用户名: 密码: 验证码:
硅—碳—氮—钨系耐高温—维纳米材料的调控合成、表征及生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备耐高温一维纳米材料,探索其合成方法、调控机制,实现对纳米结构的调控大量制备,对深入研究材料结构与性能的关系,和耐高温一维纳米材料在高温结构材料增强增韧上具有重要的应用意义。
     本论文在Si-C-N-W体系中,选取了几种典型的耐高温一维纳米材料进行研究(氮化硅、碳化硅、碳纳米管、钨),探索了能够大量制备上述一维纳米材料的合成方法,围绕一维纳米结构材料的调控制备、形貌演化规律、微观结构变化规律与生长机制进行了系统的研究,摸清其生长特性与合成条件的依赖关系。第三章中,采用燃烧合成技术,研究了W为催化剂对氮化硅纳米线形貌和结构的影响,提出了气-固(Vapor-Solid,VS)生长机理,通过原位透射电镜技术,测试了单根氮化硅纳米线的弯曲模量,为氮化硅纳米线的调控生长以及氮化硅纳米线在高温结构材料中的应用打下了良好基础。第四章中,基于燃烧合成技术,在Si-C-N体系中,以硅粉和聚四氟乙烯为原料,在氮气气氛下,研究了PTFE加入量对碳化硅纳米线形貌、结构、相组成的影响,研究了W和Ti催化剂对碳化硅纳米线品质影响,在W催化Si-C-N体系中,首次发现并提出了碳化硅纳米线新的生长机理“Si-C-N体系中Si3N4纳米线中间体模板诱导SiC纳米线生长的生长机理”,在Ti催化的Si-C-N体系中,发现并证实了碳化硅纳米线的气-液-固(Vapor-Liquid-Solid, VL)生长机理,最后大量制备了碳化硅纳米线。利用原位通过原位透射电镜技术,测试了单根碳化硅纳米线的弯曲模量。实验结果为碳化硅纳米线在高温结构材料中的应用奠定了重要的基础。第五章中,基于真空加热技术,研究了升温速度对非晶碳纳米管形貌、结构的影响,探讨了升温速度对非晶碳纳米管调控生长的作用机理,在此基础上,大量制备了长径比可调控的非晶碳纳米管,并对非晶碳纳米管的高温石墨化行为进行了系统研究。第六章中,以非晶碳纳米管为模板,探索了气相沉积法和湿化学法制备W纳米线的可行性,并通过湿化学法制备了W纳米线,研究了非晶碳纳米管为模板通过湿化学法制备W纳米线的生长机理。
To apply high-temperature1-D nanostructures in the high-temperature structural materials, it is necessary to explore large-scale synthesis methods. For this reason, it is important to prepare1-D nanostructures with controllable and tunable properties, and study the microstructure and performance relationship.
     In this study, we have studied several high-temperature1-D nanostructures (Si3N4, SiC, amorphous CNT, and W) in Si-C-N-W system. In Chapter3, we studied the growth mechanism of W-catalyzed Si3N4nanowires via self-propagating high-temperature synthesis process (SHS), and found how W affects the morphology and structure of Si3N4nanowires. Finally we studied the elastic bending modulus of single Si3N4nanowires by in-situ TEM technology. In Chapter4, we prepared SiC nanowires in large scale by SHS process in Si-C-N system, and studied the catalyst effect of W and Ti, and found how PTFE affects the phase, morphology, microstructure, yields of SiC nanowires. Similarly, we also studied the elastic bending modulus of single SiC nanowires by in-situ TEM technology. In this chapter we reported a novel growth mechanism of W catalyzed SiC nanowires in Si-C-N system by HRTEM and EELS techniques, named "Intermediate template directed SiC nanowire growth in Si-C-N systems". Furthermore, we have confirmed the VLS growth mechanism of Ti catalyzed SiC nanowires in this system. In Chapter5, tunable amorphous CNT were prepared in large-scale by vacuum heating process. By adjusting the heating rate, amorphous CNT with different aspect ratios were prepared. We studied the growth mechanism of tunable amorphous CNT, and studied the crystallization behavior of amorphous CNT at high temperature. In Chapter6, W nanowires were prepared by using amorphous CNT as template, we studied the growth mechanism of this template assisted W nanowires
引文
[1]R.P. Feynman, There's plenty of room at the bottom, Engineering and Science,23(1960) 22.
    [2]朱慧灵,硅—碳—氮系纳米材料的低温制备及相关性能研究,山东大学,2012.
    [3]刘业如,Fe_30_4一维链状结构的制备及相关问题研究,中国科学技术大学,2009.
    [4]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [5]阎子峰,纳米催化技术,化学工业出版社,2003.
    [6]S. Iijima, Helical microtubules of graphitic carbon, Nature,354(1991) 56-58.
    [7]李公义,碳化硅和氮化硅超长纳米线的制备与性能研究,国防科学技术大学,2010.
    [8]X. Sun, M.S. Dresselhaus, J.Y. Ying, J. Heremans, Z. Zhang, Electronic transport properties of single-crystal bismuth nanowire arrays, Phys Rev B,61(2000) 4850-4861.
    [9]S. Chung, J. Yu, J.R. Heath, Silicon nanowire devices, Appl Phys Lett,76(2000) 2068-2070.
