用户名: 密码: 验证码:
秦川牛CEBPA和AMPD1基因遗传变异分析及其对体尺和胴体性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以秦川牛共计215个个体为实验研究对象,运用DNA池快速测序法、PCR-SSCP、PCR-RFLP、CRS-PCR-RFLP和DNA序列分析法筛查和鉴定牛CEBPA和AMPD1基因的SNPs,2个候选基因一共筛查到了7个SNPs,其中CEBPA基因筛查到1个SNP,AMPD1基因筛查到6个SNPs,通过对这些SNPs在秦川牛群体中的遗传结构分析、遗传多态性与体尺和胴体性状的关系的研究,目的在于寻找候选基因与秦川牛体尺和胴体性状相关的分子标记,以期为秦川牛生产性能的改良提供科学依据。
     本实验得到以下重要研究结果:
     1.秦川牛CEBPA基因SNP筛查及其与体尺和胴体性状的关联分析采用DNA池快速测序的方法寻找秦川牛CEBPA基因SNP,筛查到1个多态位点g.963T>G,该突变位于基因的编码区。运用PCR-RFLP方法验证并分析该位点在秦川牛群体中的多态性。
     CEBPA-Sma I基因座该基因座Sma I酶切的结果显示:群体中分布A、B两个等位基因和AA、AB、BB三种基因型,处于中度多态。经过卡方适合性检验,秦川牛群体在该基因座达到Hardy-Weinberg平衡状态(P>0.05)。将该基因座的基因型与体尺、胴体性状进行关联分析,结果表明该基因座与宰前活重和胴体重显著相关(P<0.05),BB为优势基因型,B为优势等位基因,暗示该基因座有可能作为秦川牛胴体性状标记辅助选择的标记之一。
     2.秦川牛AMPD1基因SNPs筛查及其对体尺和胴体性状的关联分析用DNA池快速测序法筛查AMPD1基因的SNPs,筛查到5个SNPs和1个缺失突变,分别是:g.10792A>C,g.14842A>C,g.16214-16231 TTCCCCTCATACCACGCC,g.19416T>C和g.19421A>G,g.22120 C>G。
     AMPD1-Pst I和AMPD1-Xho I基因座秦川牛AMPD1-Pst I基因座突变位于外显子5;AMPD1-Xho I基因座突变位于内含子7。运用CRS-PCR-RFLP方法分析这两个基因座在秦川牛群体中的多态性,这2个突变位点分别用限制性内切酶Pst I和Xho I酶切的结果显示:群体中均存在A、C两个等位基因,只表现AA和AC两种基因型,没有出现CC基因型;卡方检验表明群体在这两个基因座均达到Hardy-Weinberg平衡状态(P>0.05);PIC值显示群体处于低度多态范围内,说明该基因基因座保守。关联分析后两种基因型与体尺和胴体指标之间没有达到差异显著水平(P>0.05)。
     AMPD1-D8缺失基因座秦川牛AMPD1基因18 bp的缺失位于基因第16214 bp~16231 bp之间,突变位于内含子8区域。采用DNA测序和琼脂糖凝胶电泳相结合的方法,对缺失区域进行研究。电泳结果出现3种带型,分别为AA野生型,AB缺失杂合型,BB缺失纯合型,存在两种等位基因A和B,基因型频率分别为0.7163、0.2233和0.0605。卡方分析揭示秦川牛群体处于Hardy-Weinberg不平衡状态。三种基因型与相应的体尺和胴体指标关联,分析结果显示:在宰前活重指标上,AA基因型极显著高于AB基因型;胴体重指标上,AA基因型显著高于AB和BB基因型,提示我们缺失突变影响秦川牛的胴体性状。
     AMPD1-L11连锁基因座秦川牛AMPD1基因g.19416T>C和g.19421A>G两个突变为连锁突变位点,位于基因的内含子11区域,2个突变仅间隔4 bp。利用PCR-SSCP和DNA测序两种方法检测到秦川牛品种中出现4种单倍型,命名为A (T-A),B( T-G),C (C-A)和D (C-G)。PCR-SSCP和DNA测序结果都相互验证此连锁基因座出现5种基因型,描述为AA (T-A/T-A),BC (T-G/C-A),AC (T-A/C-A),CC (C-A/C-A)和CD (C-A/C-G)。五种基因型与相应的体尺和胴体指标相关联,关联结果揭示:在体斜长指标上,BC基因型与AA和CD基因型之间有显著差异(P<0.05);宰前活重指标上,BC基因型也显著高于CD基因型(P<0.05);BC基因型个体比AA、CC和CD型个体有更高的胴体重(P<0.05);屠宰率指标上,BC基因型同样也显著高于AA基因型(P<0.05);其它的体尺和胴体性状关联后均无显著相关(P>0.05)。因此,AMPD1基因的这个连锁基因座对秦川牛的体尺和胴体性状上有显著影响。
     AMPD1-I15基因座秦川牛此基因座突变位于内含子15。该突变基因座采用PCR-SSCP鉴定其多态性,307 bp PCR产物经PCR-SSCP检测后呈现CC、CG和GG三种基因型。秦川牛此基因座处于Hardy-Weinberg非平衡状态(P<0.05)。PIC为0.318,多态性较丰富。相关分析结果表明:体斜长指标上,GG基因型个体与CC基因型个体达到了统计学的显著水平(P<0.05);胴体重和屠宰率指标上,GG基因型个体与CC基因型个体达到了统计学的极显著水平(P<0.01),并且整个群体中呈现了GG>CG>CC的趋势。
The gene pooling and sequencing,PCR-SSCP, PCR-RFLP, CRS-PCR-RFLP and DNA sequence analysis techniques were applied to scan and identification the genetic variations of candidate gene and their association with body measurement and carcass traits in 215 cattles.As a result,7 SNPs was found on the bovine CEBPA and AMPD1 genes.A new SNP was detected at CEBPA gene.6 SNPs was detected at AMPD1 gene.The association between genetic variations and body measurement and carcass traits were analyzed by using general linear model,as well as population genetic structure and distribution of genotype and allele were calculated by POPGENE software.These research will benefit for find effective molecular markers associated to body measurement and carcass traits,and give scientific theoretical basis to the improvement of Qinchuan cattle performance.
