用户名: 密码: 验证码:
小檗碱对3T3-L1脂肪细胞增殖、分化、凋亡及脂肪因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     胰岛素抵抗(IR)是代谢综合征(Metabolic Syndrome,MS)众多组分疾病共同的病理生理基础,给机体带来严重危害。增加胰岛素敏感性、改善IR对于MS的防治具有非常重要的意义。TZD类药物罗格列酮是目前治疗IR的代表药物,作为胰岛素增敏剂,它通过激活PPARγ,进而促进脂肪细胞分化、增加脂肪酸代谢、降低血浆FFA水平;通过激活胰岛素信号转导通路PI-3K/PKB途径,增加外周组织GLUT4的表达而参与葡萄糖生成、转运和利用。但罗格列酮最终使脂肪积聚增多引起体重和体脂增加,并且有头痛、水肿等不良反应,而肥胖与IR有高度相关性,这样就造成了治疗上的矛盾。因此,寻求既能改善IR又能减轻或避免TZD类药物弊端的胰岛素增敏剂成为目前研究的热点。黄连是中医治疗消渴病的常用药物,研究表明其有效成分小檗碱具有改善IR及糖脂代谢的作用,我们在以前的研究工作中也发现,Ber可增加脂肪细胞葡萄糖摄取和利用,抑制前脂肪细胞向成熟脂肪细胞的分化,其作用途径完全不同于PPARγ激动剂罗格列酮,提示Ber在发挥胰岛素增敏剂作用的同时不会引起体脂的聚积而造成体重增加,可能更适合于治疗肥胖和IR相关的代谢性疾病,这将为IR的防治提供新思路,但其确切机制有待于深入研究。
     目的
     建立IR脂肪细胞模型,观察小檗碱对体外培养的3T3-L1前脂肪细胞增殖分化和成熟脂肪凋亡的作用,以及对脂肪细胞因子脂联素和内脂素表达的影响,为深入探讨小檗碱改善胰岛素抵抗的细胞分子机制提供实验依据。
     方法
     在高糖高胰岛素的培养环境下,以~3H-葡萄糖摄取试验为标准建立IR脂肪细胞模型;XTT比色法建立3T3-L1前脂肪细胞“OD_(570)值——细胞数目”曲线,观察Ber不同浓度和作用不同时间后对3T3-L1前脂肪细胞增殖的影响;流式细胞术(Annexin V-FITC/PI双染)观察Ber对成熟脂肪细胞凋亡的影响;Real-time PCR和Western blotting分别检测前脂肪细胞分化过程中关键转录因子PPARγ、C/EBPa mRNA和蛋白的表达;酶联免疫吸附检测法(ELISA)检测不同浓度、作用不同时间的Ber对IR脂肪细胞培养上清中APN的含量;Real time PCR检测APN、Visfatin mRNA的表达,Western blotting检测AdipoR1、AdipoR2和Visfatin蛋白水平的表达。
     结果
     高糖、高胰岛素、高糖+高胰岛素分别使脂肪细胞~3H-葡萄糖摄取率下降53.65%、47.69%、61.40%,与正常对照组比较有显著差异(P<0.01)。
     1~80μM Ber作用48小时后对前脂肪细胞增殖均有明显的抑制作用(与空白对照组比较P<0.05或P<0.01),且呈量效关系;高浓度Ber(20~80μM)对细胞增殖的抑制作用较强,24小时即有明显差异(P<0.05),10μM以下的Ber作用24小时对前脂肪细胞增殖无明显的影响(P>0.05);前脂肪细胞经Ber干预后,分化相关基因PPARγ、C/EBPa mRNA和蛋白的表达下调,胞浆中脂滴明显减少(与空白对照组及罗格列酮干预组比较P<0.05或P<0.01);分化成熟的脂肪细胞经Ber作用24小时后出现明显凋亡,在一定浓度范围内存在量效关系(与模型对照组比较P<0.05)。
     0.1~10μM Ber逐渐上调脂肪细胞Visfatin mRNA的表达,10μM作用最明显(是空白对照组的4.96倍);10μM Ber作用3小时后Visfatin mRNA表达开始增强,至作用12小时时表达增强最明显(是作用0小时的4.57倍);5、10、20μM的Ber分别使Visfatin蛋白表达增加1.13、2.46、2.34倍,与正常对照组比较有显著差异(P<0.05)。
     Ber作用3小时后脂肪细胞APN的分泌即开始增加(与正常对照组比较P<0.01),且呈一定时效关系;IR脂肪细胞APN分泌减少,经Ber干预后则分泌增加(与模型组对照比较P<0.05,与罗格列酮干预组比较P>0.05);10μM Ber可上调脂肪细胞APN mRNA表达,作用18小时时效应最明显(是正常对照组的6.20倍);高糖高胰岛素可下调APN mRNA表达,Ber干预后可以使降低的APN mRNA表达增加(与模型对照组比较P<0.05)。
     IR脂肪细胞AdipoR1蛋白表达减少(与正常对照组比较P<0.05),AdipoR2变化不明显(与模型对照组比较P>0.05);Ber和Ros均能增加AdipoR1蛋白的表达(分别是模型对照组的1.64、1.92倍);Ros能明显增加AdipoR2蛋白表达(是模型对照组2.58倍);Ber虽能增加AdipoR2蛋白表达,但与模型对照组比较无统计学差异(P>0.05)。
     结论
     Ber能抑制体外培养的3T3-L1前脂肪细胞增殖,显著诱导成熟脂肪细胞的凋亡;能抑制前脂肪细胞分化,减少细胞内脂质积聚,抑制脂肪细胞分化关键转录因子PPARγ、C/EBPαmRNA和蛋白的表达;促进Adiponectin、Visfatin mRNA和蛋白的表达,增加AdipoR1蛋白的表达。Ber影响脂肪细胞增殖、分化、凋亡以及脂肪细胞因子的效应可能是其增加胰岛素的敏感性,改善IR的作用机制之一。
Background
     Insulin resistance (IR) is considered as a core component in the pathophysiology of the metabolic syndrome (MS) which represents a cluster of abnormalities such as central obesity, hyperglycemia, hypertension, dyslipidemia. It is regard as a principal risk factor for increased cardiovascular disease, the leading cause of morbidity and mortality. The worldwide prevalence of MS is increasing, leading to serious public health concerns. However, the underlying mechanisms of MS are incompletely understood. Many studies show that it is very important and indispensable to enhance insulin sensitivity for prevention and treatment of MS. Currently, thiazolidinediones (TZD), the agonists of peroxisome proliferator-activated receptors gamma (PPARγ) with insulin sensibilization and antidiabetic action, is most widely used and recommended for diabetes, but there are some side-effects caused by TZD, such as increasing body weight and body fat volume, headache, extremity edema. Accordingly, to find new insulin-sensitizing agents without TZD's side-effect becomes the highlight. Berberine (Ber), an alkaloid originally isolated from Huanglian (Copitis chinensis), shows the beneficial pharmacological actions of decreasing blood glucose, regulating lipid metabolic disorders, increasing insulin sensitivity, consequently, it has been extensively used as a perspective drug for prevention and treatment of type 2 diabetes, obesity and MS.