    [10]Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K. Kim, C.M. Lieber, Logic Gates and Computation from Assembled Nanowire Building Blocks, Science,294(2001) 1313-1317.
    [11]Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High Performance Silicon Nanowire Field Effect Transistors, Nano Lett,3(2003) 149-152.
    [12]X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science,316(2007) 102-105.
    [13]Z.L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science,312(2006) 242-246.
    [14]Y. Qin, X. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging, Nature,451(2008) 809-813.
    [15]解挺,吴玉程,张立德,单晶氮化硅(α-Si3N4)纳米线的制备及其光学性能,第五届中国功能材料及其应用学术会议,中国北京·秦皇岛,2004,pp.3.
    [16]W. Yang, L. Zhang, Z. Xie, J. Li, H. Miao, L. An, Growth and optical properties of ultra-long single-crystalline a-Si3N4 nanobelts, Applied Physics A,80(2005) 1419-1423.
    [17]L. Yin, Y. Bando, Y. Zhu, Y. Li, Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (alpha-Si[sub 3]N[sub 4]) single-crystalline nanobelts, Appl Phys Lett,83(2003) 3584-3586.
    [18]K. Lee, W.S. Seo, J.T. Park, Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods, J Am Chem Soc,125(2003) 3408-3409.
    [19]M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao, Strong photoluminescence of nanostructured crystalline tungsten oxide thin films, Appl Phys Lett,86(2005) 141901-141903.
    [20]M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature,415(2002) 617-620.
    [21]M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang, Nanoribbon Waveguides for Subwavelength Photonics Integration, Science,305(2004) 1269-1273.
    [22]R. Yan, D. Gargas, P. Yang, Nanowire photonics, Nature Photonics,3(2009) 569-576.
    [23]Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices, Materials Today,9(2006) 18-27.
    [24]Z.L. Wang, Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices, Adv Mater,15(2003) 432-436.
    [25]Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science,293(2001) 1289-1292.
    [26]J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science,287(2000) 622-625.
    [27]H. Liu, J. Kameoka, D.A. Czaplewski, H.G. Craighead, Polymeric Nanowire Chemical Sensor, Nano Lett,4(2004) 671-675.
    [28]Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl Phys Lett,84(2004) 3654-3656.
    [29]E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam Mechanics:Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science,277(1997) 1971-1975.
    [30]G.Y. Jing, H. Ji, W.Y. Yang, J. Xu, D.P. Yu, Study of the bending modulus of individual silicon nitride nanobelts via atomic force microscopy, Applied Physics A, 82(2006) 475-478.
    [31]M. Xia, C. Ge, Q. Yan, H. Guo, L. Yue, Ti-assisted β-SiC nanowhiskers by pyrolysis of PTFE:synthesis and mechanical properties, Applied Physics A,107(2012) 777-782.
    [32]M. Xia, C. Ge, H. Guo, Aligned Single-Crystalline β-Si3N4 Whiskers Prepared with SHS Process, Adv Eng Mater,14(2012) 166-169.
    [33]X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, Z.L. Wang, Low-Temperature In□Situ Large-Strain Plasticity of Silicon Nanowires, Adv Mater, 19(2007)2112-2118.
    [34]X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Yuan, Z.L. Wang, Low-Temperature in Situ Large Strain Plasticity of Ceramic SiC Nanowires and Its Atomic-Scale Mechanism, Nano Lett,7(2006) 452-457.
    [35]F.C. Frank, The influence of dislocations on crystal growth, Discussions of the Faraday Society,5(1949)48-54.
    [36]N.C.A.F. W. K. Burton, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,866(1951) 299-358.
    [37]W.K.N.C. Burton, Role of Dislocations in Crystal Growth, Nature,163(1949) 398-399.
    [38]C.R. Morelock, G.W. Sears, Growth Mechanism of Copper Whiskers by Hydrogen Reduction of Cuprous Iodide, The Journal of Chemical Physics,31(1959) 926-928.
    [39]G.W. Sears, Mercury Whiskers, Acta Metallurgica,1(1953) 457-459.
    [40]R.S. Wagner, W.C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Appl Phys Lett,4(1964) 89-90.
    [41]Z.L. Wang, Oxide Nanobelts and NanowiresGrowth, Properties and Applications, J Nanosci Nanotechno,8(2008) 27-55.
    [42]X. Duan, C.M. Lieber, General Synthesis of Compound Semiconductor Nanowires, Adv Mater,12(2000)298-302.
    [43]Y. Wu, P. Yang, Direct Observation of Vapor-Liquid-Solid Nano wire Growth, J Am Chem Soc,123(2001) 3165-3166.
    [44]Y. Wu, P. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, J Am Chem Soc,123(2001) 3165-3166.
    [45]王群,一维纳米材料的调控合成,生长机理以及性质研究,吉林大学,2008.
    [46]T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors:An Analogy to Vapor-Liquid-Solid Growth, Science,270(1995) 1791-1794.
    [47]Y. Hsu, S. Lu, Vapor-Solid Growth of Sn Nanowires:□ Growth Mechanism and Superconductivity, The Journal of Physical Chemistry B,109(2005) 4398-4403.
    [48]C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, J. Zhu, S. Deng, N. Xu, Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones, J Am Chem Soc,127(2005) 1318-1322.
    [49]X. Duan, C.M. Lieber, Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires, J Am Chem Soc,122(1999) 188-189.