     The research results were displayed as follows:
     1. SNP detection of CEBPA gene and their assosiation between body measurement and carcass traits in Qinchuan cattle
     CCAAT enhancer binding protein A (CEBPA) gene was studied as a candidate gene for the body measurement and carcass traits of bovine. A new SNP g.963T>G was detected by sequencing at CDS region. Different genotypes were determined in Qinchuan cattle by restriction fragment length polymorphism (RFLP).
     CEBPA-Sma I Locus PCR products digested with Sma I demonstrated polymorphisms in analyzed population.We found two allelic and three genotypes in Qinchuan population.The value of polymorphism information content indicated that this was a moderate polymorphism in Qinchuan cattle. Theχ2 test indicated that the polymorphic locus in Qinchuan cattle did fit Hardy-Weinberg equilibrium (P>0.05). g.963T>G polymorphism significantly associated with carcass weight (P<0.05),genotype BB was a predominant genotype and B was a predominant allele. It is suggest that g.963T>G locus may be one of the marker-assisted selection used as carcass traits in Qinchuan cattle.
     2. SNPs detection of AMPD1 gene and their assosiation between body measurement and carcass traits in Qinchuan cattle
     The AMPD1 was researched in the experiment. 6 SNPs were found.There were 5 SNPs and 1 deletional mutation in AMPD1 gene,namely,g.10792 A>C,g.14842 A>C,Del. g. 16214-16231 TTCCCCTCATACCACGCC, g. 19416T>C and g.19421A>G, g.22120 C>G.
     AMPD1-Pst I and AMPD1-Xho I Loci A SNP A10792C was detected by sequencing at CDS region. A14842C mutation was detected in intron 7 of AMPD1. Different genotypes were determined in Qinchuan cattle by Creat Restriction enzyme Site PCR (CRS-PCR-RFLP). The PCR products of AMPD1 gene exhibited two genotypes and two alleles.Theχ2 test showed that the genotype distributions in Qinchuan cattle breed was in agreement with Hardy-Weinberg equilibrium (P>0.05). The value of polymorphism information content was less than 0.25,which indicated that this was a low polymorphism in Qinchuan cattle. The association of the A10792C and A14842C mutations of AMPD1 with body measurement and carcass traits of Qinchuan cattle were analyzed,the result revealed that there were no obvious differeces (P>0.05).
     AMPD1-18 bp deletion Locus The objectives of the present study were focused on detecting deletion mutation in bovine AMPD1 gene, and analyzing its effect on body measurement and carcass traits in Qinchuan cattle by using DNA sequencing and agarose electrophoresis methods. Deletion g.16214-16231 TTCCCCTCATACCACGCC mutation was detected in intron 8 of AMPD1, and was located in 16214bp~16231bp. The 198 bp PCR products of AMPD1 gene exhibited three genotypes and two alleles were revealed: A and B. The frequencies of genotype AA,AB and BB in Qinchuan populations was 0.7163, 0.2233 and 0.0605. Theχ2-test analysis demonstrated that the breed was not in agreement with Hardy-Weinberg equilibrium (P<0.05). The association of the 18 bp deletion mutation of AMPD1 gene with body measurement and carcass traits of Qinchuan cattle were analyzed. The cattle with AA genotype had slaughter weight and carcass weight than those with genotype AB (P<0.01 or P<0.05). These results suggest that the 18 bp deletion mutation may influence the carcass traits in Qinchuan cattle.