     Objective
     In order to explore the molecular mechanisms of Berberine on treatment of insulin resistance, 3T3-L1 preadipocytes were cultured with high glucose and high insulin as a insulin resistance cellular model. Then we observed the effects of Berberine on cell proliferation, differentiation, apoptosis and some adipocytines expression in 3T3-L1 preadipocytes and adipocytes.
     Methods
     Insulin resistance cellular model determined by ~3H-glucose uptake rates was induced with high concentration of insulin and glucose medium. To observe the effects of various concentrations of Berberine and different incubation time on the proliferation in 3T3-L1 preadipocytes, the curve of cellular counts and OD570 were set up by XTT methods. Effects of Berberine on apoptosis rates in fully differentiated 3T3-L1 adipocytes were detected by Flow cytometry (Annexin V-FITC/PI, double dye). The expressions of peroxisome proliferation activated receptorγ(PPARγ) and CAAT/enhancer binding protein (C/EBPa) mRNA and protein during cell differentiation were determined by real time PCR and Western blotting respectively. Adiponectin contents in supernatant were detected by ELISA; the expression of adiponectin and visfatin mRNA were assayed by real-time PCR; Western blotting were used to determine the expressions of adiponectin receptor 1, adiponectin receptor 2 and visfatin.
     Results
     The rate of ~3H-glucose uptake declined 53.65 %、47.69%、61.40% in the three cell groups cultured with in the high glucose medium, high insulin medium and high glucose + high insulin medium respectively (P<0.05 or 0.01 vs. control group).
     Berberine with various concentrations in the experiment (10~80μM) could affect 3T3-L1 preadipocytes proliferation and it showed a dose-dependent relationship. 3T3-L1 preadipocytes treated with 10μM Berberine had little lipid droplets in the cytoplasm which were less than cells treated with Rosiglitazone (Ros). Berberine significantly decreased the mRNA and protein expression of PPARγand C/EBPa (P <0.05 or 0.01 vs. control group) in the course of 3T3-LI preadipocyte differentiation.
     Berberine can induce apoptosis in fully differentiated adipocyte in dose-dependent manner (P<0.05 vs. control group).0.1~10μM Berberine could increase visfatin mRNA level dose-dependently, especially 10μM in which visfatin mRNA level was 4.96 fold as much as control group. After intervention of 10μM Berberine for 3 hours, the visfatin mRNA level began to increase and reached a peak after 12 hours intervention (4.57 fold as much as 0 hours intervention group). Berberine with 5, 10, 20μM could increase visfatin protein expression level by 1.13, 2.46, 2.34 folds respectively (P<0.05 or 0.01 vs. control group).
     After Berberine intervention, adiponectin content in cultural supernatant and adiponectin mRNA expression increased in time-dependent manner, and its mRNA expression reached a pick after intervention for 18 hours (6.20 fold vs. 0 hours intervention group). The protein secretion and mRNA expression of adiponectin in insulin resistance celluar were decreased, but Berberine could upregulate them (P< 0.05 vs. control group).