    [50]S.S. Brenner, G.W. Sears, Mechanism of whisker growth—Ⅲnature of growth sites, Acta Metallurgica,4(1956) 268-270.
    [51]Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A Simple Method To Synthesize Nanowires, Chem Mater,14(2002) 3564-3568.
    [52]M. Wang, H. Wada, Synthesis and characterization of silicon nitride whiskers, J Mater Sci,25(1990) 1690-1698.
    [53]T.M. Whitney, P.C. Searson, J.S. Jiang, C.L. Chien, Fabrication and Magnetic Properties of Arrays of Metallic Nanowires, Science,261(1993) 1316-1319.
    [54]D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang, Preparation of CdS Single-Crystal Nanowires by Electrochemically Induced Deposition, Adv Mater,12(2000) 520-522.
    [55]P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex, Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature,375(1995) 564-567.
    [56]W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction, Science,277(1997) 1287-1289.
    [57]A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuesz, P. Kroll, R. Boehler, Synthesis of cubic silicon nitride, Nature,400(1999) 340-342.
    [58]沈卫平,自蔓延高温合成高α相氮化硅粉和硅基陶瓷的研究,北京科技大学,北京,2006.
    [59]王飞,燃烧合成高品质氮化硅及其它氮化物粉体的研究,北京科技大学,北京,2006.
    [60]张晓东,准一维SiC和Si_3N_4纳米材料的合成与表征,哈尔滨工业大学,2010.
    [61]郑朝升,燃烧合成制备SiC/Si3N4w复合粉体的研究,北京科技大学,2011.
    [62]Z. Shen, Z. Zhao, H. Peng, M. Nygren, Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening, Nature,417(2002) 266-269.
    [63]C. Boberski, R. Hamminger, M. Peuckert, F. Aldinger, R. Dillinger, J. Heinrich, J. Huber, High-performance Silicon nitride materials, Angewandte Chemie,101(1989) 1592-1601.
    [64]J.T.L.K. Chang Chun Ge, Development of SHS Nitride-Based Composites in LSCPM, USTB of China, Key Eng Mater,217(2001) 143-152.
    [65]G.L. Harris, Properties of silicon carbide, INSPEC, London,1995.
    [66]Y. Zhang, N. Wang, R. He, Q. Zhang, J. Zhu, Y. Yan, Reversible bending of Si3N4 nanowire, J Mater Res,15(2000) 1048-1051.
    [67]S. Ogata, N. Hirosaki, C. Kocer, Y. Shibutani, A comparative ab initio study of the 'ideal'strength of single crystal a-and (3-Si3N4, Acta Mater,52(2004) 233-238.
    [68]F. Munakata, K. Matsuo, K. Furuya, Y. Akimune, J. Ye, I. Ishikawa, Optical properties of beta-Si3N4 single crystals grown from a Si melt in N2, Appl Phys Lett,74(1999) 3498-3500.
    [69]C. Xu, M. Kim, J. Chun, D.E. Kim, B. Chon, S. Hong, T. Joo, Gallium-doped silicon nitride nanowires sheathed with amorphous silicon oxynitride, Scripta Mater,53(2005) 949-954.
    [70]Y.Z.A.Y. J, Sub-band-gap photoconductivity of individual a-Si 3 N 4 nanowires, Nanotechnology,18(2007) 325603.
    [71]M. Ahmad, J. Zhao, C. Pan, J. Zhu, Ordered arrays of high-quality single-crystalline a-Si3N4 nanowires:Synthesis, properties and applications, J Cryst Growth,311(2009) 4486-4490.
    [72]G. Guo, M. He, X. Kong, H. Lin, J. Li, L. Fan, Facile conversion of silicon nitride nanobelts into sandwich-like nanosaws:towards functional nanostructured materials, Applied Physics A,97(2009) 729-734.
    [73]L. Zhang, H. Jin, W. Yang, Z. Xie, H. Miao, L. An, Optical properties of a-Si3N4 single-crystalline nanobelts, Appl Phys Lett,86(2005) 61908.
    [74]H.A.Y.M. Kaifu, Synthesis of single-crystalline a-Si 3 N 4 nanobelts by extended vapour-liquid-solid growth, Nanotechnology,16(2005) 2282.
    [75]M. Ahmad, J. Zhao, F. Zhang, C. Pan, J. Zhu, One-step synthesis route of the aligned and non-aligned single crystalline a-Si3N4 nanowires, Science in China Series E: Technological Sciences,52(2009) 1-5.
    [76]N,Zhu, Z. Peng, C. Wang, Z. Fu, H. Miao, Preparation and characterization of bundled one-dimensional Si3N4 single-crystalline nanowires by catalytic pyrolysis of a polymer precursor, Solid State Sci,11(2009) 1094-1097.
    [77]W. Yang, H. Wang, S. Liu, Z. Xie, L. An, Controlled Al-Doped Single-Crystalline Silicon Nitride Nanowires Synthesized via Pyrolysis of Polymer Precursors, The Journal of Physical Chemistry B,111(2007) 4156-4160.
    [78]J.J. Niu, J.N. Wang, A Novel Approach to Silicon-Nanowire-Assisted Growth of High-Purity, Single-Crystalline β-Si3N4 Nanowires, Chem Vapor Depos,13(2007) 396-400.
