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. Journal of Process Control,2009, 19:942-953.
    [145]Figueroa J., Biagiola S., and Agamennoni O., An approach for identification of uncertain Wiener systems. Mathematical and Computer Modelling,2008,48:305-315.
    [146]Tang Y., Qiao L., and Guan X., Identification of Wiener model using step signals and particle swarm optimization. Expert Systems with Applications,2010,37:3398-3404.
    [147]Na S.S. and Rhee H.K., An experimental study for property control in a continuous styrene polymerization reactor using a polynomial ARM A model. Chemical Engineering Science,2002,57:1165-1173.
    [148]Maner B.R. and Doyle III F.J., Polymerization reactor control using autoregressive-plus Volterra-based MPC. AIChE Journal,1997,43:1763-1784.
    [149]Cervantes A.L., Agamennoni O.E., and Figueroa J.L., A nonlinear model predictive control system based on Wiener piecewise linear models. Journal of Process Control, 2003,13:655-666.
    [150]Arto V., Hannu P., and Halme A., Modeling of chromatographic separation process with Wiener-MLP representation. Journal of Process Control,2001,11:443-458.
    [151 ]王树青,金晓明,古勇.先进控制技术应用实例.北京:化学工业出版社,2005.
    [152]Qin S.J., An overview of subspace identification. Computers & Chemical Engineering, 2006,30:1502-1513.
    [153]Jansson M., A new subspace identification method for open and closed loop data. Proceedings of the 16th IFAC World Congress,2005,372-378.
    [154]Jansson M., Subspace identification and ARX modeling.13'th IFAC Symp on System Identification, Rotterdam, The Netherlands,2003,500-505.
    [155]李幼凤.闭环子空间辨识方法及其应用.博士学位论文,杭州:浙江大学,2010.
    [156]Julian P., A high level canonical piecewise linear representation:theory and applications, Ph. D. Thesis:Universidad Nacional del Sur, Bahia Blanca, Argentina, 1999.
    [157]Gerksic S., Juricic D., Strmcnik S., and Matko D., Wiener model based nonlinear predictive control. International Journal of Systems Science,2000,31:189-202.
    [158]Wigren T., Recursive prediction error identification using the nonlinear Wiener model. Automatica,1993,29:1011-1025.
    [159]Figueroa J.L. and Desages A.C., Use of piecewise linear approximations for steady state back off analysis. Optimal Control Applications and Methods,1998,19:93-110.
    [160]Teo K.L., Control parametrization enhancing transform to optimal control problems. Nonlinear Analysis,2005,63:e2223-e2236.
    [161]Li R., Teo K.L., Wong K.H., and Duan G.R., Control parameterization enhancing transform for optimal control of switched systems. Mathematical and Computer Modelling,2006,43:1393-1403.
    [162]雷阳,李树荣,张强,张晓东,一种求解最优控制问题的非均匀控制向量参数化方法.中国石油大学学报(自然科学版),2011,35:180-184.
    [163]Loxton R., Teo K., and Rehbock V., Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica,2008, 44:2923-2929.
    [164]Wchter A. and Biegler L.T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming,2006,106:25-57.
    [165]Griesse R. and Walther A., Evaluating gradients in optimal control continuous adjoints versus automatic differentiation. Journal of optimization theory and applications,2004,122:63-86.
    [166]Rosen O. and Luus R., Evaluation of gradients for piecewise constant optimal control. Computers Chemical Engineering,1991,15:273-281.
    [167]Tatjewski P., Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control,2008,32:71-85.
    [168]Zanin A., Gouvea M.T., and Odloak D., Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit. Computers & Chemical Engineering,2000,24:525-531.
    [169]Engell S., Feedback control for optimal process operation. Journal of Process Control, 2007,17:203-219.
    [170]Zavala V.M. and Biegler L.T., The advanced-step NMPC controller:Optimalily, stability and robustness. Automatica,2009,45:86-93.
    [171]Biegler L. and Zavala V., Large-scale nonlinear programming using IPOPT:An integrating framework for enterprise-wide dynamic optimization. Computers & Chemical Engineering,2009,33:575-582.
    [172]Helbig A., Abel O., and Marquardt W., Structural concepts for optimization based control of transient processes. Nonlinear Model Predictive Control,2000,13:295-311.
    [173]Dnnebier G., Van Hessem D., Kadam J.V., Klatt K.U., and Schlegel M., Optimization and control of polymerization processes. Chemical Engineering & Technology,2005, 28:575-580.
    [174]Kadlec P., Grbic R., and Gabrys B., Review of adaptation mechanisms for data-driven soft sensors. Computers & Chemical Engineering,2011,35:1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700