     In insulin resistance celluar, the expression of adiponection receptor 1 was decreased (P < 0.05 vs. control group) while adiponection receptor 2 had no significant changes (P>0.05 vs. control group). Berberine as well as Rosiglitazone can increase protein expression of adiponectin receptor 1 (1.64 and 1.92 folds vs. control group respectively). Rosiglitazone increased protein expression of adiponectin receptor 2 significantly (2.58 folds vs. control group) while Berberine had no notable changes (P>0.05 vs. control group).
     Conclusions
     In vitro, Berberine can inhibit proliferation and differentiation of 3T3-L1 preadipocyte, induce adipocyte apoptosis, decrease mRNA and protein expression of PPARγand C/EBPa, increase mRNA and protein expression of adiponectin and visfatin, up-regulate adiponectin receptor 1 expression. These beneficial effects may be one of its mechanisms for amelioration of insulin resistance.
引文
1. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor [J]. J Clin Endocrinol Metab, 2007, 92(2): 399-404.
    2. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes [J]. Nature, 2006, 444(7121): 840-846.
    3. Martin KR, James BM, Lisa MS, et al. Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham offspring study [J]. Diabetes, 2005, 54(11): 3252-3257.
    4. Bloomgarden ZT. Insulin resistant, exercise and obesity [J]. Diabetes Care, 1999, 22(3): 517-522.
    5.贾伟平,项坤三,陈蕾,等.上海地区40岁以上自然人群种胰岛素抵抗现状及特征分析[J].上海医学,2001,24(4):199-203.
    6. Sharma AM, Staels B. Review: Peroxisome proliferator-activated receptor gamma and adipose tissue understanding obesity-related changes in regulation of lipid and glucose metabolism [J]. J Clin Endocrinol Metab, 2007, 92(2): 386-395.
    7. Rui Lili. Research advanced of PPARγ and insulin [J]. Science Technology and Engineering, 2004, 4(6): 499-503.
    8. Patsouris D, Muller M, Kersten S. Peroxisome proliferator activated receptor ligands for the treatment of insulin resistance [J]. Curr Opin Investig Drugs, 2004, 5(10): 1045-1050.
    9. Nikolaidis LA, Levine TB. Peroxisome proliferator activator receptors (PPAR), insulin resistance, and cardiomyopathy: friends or foes for the diabetic patient with heart failure [J]? Cardiology in Review, 2004, 12(3): 158-170.
    10. Bhatia V, Viswanathan P. Insulin resistance and PPAR insulin sensitizers [J]. Curr Opin Investig Drugs, 2006, 7(10): 891-897.
    11. Larsen TM, Toubro S, Astrup A. PPARγ, agonist in the treatment of type Ⅱ diabetes: is increased fatness commensurate with long-term efficacy [J]? International Journal of Obesity, 2003, 27: 147-161.
    12. Argmann CA, Cock TA, Auwerx J. Peroxisome proliferator-activated receptor gamma: the more the merrier [J]? Euro J Clin Investig, 2005, 35(2): 82-92.
    13. Scheen, Andre J. Combined thiazolidinedione-insulin therapy: should we be concerned about safety [J]? Drug Safety, 2004, 27(12): 841-856.
    14.陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986,21:401-406.
    15.周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞葡萄糖转运的影响及其机制研究[J].中华内分泌代谢杂志,2003,19(6):479-482.
    16. Yin J, Hu RM, Chen MD, et al. Effect of berberine on glucose metabolism in vitro [J]. Metabolism, 2002, 51: 1439-1443.
    17. Kong WJ, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J]. Nat Med, 2004, 10(12): 1344-1351.
    18.周丽斌.小檗碱对脂肪细胞分化的影响[J].中华医学杂志,2003,83(4):338-341.
    19.殷峻,陈名道,唐金民,等.小檗碱对实验大鼠糖脂代谢的影响[J].中国糖尿病杂志,2004,12(3):215-218.
    20.王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志,2004,24(10):926-928.
    1. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor [J]. J Clin Endocrinol Metab, 2007, 92(2): 399-404.
    2. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes [J]. Nature, 2006, 444(7121): 840-846.
    3. Martin KR, James BM, Lisa MS, et al. Insulin resistance, the metabolic syndrome, and Incident cardiovascular events in the Framingham offspring study [J]. Diabetes, 2005, 54(11): 3252-3257.
    4. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85 alpha: the two sides of a coin [J]. Diabetes, 2006, 55(8): 2392-2397.
    5. Bryce A, Katherine A, Maria G. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes [J]. Diabetes, 2000, 49: 981-991.
    6. Carol H, Romel S, Nish P, et al. Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity [J]. Diabetes, 2002, 51(7): 2090-2098.
    7. Walgreen JLE, Vincent TS, Schley KL, et al. High glucose and insulin promote O-Glena modification of proteins, including alpha-tubule [J]. Am J Physiol Endocrinol Metab, 2003, 284(2): E424-434.
    8. Andrea P, Xue G, Souad, et al. Tumor necrosis factor-a induces endothelial dysfunction in the prediabetic metabolic syndrome [J]. Cir Res, 2006, 99(1): 69-77.
    9. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes [J]. Arch Biochem Biophys, 2003, 419(2): 101-109.