    [79]G.Z. Ran, L.P. You, L. Dai, Y.L. Liu, Y. Lv, X.S. Chen, G.G. Qin, Catalystless synthesis of crystalline Si3N4/amorphous SiO2 nanocables from silicon substrates and N2, Chem Phys Lett,384(2004) 94-97.
    [80]M. Xia, C. Ge, Morphological control of tungsten-assisted β-Si3N4 nanowhiskers: Synthesis, mechanical and photoluminescence properties, Chem Phys Lett, 525-526(2012) 92-96.
    [81]高莉,大量SiC一维纳米材料合成工艺研究,青岛科技大学,2009.
    [82]V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, S.T. Purcell, S. Perisanu, Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies, Phys Rev B,77(2008) 165434.
    [83]Y. Zhang, X. Han, K. Zheng, Z. Zhang, X. Zhang, J. Fu, Y. Ji, Y. Hao, X. Guo, Z.L. Wang, Direct Observation of Super-Plasticity of Beta-SiC Nanowires at Low Temperature, Adv Funct Mater,17(2007) 3435-3440.
    [84]H.A.J.B. Ya-Juan, Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel, Nanotechnology,17(2006) 2870.
    [85]W. Yang, H. Araki, C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki, T. Noda, Single-Crystal SiC Nanowires with a Thin Carbon Coating for Stronger and Tougher Ceramic Composites, Adv Mater,17(2005) 1519-1523.
    [86]W. Yang, H. Araki, A. Kohyama, S. Thaveethavorn, H. Suzuki, T. Noda, Process and Mechanical Properties of in Situ Silicon Carbide-Nanowire-Reinforced Chemical Vapor Infiltrated Silicon Carbide/Silicon Carbide Composite, J Am Ceram Soc,87(2004) 1720-1725.
    [87]Y. Li, P.S. Dorozhkin, Y. Bando, D. Golberg, Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes, Adv Mater,17(2005) 545-549.
    [88]W. Zhou, X. Liu, Y. Zhang, Simple approach to beta-SiC nanowires:Synthesis, optical, and electrical properties, Appl Phys Lett,89(2006) 223123-223124.
    [89]H. Seong, H. Choi, S. Lee, J. Lee, D. Choi, Optical and electrical transport properties in silicon carbide nanowires, Appl Phys Lett,85(2004) 1256-1258.
    [90]W. Han, S. Fan, Q. Li, W. Liang, B. Gu, D. Yu, Continuous synthesis and characterization of silicon carbide nanorods, Chem Phys Lett,265(1997) 374-378.
    [91]H. Seong, H. Choi, S. Lee, J. Lee, D. Choi, Optical and electrical transport properties in silicon carbide nanowires, Appl Phys Lett,85(2004) 1256-1258.
    [92]Z. Pan, H.L. Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.S. Lee, N.B. Wong, S.T. Lee, S. Xie, Oriented Silicon Carbide Nanowires:Synthesis and Field Emission Properties, Adv Mater,12(2000) 1186-1190.
    [93]K.A.Y.C. Dong-Wan, Stable field emission performance of SiC-nanowire-based cathodes, Nanotechnology,19(2008) 225706.
    [94]S.Z. Deng, Z.B. Li, W.L. Wang, N.S. Xu, J. Zhou, X.G. Zheng, H.T. Xu, J. Chen, J.C. She, Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate, Appl Phys Lett,89(2006) 23113-23118.
    [95]Z.S. Wu, S.Z. Deng, N.S. Xu, J. Chen, J. Zhou, J. Chen, Needle-shaped silicon carbide nanowires:Synthesis and field electron emission properties, Appl Phys Lett,80(2002) 3829-3831.
    [96]X.T. Zhou, N. Wang, F.C.K. Au, H.L. Lai, H.Y. Peng, Ⅰ. Bello, C.S. Lee, S.T. Lee, Growth and emission properties of (3-SiC nanorods, Materials Science and Engineering: A,286(2000) 119-124.
    [97]W. Yang, Z. Xie, J. Li, H. Miao, L. Zhang, L. An, Ultra-Long Single-Crystalline a-Si3N4 Nanowires:Derived from a Polymeric Precursor, J Am Ceram Soc,88(2005) 1647-1650.
    [98]S.Z. Deng, Z.S. Wu, J. Zhou, N.S. Xu, J. Chen, J. Chen, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Chem Phys Lett,356(2002) 511-514.
    [99]W. Shi, Y. Zheng, H. Peng, N. Wang, C.S. Lee, S. Lee, Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires, J Am Ceram Soc,83(2000) 3228-3230.
    [100]Y. Cao, C. Ge, Z. Zhou, J. Li, Combustion synthesis of a-Si3N4 whiskers, J Mater Res, 14(1999) 876-880.
    [101]葛昌纯曹永革,以NaN3作添加剂制取Si3N4晶须,硅酸盐学报,28(1998)721-725.
    [102]葛昌纯曹永革,β—Si3N4纤维及柱晶的制取,北京科技大学学报,19(1997)571-575.
    [103]S.Y.H.G. Min Xia, Observation of intermediate template directed SiC nanowire growth in Si-C-N systems, Nanotechnology,23(2012) 415704.
    [104]H. Chen, Y. Cao, X. Xiang, J. Li, C. Ge, Fabrication of β-Si3N4 nano-fibers, J Alloy Compd,325(2001) L1-L3.
    [105]K.F. Cai, Q. Lei, L.C. Zhang, Ultra Long SiC/SiO2 Core-Shell Nanocables from Organic Precursor, J Nanosci Nanotechno,5(2005) 1925-1928.
    [106]V.G. Pol, S.V. Pol, A. Gedanken, S.H. Lim, Z. Zhong, J. Lin, Thermal Decomposition of Commercial Silicone Oil to Produce High Yield High Surface Area SiC Nanorods, The Journal of Physical Chemistry B,110(2006) 11237-11240.
    [107]F. Li, G. Wen, L. Song, Growth of nanowires from annealing SiBONC nanopowders, J Cryst Growth,290(2006) 466-472.
    [108]W. Yang, H. Araki, Q. Hu, N. Ishikawa, H. Suzuki, T. Noda, In situ growth of SiC nanowires on RS-SiC substrate(s), J Cryst Growth,264(2004) 278-283.
    [109]T. Xie, G.S. Wu, B.Y. Geng, Z. Jiang, X.Y. Yuan, Y. Lin, G.Z. Wang, L.D. Zhang, A simple route to large scale synthesis of crystalline aSi3N4 nanowires, Applied Physics A,80(2005)1057-1059.
    [110]G.Z. Ran, L.P. You, L. Dai, Y.L. Liu, Y. Lv, X.S. Chen, G.G. Qin, Catalystless synthesis of crystalline Si3N4/amorphous SiO2 nanocables from silicon substrates and N2, Chem Phys Lett,384(2004) 94-97.
    [111]G. Shen, Y. Bando, B. Liu, C. Tang, Q. Huang, D. Golberg, Systematic Investigation of the Formation of 1D a-Si3N4 Nanostructures by Using a Thermal-Decomposition/Nitridation Process, Chemistry-A European Journal,12(2006) 2987-2993.
    [112]H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods, Nature,375(1995) 769-772.
    [113]X. Sun, C. Li, W. Wong, N. Wong, C. Lee, S. Lee, B. Teo, Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes, J Am Chem Soc,124(2002) 14464-14471.
    [114]W.M. Qiao, S.Y. Lim, S.H. Yoon, I. Mochida, L.C. Ling, J.H. Yang, Synthesis of crystalline SiC nanofiber through the pyrolysis of polycarbomethylsilane coated platelet carbon nanofiber, Appl Surf Sci,253(2007) 4467-4471.
    [115]D. Xu, Z. He, Y. Guo, Y. Wang, Fabrication of quasi-one dimension silicon carbide nanorods prepared by RF sputtering, Microelectronic EngineeringThe Symposium K Proceedings of the 3rd International Conference on Materials for Advanced Technologies (ICMAT 2005) A symposium on Silicon Carbide and Related Materials, 83(2006)89-91.
    [116]Z. Li, J. Zhang, A. Meng, J. Guo, Large-Area Highly-Oriented SiC Nanowire Arrays:□ Synthesis, Raman, and Photoluminescence Properties, The Journal of Physical Chemistry B,110(2006) 22382-22386.
    [117]H. Ye, N. Titchenal, Y. Gogotsi, F. Ko, SiC Nanowires Synthesized from Electrospun Nanofiber Templates, Adv Mater,17(2005) 1531-1535.
    [118]D. Zhou, S. Seraphin, Production of silicon carbide whiskers from carbon nanoclusters, Chem Phys Lett,222(1994) 233-238.
    [119]W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, D. Yu, Synthesis of silicon nitride nanorods using carbon nanotube as a template, Appl Phys Lett,71(1997) 2271-2273.
    [120]B.A.A.B. M, Large-scale preparation of faceted Si3N4 nanorods from β-SiC nanowires, Nanotechnology,18(2007) 335305.
    [121]S.B. Sinnott, R. Andrews, Carbon Nanotubes:Synthesis, Properties, and Applications, Crit Rev Solid State,26(2001) 145-249.
    [122]刘伯洋,空心微纳米碳材料的低温合成与表征,哈尔滨工业大学,2008.
    [123]刘建伟,等离子体增强化学气相沉积制备碳纳米管及其表征,吉林大学,2008.
    [124]W.L.S.Y. W. Wang, Amorphous carbon nanotube; the growth intermediates of graphitic carbon nanotube? Electrochem. Soc. Proc.,97-14(1997) 814.
    [125]A. Rakitin, C. Papadopoulos, J.M. Xu, Electronic properties of amorphous carbon nanotubes, Phys Rev B,61(2000) 5793-5796.
    [126]L. Ci, B. Wei, C. Xu, J. Liang, D. Wu, S. Xie, W. Zhou, Y. Li, Z. Liu, D. Tang, Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method, J Cryst Growth,233(2001) 823-828.
    [127]H. Nishino, R. Nishida, T. Matsui, N. Kawase, I. Mochida, Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride, Carbon,41(2003) 2819-2823.
    [128]L. Ci, H. Zhu, B. Wei, C. Xu, D. Wu, Annealing amorphous carbon nanotubes for their application in hydrogen storage, Appl Surf Sci,205(2003) 39-43.
    [129]S. Jana, D. Banerjee, A. Jha, K.K. Chattopadhyay, Fabrication of PbS nanoparticle coated amorphous carbon nanotubes:Structural, thermal and field emission properties, Mater Res Bull,46(2011) 1659-1664.