    10. Hideyuki S, Takehide O, Motonobu A, et al. Dexamethasone induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction [J]. Diabetes, 2000, 49(10): 1700-1709.
    11. Atsuko T, Tetsuro H, Minoru I, et al. Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-Kinase and its downstream signals in 3T3-L1 adipocytes [J]. Diabetes, 2001, 50(8): 1891-1990.
    12. Yoshikazu T, Jiro M, Nishino N, et al. Role of peroxisome proliferator-activated receptor-q, in maintenance of the characteristics of mature 3T3-L1 adipocytes [J]. Diabetes, 2002, 51(7): 2045-2055.
    13. Anastassions GP, Nandini A J, Andrew SG. Adipocytokines and insulin resistance [J]. J Clin Endocrinol Metab, 2004, 89(2): 447-452.
    14. Matsuzawa Y. The metabolic syndrome and adipocytokines [J]. FEBS Lett, 2006, 580(12): 2917-2921.
    15. Ruth EG, Lori DK. Adipose tissue as an active endocrine organ: recent advances [J]. Curr Opin Pharmacol, 2005, 5(2): 122-128
    16. Schmidt MI, Duncan BB. Diabesity: an inflammatory metabolic condition [J]. Clin Chem Lab Med, 2003, 41(9): 1120-1130.
    17.李长贵,宁光,陈家伦.胰岛素抵抗HepG2细胞模型的建立及鉴定[J].中国糖尿病杂志,1999,7(4):198-201.
    18.陈家伦,李果,叶娟.高浓度胰岛素、葡萄糖对HepG2细胞蛋白激酶C活性的影响[J].中华内分泌代谢杂志,1999,15(5):294-297.
    19. Reaven GM. Role of insulin resistance in human disease [J]. Diabetes, 1988, 37(12): 1595-1607.
    20. Kawano KS. Long-term hyperglycemic rat with diabetic complications ostuka long-evans tokushima fatty (OLETF) strain [J]. Diabetes, 1992, 41(11): 1422-1430.
    21. Zhang Y, Proenca R, Maffei M, etal. Positional cloning of the mouse obese gene and its human homologue [J]. Nature, 1994, 372: 425-430.
    22. Chen H. Evidence that the diabetes gene encodes the leptin receptor identification no famutation in the leptin receptor gene in db/db mice [J]. Cell, 1996, 84: 491-501.
    23. Storlien LH, Oakes ND, Pan DA, et al. Syndromes of insulin resistance in the rat: inducement by diet and amelioration with benfluorex [J]. Diabetes, 1993, 42(3): 457-468.
    24. Maier VH, Gould GW. Long-term insulin treatment of 3T3-L1 adipocytes results in mistargeting of GLUT4: implications for insulin-stimulated glucose transport [J]. Diabetologia, 2000, 43(10): 1273-1281.
    25. Thomson MJ, Williams MG, Frost SC. Development of insulin resistance in 3T3-L1 adipocytes [J]. J Biol Chem, 1997, 272(12): 7759-7764.
    1. Peterson LR. Obesity and insulin resistance: effects on cardiac structure, function and substrate metabolism [J]. Curr Hypertens Rep, 2006, 8(6): 451-456.
    2. Licata G, Argano C, Di Chiara T, et al. Obesity: a main factor of metabolic syndrome [J]? Panminerva Med, 2006, 48(2): 77-85.
    3. Lluis Fajas. Adipogenesis: a cross-talk between cell proliferation and cell differentiation [J]. Annals of Medicine, 2003, 35: 79-85.
    4. Aguilera AA, Diaz GH, Barcelata ML, et al. Effects of fish oil on hypertension, plasma lipids and tumor necrosis factor-alpha in rats with sucrose-induced metabolic syndrome [J]. J Nutr Biochem, 2004, 15(6): 350-357.
    5. Moiler DE, Kaufman KD. Metabolic syndrome: A clinical and molecular perspective [J]. Annu Rev Med, 2005, 56(1): 45-62.
    6. Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases [J]. Clin Chim Acta, 2007, 375(1-2): 20-35.
    7. Yin J, Hu RM, Chen MD, et al. Effect of berberine on glucose metabolism in vitro [J]. Metabolism, 2002, 51: 1439-1443.
    8.周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞葡萄糖转运的影响及其机制研究[J].中华内分泌代谢杂志,2003,19(6):479-482.
    9. Kong WJ, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J]. Nat Med, 2004, 10(12): 1344-1351.
    10. Spiegelman BM, Flier JS. Obesity and the relation of energy balance [J]. Cell, 2001, 104: 531-543.
    11. Prins JB, O'Rahilly S. Regulation of adipose cell number in man [J]. Clin Sci, 1997, 92: 3-11.
    12. James WP, Rigby N, Leach R. Obesity and the metabolic syndrome: the stress on society [J]. Ann N YAcad Sci, 2006, 1083: 1-10.
    13. Felmer RN, Clark JA. The gene suicide system Ntr/CB1954 causes ablation of differentiated 3T3L1 adipocytes by apoptosis [J]. Biol Res, 2004, 37(3): 449-460.
    14. Braeckman BP, Houthoofd K, De Vreese A, et al. Assaying metabolic activity in ageing Caenorhabditis elegans [J]. Mech Ageing Dev, 2002, 123(2-3): 105-119.