    [130]王振旭,魏学东,赵廷凯,柳永宁,非晶碳纳米管新型锂离子电池负极材料,材料研究学报,(2008)312-316.
    [131]J. Luo, Z.P. Huang, Y.G. Zhao, L. Zhang, J. Zhu, Arrays of Heterojunctions of Ag Nanowires and Amorphous Carbon Nanotubes, Adv Mater,16(2004) 1512-1515.
    [132]J. Luo, Y.J. Xing, J. Zhu, D.P. Yu, Y.G. Zhao, L. Zhang, H. Fang, Z.P. Huang, J. Xu, Structure and Electrical Properties of Ni Nanowire/Multiwalled-Carbon Nanotube/Amorphous Carbon Nanotube Heterojunctions, Adv Funct Mater,16(2006) 1081-1085.
    [133]J. Dinesh, M. Eswaramoorthy, C.N.R. Rao, Use of Amorphous Carbon Nanotube Brushes as Templates to Fabricate GaN Nanotube Brushes and Related Materials, The Journal of Physical Chemistry C,111(2006) 510-513.
    [134]J.T. Chen, K. Shin, J.M. Leiston-Belanger, M. Zhang, T.P. Russell, Amorphous Carbon Nanotubes with Tunable Properties via Template Wetting, Adv Funct Mater,16(2006) 1476-1480.
    [135]R. Li, X. Sun, X. Zhou, M. Cai, X. Sun, Aligned Heterostructures of Single-Crystalline Tin Nano wires Encapsulated in Amorphous Carbon Nanotubes, The Journal of Physical Chemistry C,111(2007) 9130-9135.
    [136]Z.D. Hu, Y.F. Hu, Q. Chen, X.F. Duan, L.M. Peng, Synthesis and Characterizations of Amorphous Carbon Nanotubes by Pyrolysis of Ferrocene Confined within AAM Templates, The Journal of Physical Chemistry B,110(2006) 8263-8267.
    [137]T. Zhao, Y. Liu, J. Zhu, Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge, Carbon,43(2005) 2907-2912.
    [138]C.L.J.S. Stig Helveg, Atomic-scale imaging of carbon nanofibre growth, Nature, 427(2004) 426-429.
    [139]W.M. Rohsenow, P.D. Richardson, J.P. Hartnett, E.N. Ganic, Handbook of Heat Transfer Fundamentals (Second Edition), Journal of Applied Mechanics,53(1986) 232-233.
    [140]H. Nishino, C. Yamaguchi, H. Nakaoka, R. Nishida, Carbon nanotube with amorphous carbon wall:a-CNT, Carbon,41(2003) 2165-2167.
    [141]Y. Liu, S. Xiaolong, Z. Tingkai, Z. Jiewu, M. Hirscher, F. Philipp, Amorphous carbon nanotubes produced by a temperature controlled DC arc discharge, Carbon,42(2004) 1852-1855.
    [142]A. Lu, W. Schmidt, S. Tatar, B. Spliethoff, J. Popp, W. Kiefer, F. Schuth, Formation of amorphous carbon nanotubes on ordered mesoporous silica support, Carbon,43(2005) 1811-1814.
    [143]L.A.S.M. Lifeng, Template synthesis, characterization and magnetic property of Fe nano wires-filled amorphous carbon nanotubes array, Journal of Physics D:Applied Physics,39(2006) 3939.
    [144]Y. Yang, Z. Hu, Q. Wu, Y.N. Lu, X.Z. Wang, Y. Chen, Template-confined growth and structural characterization of amorphous carbon nanotubes, Chem Phys Lett,373(2003) 580-585.
    [145]N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, L. Cui, Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition, Carbon,44(2006) 1859-1862.
    [146]T. Luo, L. Chen, K. Bao, W. Yu, Y. Qian, Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene, Carbon,44(2006) 2844-2848.
    [147]Y. Xiong, Y. Xie, X. Li, Z. Li, Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution, Carbon,42(2004) 1447-1453.
    [148]G. Hu, M. Cheng, D. Ma, X. Bao, Synthesis of Carbon Nanotube Bundles with Mesoporous Structure by a Self-Assembly Solvothermal Route, Chem Mater,15(2003) 1470-1473.
    [149]王世良,钨和氧化钨准一维微/纳米结构的低温气相合成及其生长机理研究,中南大学,2008.
    [150]郭双全,面向等离子体材料钨与热沉材料的连接技术,西南交通大学,2011.
    [151]M. Rieth, S.L. Dudarev, S.M. Gonzalez De Vicente, J. Aktaa, T. Ahlgren, S. Antusch, D.E.J. Armstrong, M. Balden, N. Baluc, M.F. Barthe, W.W. Basuki, M. Battabyal, C.S. Becquart, D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino, L. Ciupinski, J.B. Correia, A. De Backer, C. Domain, E. Gaganidze, C. Garcia-Rosales, J. Gibson, M.R. Gilbert, S. Giusepponi, B. Gludovatz, H. Greuner, K. Heinola, T. Hoschen, A. Hoffmann, N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig, J. Linke, C. Linsmeier, P. Lopez-Ruiz, H. Maier, J. Matejicek, T.P. Mishra, M. Muhammed, A. Munoz, M. Muzyk, K. Nordlund, D. Nguyen-Manh, J. Opschoor, N. Ordas, T. Palacios, G. Pintsuk, R. Pippan, J. Reiser, J. Riesch, S.G. Roberts, L. Romaner, M. Rosinski, M. Sanchez, W. Schulmeyer, H. Traxler, A. Urena, J.G. van der Laan, L. Veleva, S. Wahlberg, M. Walter, T. Weber, T. Weitkamp, S. Wurster, M.A. Yar, J.H. You, A. Zivelonghi, Recent progress in research on tungsten materials for nuclear fusion applications in Europe, J Nucl Mater,432(2013) 482-500.
    [152JM.A. Yar, Development of Nanostructured Tungsten Based Composites for Energy Applications, KTH Royal Institute of Technology, Stockholm,2012,pp.48.
    [153]G.A.A.C. O., Compatibility of ITER scenarios with full tungsten wall in ASDEX Upgrade, Nucl Fusion,49(2009) 115014.
    [154]T. Hino, M. Akiba, Japanese developments of fusion reactor plasma facing components, Fusion Eng Des,49-50(2000) 97-105.
    [155]J. Du, T. Hoschen, M. Rasinski, J.H. You, Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces, Materials Science and Engineering:A,527(2010) 1623-1629.
    [156]J. Du, T. Hoschen, M. Rasinski, J.H. You, Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite, Journal of Nuclear MaterialsProceedings of ICFRM-14,417(2011) 472-476.
    [157]J. Du, T. Hoschen, M. Rasinski, S. Wurster, W. Grosinger, J.H. You, Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings, Compos Sci Technol,70(2010) 1482-1489.
    [158]O.L. Guise, J.W. Ahner, M. Jung, P.C. Goughnour, J.T. Yates, Reproducible Electrochemical Etching of Tungsten Probe Tips, Nano Lett,2(2002) 191-193.
    [159]S. Vaddiraju, H. Chandrasekaran, M.K. Sunkara, Vapor Phase Synthesis of Tungsten Nanowires, J Am Chem Soc,125(2003) 10792-10793.
    [160]高程,贺跃辉,王世良,金属钨纳米线阵列的制备,材料研究学报,22(2008)577-579.
    [161]S. Wang, Y. He, J. Xu, Y. Jiang, B. Huang, J. Zou, Y. Wang, C.T. Liu, P.K. Liaw, Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 ℃, J Mater Res,23(2008) 72-77.
    [162]S. Wang, Y. He, J. Zou, Y. Jiang, J. Xu, B. Huang, C.T. Liu, P.K. Liaw, Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850℃, J Cryst Growth,306(2007) 433-436.
    [163]T. Karabacak, P. Wang, G. Wang, T. Lu, Growth of Single Crystal Tungsten Nanorods by Oblique Angle Sputter Deposition, MRS Online Proceedings Library,788(2003) M3-M10.
    [164]Y. Lee, C. Choi, Y. Jang, E. Kim, B. Ju, N. Min, J. Ahn, Tungsten nanowires and their field electron emission properties, Appl Phys Lett,81(2002) 745-747.
    [165]Y. Li, X. Li, Z. Deng, B. Zhou, S. Fan, J. Wang, X. Sun, From Surfactant-Inorganic Mesostructures to Tungsten Nanowires, Angewandte Chemie International Edition, 41(2002)333-335.
    [166]Y. Ding, Z.L. Wang, Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy, The Journal of Physical Chemistry B,108(2004) 12280-12291.
    [167]M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett,10(2010) 751-758.
    [168]A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nano structured, diamond-like carbon, and nanodiamond, Philosophical Transactions of the Royal Society of London. Series A,362(2004) 2477-2512.
    [169]陈卫,不同聚集态Pt纳米粒子的合成、表面组装及其电化学和特殊红外性能研究,厦门大学,2003.
    [170]A.G. Merzhanov, The chemistry of self-propagating high-temperature synthesis, J Mater Chem,14(2004) 1779-1786.
    [171]K. Morsi, The diversity of combustion synthesis processing:a review, J Mater Sci, 47(2012) 68-92.
    [172]Z.A. Munir, U. Anselmi-Tamburini, Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion, Materials Science Reports, 3(1989)277-365.
    [173]S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State and Materials Science,12(20082008) 44-50.
    [174]W.P.S.F. Chang Chun Ge, Development of SHS-Si3N4 in LSCPM, Key Eng Mater, 280-283(2007) 1191-1196.
    [175]F.W.W.P. Chang Chun Ge, New Progress on SHS of Silicon Nitride with High a-Phase Content, Mater Sci Forum,475-479(2005) 1599-1604.
    [176]F. Wang, W. Shen, C. Ge, The effects of nitrogen purity and pressure on combustion synthesis of a-Si3N4 powders, Mater Sci Forum,475-479(2005) 1631-1634.
    [177]李江涛葛昌纯,燃烧合成大尺寸Si3N4陶瓷的研究,金属热处理学报,18(1997)112-116.
    [178]J.J. Niu, J.N. Wang, A Novel Approach to Silicon-Nanowire-Assisted Growth of High-Purity, Single-Crystalline -Si3N4 Nanowires, Chem Vapor Depos,13(2007) 396-400.
    [179]P. Sajgalik, J. Dusza, Reinforcement of silicon nitride ceramics by β-Si3N4 Whiskers, J Eur Ceram Soc,5(1989) 321-326.