    15.周丽斌,陈名道,王晓,等.小檗碱对脂肪细胞分化的影响[J].中华医学杂志,2003,83(4):238-2407.
    16.龚海霞,郭锡熔,陈荣华,等.Bcl-2、Bax基因表达改变与禁食诱导的脂肪细胞凋亡的研究[J].南京医科大学学报,2001,21(3):186-188.
    17. Aouadi M, Laurent K, Prot M, et al. Inhibition of p38 MAPK increases adipogenesis from embryonic to adult stages [J]. Diabetes, 2006, 55: 281-289.
    18. Sorisky A, Magun R, Gagnon AM. Adipose cell apoptosis: death in the energy depot [J]. Int J Obes Relat Metab Disord, 2000, 24[Suppl 4]: S3-S7.
    19. Fajas L, Egler V, Reiter R, et al. PPAR gamma controls cell proliferation and apoptosis in an RB-dependent manner [J]. Oncogene, 2003, 22(27): 4186-4193.
    20. Qian H, Hausman DB, Compton MM, et al. TNF-alpha induces and insulin inhibits caspase-dependent adipocyte apoptosis [J]. Biochem Biophys Res Commun, 2001, 284(5): 1176-1183.
    21. Smith J, Al-Amri M, Dorairaj P, et al. The adipocyte life cycle hypothesis [J]. Clin Sci (Lond), 2006, 110(1): 1-9.
    22. Matthews LC, Taggart MJ, Westwood M. Effect of cholesterol depletion on mitog-enesis and survival: the role of caveolar and noncaveolar domains in insulin-like growth factor-mediated cellular function [J]. Endocrinology, 2005, 146(12): 5463-5473.
    23. Navarro P, Valverde AM, Benito M, et al. Insulin/IGF-I rescues immortalized brown adipocyte from apoptosis down-regulating Bcl-xS expression, in a PI3-kinase and map kinase-dependent manner [J]. Exp Cell Res, 1998, 243(2): 213-221.
    24. Kim HS, Hausman DB, Compton MM, et al. Induction of apoptosis by all-transretinoic acid and C-ceramide treatment in rat stromal vascular cultures [J]. Biochem Biophys Res Commun, 2000, 270(1): 76-80.
    25. Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptosis cells using fluorescein labeled Annexin Ⅴ [J]. J Immunol Methods, 1995, 184(1): 39-51.
    26. Lin CC, Kao ST, Chen GW, et al. Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3 [J]. Anticancer Res, 2006, 26(1A): 227-242.
    27. Hwang JM, Kuo HC, Tseng TH, et al. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells [J]. Arch Toxicol, 2006, 80(2): 62-73.
    28. Jantova S, Cipak L, Letasiova S. Berberine induces apoptosis through a mitochondrial/caspase pathway in human promonocytic U937 cells [J]. Toxicol In Vitro, 2007, 21(1): 25-31.
    29. Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP [J]. Carcinogenesis, 2006, 27(10): 2018-2027.
    1. Spiegelman BM, Flier JS. Obesity and there regulation of energy balance [J]. Cell, 2001, 104: 531-543.
    2. Prins JB, O'Rahilly S. Regulation of adipose cell number in man [J]. Clin Sci, 1997, 92: 3-11.
    3. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome [J]. Nature. 2006, 14, 444(7121): 881-887.
    4. Van GF, Mertens IL, De Block. Mechanisms linking obesity with cardiovascular disease [J]. Nature, 2006, 444(7121): 875-880.
    5. Kahn SE, Hull RL, Utzschneider KM, et al. Mechanisms linking obesity to insulin resistance and type 2 diabetes [J]. Nature, 2006, 444(7121): 840-846.
    6. Nikolaidis, Lazaros A, Levine, et al. Peroxisome proliferator activator receptors (PPAR), insulin resistance and cardiomyopathy: friends or foes for the diabetic patient with heart failure [J]? Cardiology in Review, 2004, 12(3): 158-170.
    7. Argmann CA, Cock TA, Auwerx J. Peroxisome proliferator-activated receptor gamma: the more the merrier [J]? Eur J Clin Investig, 2005, 35(2): 82-92.
    8. Scheen, Andre J. Combined thiazolidinedione-insulin therapy: should we be concerned about safety [J]? Drug Safety, 2004, 27(12): 841-856.
    9.周丽斌.小檗碱对脂肪细胞分化的影响[J].中华医学杂志,2003,83(4):338-341.
    10.殷峻,陈名道,唐金民,等.小檗碱对实验大鼠糖脂代谢的影响[J].中国糖尿病杂志,2004,12(3):215-218.
    11.王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志,2004,24(10):926-928.
    12. Zuk PA, Zhu M, Hedrick MH, et al. Multipotent cells from human adipose tissue implications for cell-based therapies [J]. Tissue Eng, 2001, 7(2): 221-226.
    13. Rodriguez AM, Elabd C, Delteil F, et al. Adipocyte differentiation of multipotent cells established from human adipose tissue [J]. Biochem Biophys Res Commun, 2004, 315(2): 255-263.