    [180]Y. Xu, C. Cao, Z. Chen, J. Li, F. Wang, H. Cai, Preparation of Novel Saw-Toothed and Riblike a-Si3N4 Whiskers, The Journal of Physical Chemistry B,110(2006) 3088-3092.
    [181JY.Z.A.Y. J, Sub-band-gap photoconductivity of individual α-Si 3 N 4 nanowires, Nanotechnology,18(2007) 325603.
    [182]Y.G. Cao, H. Chen, J.T. Li, C.C. Ge, S.Y. Tang, J.X. Tang, X. Chen, Formation of a-Si3N4 whiskers with addition of NaN3 as catalyst, J Cryst Growth,234(2002) 9-11.
    [183]M. Ahmad, J. Zhao, F. Zhang, C. Pan, J. Zhu, One-step synthesis route of the aligned and non-aligned single crystalline a-Si3N4 nanowires, Science in China Series E: Technological Sciences,52(2009) 1-5.
    [184]J. Li, K. Chen, C. Ge, Structural formation and mechanism in combustion synthesis of nitrogen ceramics (A1N, Si3N4 and AIN-SiC), Key Eng Mater,217(2002) 173-184.
    [185]C. Dianying, Z. Baolin, Z. Hanrui, L. Wenlan, X. Suying, Synthesis of (3-Si3N4 whiskers by SHS, Mater Res Bull,37(2002) 1481-1485.
    [186]J. Dusza, P. Sajgalik, Z. Bastl, V. Kavecansky, J. Durisin, Properties of β-silicon nitride whiskers, J Mater Sci Lett,11(1992) 208-211.
    [187]I.G. Cano, M.A. Rodriguez, Synthesis of (3-Silicon nitride by SHS:fiber growth, Scripta Mater,50(2004) 383-386.
    [188]Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture, J Cryst Growth,233(2001) 803-808.
    [189]R. Pampuch, L. Stobierski, J. Lis, M. Ra□czka, Solid combustion synthesis of β SiC powders, Mater Res Bull,22(1987) 1225-1231.
    [190]O. Yamada, K. Hirao, M. Koizumi, Y. Miyamoto, Combustion Synthesis of Silicon Carbide in Nitrogen Atmosphere, J Am Ceram Soc,72(1989) 1735-1738.
    [191]J. Narayan, R. Raghunathan, R. Chowdhury, K. Jagannadham, Mechanism of combustion synthesis of silicon carbide, J Appl Phys,75(1994) 7252-7257'.
    [192]K. Yang, Y. Yang, Z. Lin, J. Li, J. Du, Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter, Mater Res Bull, 42(2007) 1625-1632.
    [193]G. Liu, K. Yang, J. Li, K. Yang, J. Du, X. Hou, Combustion Synthesis of Nanosized β-SiC Powder on a Large Scale, The Journal of Physical Chemistry C,112(2008) 6285-6292.
    [194]Y. Yang, Z. Lin, J. Li, Synthesis of SiC by silicon and carbon combustion in air, J Eur Ceram Soc,29(2009) 175-180.
    [195]张利锋,燕青芝,沈卫平,葛昌纯,燃烧合成制备高纯p-SiC超细粉体,硅酸盐通报,No.162(2007)431-435.
    [196]张利锋,自蔓延高温合成超细高纯β—SiC及其他粉体的研究,北京科技大学,2007.
    [197]I.K.A.P. V. Savchyn, Combustion Formation of Novel Nanomaterials:Synthesis and Cathodoluminescence of Silicon Carbide Nanowires, Proceedings of the III National Conference on Nanotechnology NANO 2009,2009,pp.s142-s145.
    [198]J. Zhang, J.C. Jeong, J.H. Lee, C.W. Won, D.J. Kim, C.O. Kim, The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction, Mater Res Bull,37(2002) 319-329.
    [199]F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics,53(1970)1126-1130.
    [200]J. Robertson, A.C. Ferrari, Interpretation of Raman spectra of disordered and amorphous carbon, Phys Rev B,61(2000) 14095-14107.
    [201]M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports,409(2005) 47-99.
    [202]R. DiLeo, B. Landi, R. Raffaelle, Application of the G/D Raman Ratio for Purity Assessment of Multi-Walled Carbon Nanotubes, Mater. Res. Soc. Symp. Proc, 2007,pp.M3-M10.
    [203]Y.M. Sun, S.Y. Lee, A.M. Lemonds, E.R. Engbrecht, S. Veldman, J. Lozano, J.M. White, J.G. Ekerdt, Ⅰ. Emesh, K. Pfeifer, Low temperature chemical vapor deposition of tungsten carbide for copper diffusion barriers, Thin Solid Films,397(2001) 109-115.
    [204]J.C. Kim, B.K. Kim, Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process, Scripta Mater,50(2004) 969-972.
    [205]H. Preiss, B. Meyer, C. Olschewski, Preparation of molybdenum and tungsten carbides from solution derived precursors, J Mater Sci,33(1998) 713-722.
    [206]D.K. Gupta, L.L. Seigle, Free energies of formation of WC and W2C, and the thermodynamic properties of carbon in solid tungsten, Metallurgical Transactions A, 6(1975)1939-1944.
    [207]N. Keller, B. Pietruszka, V. Keller, A new one-dimensional tungsten carbide nanostructured material, Mater Lett,60(2006) 1774-1777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700