    14. Ntambi JM. Adipocyte differentiation and gene expression [J]. J Nutr, 2000, 13(12): 3122s-3126s.
    15. Yang RY, Hsu DK, Yu L, et al. Galectin-12 is required for adipogenic signaling and adipocyte differentiation [J]. J Biol Chem, 2004, 279 (28): 29761-29766.
    16. Feve B. Adipogenesis: cellular and molecular aspects [J]. Best Pract Res Clin Endocrinol Metab, 2005, 19(4): 483-499.
    17. Bluher S, Kratzsch J, Kiess W. Insulin-like growth factor I, growth hormone and insulin in white adipose tissue [J]. Best Pract Res Clin Endocrinol Metab, 2005, 19(4): 577-587.
    18. Savkur RS, Miller AR. Investigational PPAR-gamma agonists for the treatment of Type 2 diabetes[J]. Expert Opin Investig Drugs, 2006, 15(7): 763-778.
    19. Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity [J]. Mol Cell, 1999, 3: 151-158.
    20. Zhang JW, Klemm DJ, Vinson C, et al. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogengsis [J]. J Biol Chem, 2004, 279(6): 4471-4478.
    21. Ferre P. The biology of peroxisome proliferators-activared receptors: relationsip with lipid metabolism and insulin sensitivity [J]. Diabetes, 2004, 53(suppl 1): s43-50.
    22. Hansen JB, Zhang HB, Thomas H, et al. Peroxisome proliferator-activated receptor delta (PPAR delta) -mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling [J]. J Biol Chem, 2001, 276: 3175-3182.
    23. Tanaka T, Yamamoto J, Iwaski S, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport [J]. Proc Natl Acad Sci, 2001, 98(9): 5306-5311.
    24. Rosen ED, Hsu CH, Wang X, et al. C/EBP alpha induces adipogenesis through PPAR gamma: a unified pathway [J]. Genes Dev, 2002, 16: 22-26.
    25. Lehmann JM, Moore LB, Smith-Oliver, et al. A prostaglandin J metabolite binds peroxisome proliferator-activated receptor-gamma and promotes adipocyte differenttiation [J]. Cell, 1995, 83: 803-819.
    26. Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPAR gamma) deficiency and PPAR gamma agonist improve insulin resistance [J]. J Biol Chem, 2001, 276(44): 41245-41254.
    27. Larsen TM, Toubro S, Astrup A. PPAR7 agonist in the treatment of type Ⅱ diabetes: is increased fatness commensurate with long-term efficacy [J]? International Journal of Obesity, 2003, 27: 147-161.
    28. Bhatia V, Viswanathan P. Insulin resistance and PPAR insulin sensitizers [J]. Curr Opin Investig Drugs, 2006, 7(10): 891-897.
    29. Matthaei S, Stumvoll M, KellererM, et al. Pathophysiology and pharmacological treatment of insulin resistance [J]. Endo Rev, 2000, 21: 585-618.
    1.陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986,21:401-406.
    2.周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞葡萄糖转运的影响及其机制研究[J].中华内分泌代谢杂志,2003,19(6):479-482.
    3. Kong W J, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J]. Nat Med, 2004, 10(12): 1344-1351.
    4. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin [J]. Science, 2005, 307: 426-430.
    5. Hug C, Lodish HE Visfatin: a new adipokine [J]. Science, 2005, 307: 366-367.
    6. Guzik TJ, Mangalat D, Korbut R. Adipocytokines-novel link between inflammation and vascular function [J]? J Physiol Pharmacol, 2006, 57(4): 505-528.
    7. Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances [J]. Curr Opin Pharmacol, 2005, 5(2): 122-128.
    8. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity [J]. Nat Rev Immunol, 2006, 6: 772-783.
    9. Sethi JK, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes [J]? Trends Mol Med, 2005, 11: 344-347.
    10. Chen MP, Chung FM, Chang DM, et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus [J]. J Clin Endocrinol Metab, 2006, 91(1): 295-299.
    11. Stenphens JM, Vidal-Puig AJ. An update on visfatin/pre-B cell colony-enhancing factor, an ubiquitously expressed, illusive cytokine that is regulated in obesity [J]. Curr Opin Lipidol, 2006, 17: 128-131.
    12. Beltowski J. Apelin and visfatin: Unique "beneficial" adipokines upregulated in obesity [J]? Med Sci Monit, 2006, 12(6): 112-119.
    13. Moschen AR, Kaser A, Enrich B, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties [J]. J Immunol, 2007, 178(3): 1748-1758.
    14. Haider DG, Schaller G, Kapiotis S, et al. The release of the adipocytokine visfatin is regulated by glucose and insulin [J]. Diabetologia, 2006, 49: 1909-1914.
    15. Xie H, Tang SY, Luo XH, et al. Insulin-like effects of visfatin on human osteoblasts [J]. Calcif Tissue Int, 2007, 5: 257-261.
    16.王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志,2004,24(10):926-928.
    17.周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞瘦素和抵抗素基因表达的影响[J].中华内科杂志,2004,43(1):56-57.
    1. Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances [J]. Curr Opin Pharmacol, 2005, 5(2): 122-128.
    2. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity [J]. Nat Rev Immunol, 2006, 6: 772-783.
    3. Santaniemi M, Kesaniemi YA, Ukkola O. Low plasma adiponectin concentration is an indicator of the metabolic syndrome [J]. Eur J Endocrinol, 2006, 155(5): 745-750.
    4. Whitehead JP, Richards AA, Hickman IJ, et al. Adiponectin-a key adipokine in the metabolic syndrome [J]. Diabetes Obes Metab, 2006, 8(3): 264-280.
    5. Han SH, Quon MJ, Kim JA, et al. Adiponectin and cardiovascular disease: response to therapeutic interventions [J]. J Am Coll Cardiol, 2007, 49(5): 531-538.
    6. Takashi K, Toshimasa Y, Naoto K. Adiponectin and adiponectin receptors in insulin resistance diabetes and the metabolic syndrome [J]. J Clin Invest, 2006, 116(7): 1784-1792.
    7. Esposito K, Giugliano G, Scuderi N, et al. Role of adipokines in the obesity inflammation relationship: the effect of fat removal [J]. Plast Reconstr Surg, 2006, 118(4): 1048-1057.
    8. Vasseur F. Adiponectin and its receptors: partners contributing to the "vicious circle" leading to the metabolic syndrome [J]? Pharmacol Res, 2006, 53(6): 478-481.
    9. Guzik TJ, Mangalat D, Korbut R. Adipocytokines-novel link between inflammation and vascular function [J]? J Physiol Pharmacol, 2006, 57(4): 505-528.
    10. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome [J]. J Clin Invest, 2006, 116(7): 1784-1792.
    11. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes [J]. J Biol Chem, 1995, 270 (45): 26746-26749.
    12. Gil-Campos M, Canete RR, Gil A. Adiponectin, the missing link in insulin resistance and obesity [J]. Clin Nutr, 2004, 23(5): 963-974.
    13. Dietze-Schroeder D, Sell H, Uhlig M, et al. Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors [J]. Diabetes, 2005, 54(7): 2003-2011.
    14. Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappa B activation and IL-6 production and increases PPAR gamma expression in adipocytes[J]. Am J Physiol Regul Integr Comp Physiol. 2005, 288(5): R1220-1225.
    15. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys [J]. Diabetes, 2001, 50(5): 11-16.
    16. Chen H. Cellular inflammatory responses: novel insights for obesity and insulin resistance [J]. Pharmacol Res, 2006, 53(6): 469-477.
    17. Daimon M, Oizumi T, Saitoh T, et al. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population [J]. Diabetes Care, 2003, 26: 2015-2020.
    18. Matsuzawa Y. The metabolic syndrome and adipocytokines [J]. FEBS Lett, 2006, 580(12): 2917-2921.
    19. Civitarese AE, Jenkinson CP, Richardson D, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes [J]. Diabetologia, 2004, 47(5): 816-820.
    20. Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity [J]. J Biol Chem, 2004, 279: 12152-12162.
    21. Yamauchi T, Kamon J, Ito Y, et al. Clonning of adiponectin receptors that mediate antidiabetic metabolic effects [J]. Nature, 2003, 423: 762-769.
    22. Fasshauer M, Klein J, Kralisch S, et al. Growth hormone is a positive regulator of adiponectin receptor 2 in 3T3-L1 adipocytes [J]. FEBS Lett, 2004, 558: 27-32.
    23. Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation and low plasma concentration precedes a decrease in whole body insulin sensitivity in humans [J]. Diabetes, 2002, 51: 1884-1888.
    24. Wu X, Motoshima H, Mahadev K, et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes [J]. Diabetes, 2003, 52: 1355-1363.
    25. Halleux CM, Takahashi M, Delporte ML, et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue [J]. Biochem Biophy Res Commun, 2001, 288(5): 1102-1107.
    26. Ouchi N, Shibata R, Walsh K. Cardioprotection by adiponectin [J]. Trends Cardiovasc Med, 2006, 16(5): 141-146.
    27. Kong WJ, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J]. Nat Med, 2004, 10(12): 1344-1351.
    28.陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986,21:401-406.
    29.周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞葡萄糖转运的影响及其机制研究[J].中华内分泌代谢杂志,2003,19(6):479-482.
    30.周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞瘦素和抵抗素基因表达的影响[J].中华内科杂志,2004,43(1):56-57.
    1. Herbert Tilg, Alexander R, Moschen. Adipocytokines: mediators linking adipose tissue, inflammation and immunity [J]. Nat Rev Immun, 2006, 6: 772-783.
    2. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin [J]. Science, 2005, 307: 426-430.
    3. Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony enhancing factor [J]. Mol Cell Biol, 1994, 14: 1431-1437.
    4. Ognjanovic S, Bao S, Yamamoto SY, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes [J]. J Mol Endocrinol, 2001, 26: 107-117.
    5. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis [J]. J Clin Invest, 2004, 113: 1318-1327.
    6. Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony enhancing factor, whose expression is upregulated in activated lymphocytes, is a nicotinamide phosphoribosyl transferase, a cytosolic enzyme involved in NAD~+ biosynthesis [J]. Eur J Immunol, 2002, 32: 3225-3234.
    7. Sethi JK, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes [J]? Trends Mol Med, 2005, 11: 344-347.
    8. Ognjanovic S, Bryant GD. Pre-B-cell colony enhancing factor, a novel cytokine of human fetal membranes [J]. Am J Obstet Gynecol, 2002, 187: 1051-1058.
    9. Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony enhancing factor as a potential novel biomarker in acute lung injury [J]. Am J Respir Crit Care Med, 2005, 171: 361-370.
    10. Kitani T, Okuno S, Fujisawa H. Growth phase dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor [J]. FEBS Lett, 2003, 544(1-3): 74-78.
    11. Bottcher Y, Teupser D, Enigk B, et al. ENPP1 variants and haplotypes predispose to early onset obesity and impaired glucose and insulin metabolism in German obese children [J]. J Clin Endocrinol Metab, 2006, 91(12): 4948-4952.
    12. Swneke DB, Loredo-Osti JC, Pierre L, et al. Common polymorphisms in the romoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population [J]. Diabetes, 2006, 55: 2896-2902.
    13. Jian WX, Luo TH, Gu YY, et al. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population [J]. Diabetic Medicine, 2006, 23: 967-973.
    14. Hug C, Lodish HF. Visfatin: a new adipokine [J]. Science, 2005, 307: 366-367.
    15. Chen MP, Chung FM, Chang DM, et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus [J]. J Clin Endocrinol Metab, 2006, 91(1): 295-299.
    16. Arner P. Editorial: visfatin—a true or false trail to type 2 diabetes mellitus [J]. J Clin Endocrinol Metab, 2006, 91(1): 28-30.
    17. Kralisch S, Klein J, Lossner U, et al. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes [J]. J Endocrinol, 2005, 185: R1-R8.
    18. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans [J]. Diabetes, 2005, 54(10): 2911-2916.
    19. Matsuzawa Y. Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease [J]. Nat Clin Pract Cardiovasc Med, 2006, 3: 35-42.
    20. Claudio P, Catia P, Massimiliano O, et al. Reduced plasma visfatin/pre-B cell colony enhancing factor in obesity is not related to insulin resistance in humans [J]. J of Clinl Endocrinol Metab, 2006, 91(8): 3165-3170.
    21. Kloting N, Kloting I. Visfatin: gene expression in isolated adipocytes and sequence analysis in obese rats compared with lean control rats [J]. Biochem Biophys Res Commun, 2005, 332: 1070-1072.
    22. Teoman D, Alper S, Ilker T, et al. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance [J]. Diabetes Research and Clinical Practice, 2006, 3674: 1-6.
    23. Van der Veer E, Nong Z, O'Neil C, et al. Pre-B-cell colony eenhancing factor regulates AD~+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation [J]. Circ Res, 2005, 97: 25-34.
    24. Martin PR, Shea RJ, Mulks MH. Identification of a plasmid encoded gene from Haemophilus ducreyi which confers NAD~+ independence [J]. J Bacteriol, 2001, 183: 1168-1174.
    25. Yang HY, Siva Lavu, David A. Nampt/PBEF/visfatin: a regulator of mammalian health and longevity [J]? Experimental Gerontology, 2006, 41: 718-726.
    26. Wang T, Zhang XB, Poonam B, et al. Structure of nampt/PBEF/visfatin, a mammalian NAD~+ biosynthetic enzyme [J]. Nature Structural & Molecular Bilolgy, 2006, 13, (7): 661-662.
    27. Chan TF, Chen YL, Lee CH, et al. Decreased plasma visfatin concentrations in women with gestational diabetes mellitus [J]. J Soc Gynecol Investig, 2006, 13: 364-367.
    28. Kralisch S, Klein J, Lossner U, et al. Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes [J]. Am J Physiol Endocrinol Metab, 2005, 289: E586-E590.
    29. Haider D G, Schaller G, Kapiotis S, et al. The release of the adipocytokine visfatin is regulated by glucose and insulin [J]. Diabetologia, 2006, 49: 1909-1914.
    30. Turpaev K, Bouton C, Diet A, et al. Analysis of differentially expressed genes in nitric oxide exposed human monocytic cells [J]. Free Radic Biol Med, 2005, 38(10): 1392-1400.
    31. Katsumori S, Atsunori F, Naomi H, et al. Visfatin in adipocytes is upregulated by hypoxia through HIFla-dependent mechanism [J]. Biochem Biophys Res Commun, 2006, 349: 875-882.
    32. Baeb SK, Kima SR, Jong GK, et al. Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1[J]. FEBS Lett, 2006, 580: 4105-4113.
    33. Choi KC, Ryu OH, Lee KW, et al. Effect of PPARa and γ agonist on the expression of visfatin, adiponectin and TNF-a in visceral fat of OLETF rats [J]. Biochem Biophys Res Commun, 2005, 336(3): 747-753.
    34. Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic mRNA expression of clock genes and adipocytokines in mouse visceral adipose tissue [J]. Endocrinology, 2005, 146: 5631-5636.
    35. Hammarstedt A, Jussi P, Victoria RS, et al. Visfatin Is an Adipokine, But it is not regulated by thiazolidinediones [J]. J Clin Endocrinol Metab, 2006, 91(3): 1181-1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700