     AMPD1-L11 Locus The linkage site g. 19416T>C and g.19421A>G mutation were detected in intron 11 of AMPD1.The polymorphism of the AMPD1 gene was detected by PCR-SSCP and DNA sequencing methods in 215 individuals from Qinchuan beef cattle breeds. The results showed that four kinds of haplotypes, named: A (T-A), B (T-G), C (C-A) and D (C-G); and the five genotypes were conflated and described as: AA (T-A/T-A), BC (T-G/C-A), AC (T-A/C-A), CC (C-A/C-A) and CD (C-A/C-G). Association of the five genotypes with body measurement and carcass traits in Qinchuan cattle breed.The animals with genotype BC had greater body length compared with genotypes AA (P<0.05) and CD (P<0.05) were observed.The genotypes BC had greater slaughter weight compared with genotypes CD (P<0.05);Individuals with genotype BC was significantly associated with carcass weight (P<0.05),and the genotype BC cattle had greater carcass weight than genotypes AA (P<0.05), CC (P<0.05) and CD (P<0.05), the BC genotype had greater dressing percentage than genotype AA (P<0.05). Other growth and carcass traits in the records had no significant association with genotypes studied. Therefore, the presence of two novel mutations in AMPD1 gene might candidate gene that affects body measurement and carcass traits in Qinchuan cattle.
     AMPD1-I15 locus The C22120G transversion was detected at intron 15 region.PCR-SSCP was applied to analyze the association of variations of AMPD1 gene with body measurement and carcass traits in Qinchuan cattle.The results showed that 307 bp PCR products were demonstrated three genotypes polymorphism in Qinchuan cattle population,namely,CC,CG and GG,which was not in agreement with Hardy-Weinberg equilibrium (P<0.05). The value of PIC indicated that this was a middle polymorphism in Qinchuan cattle. Correlation analysis revealed that the Individuals with genotype GG had greater body length compared with genotypes CC (P<0.05).The genotypes GG had greater carcass weight and dressing percentage compared with genotypes CC (P<0.01).
引文
柴丽娟,储明星,文杰,陈继兰,赵桂苹,郑麦青,刘文忠,周忠孝.2005a.北京油鸡AMPD1
    基因多态性及其与肌苷酸含量关系的研究.畜牧兽医学报,36(11): 1117~1120
    柴丽娟,储明星,文杰,陈继兰,赵杜苹,郑麦青,刘文忠,周忠孝.2005b.6个鸡种AMPD1
    基因PCR-RF-SSCP分析.安徽农业大学学报,32(4): 451~455
    崔建勋,杜红丽,张细权.2005.利用DNA池和测序技术快速筛查SNPs及估算基因频率.遗传学报,32(4):372~377
    丁宁,张志威,王宁,李辉.2009.鸡C/EBPa基因自身调控机制研究.第十五次全国动物遗传育种学术讨论会论文集,P434
    杜玮南,孙红霞,方福德.2000.单核苷酸多态性的研究进展.国外医学(遗传学分册),4:392~394
    黄瑾,张锦生,黄光存,汤其群,陈晨,张秀荣,陈琦.2004.C/EBPα基因在大鼠肝星状细胞内的表达及意义.中华肝脏病杂志,12(5): 259~262
    黄生强,任斌,柳小春,马乐,肖博,杜海波.2009.AMPD1基因的遗传多态性及其与部分胴体、肉质性状的关联分析.第十五次全国动物遗传育种学术讨论会,P256
    刘琛,文杰,赵桂苹,郑麦青,陈继兰.2009.A-FABP和AMPD 1基因SNP位点对北京油鸡部分肉质性状的组合效应分析.畜牧兽医学报,40(10): 1555~1559
    刘慧.2008.野猪家猪AMPD1基因的克隆、表达和遗传变异的研究.[硕士学位论文].东北:东北农业大学
    刘慧,许尧,赵黎黎,杨秀芹,刘娣.2008.猪AMPD1基因的克隆与变异位点分析.遗传,30(2): 175~178
    罗桂芬,陈继兰,孙世铎,文杰,赵桂萍,孙志杰.2005.鸡AMPD1基因PCR~SSCP分析与相关性状的研究.黑龙江畜牧兽医,4: 8~10
    孙成铭,黄世峰,罗红伟,刘钉宾,川文君,朱喜丹,玛文莉,黄宗干.2009.CCAAT/增强子结合蛋白α对K562细胞分化和凋亡的影响及其机制.肿瘤,29(3): 220~225
    王娉,王启贵,李辉,张富春.2007.鸡C/EBP-α基因表达载体的构建及抗血清制备.细胞与分子免疫学杂志,23(10): 978~981
    王启贵,王娉,马纪,李辉,张富春.2006.鸡PPARγ和C/EBPα的蛋白表达及其对肉鸡腹脂含量的影响.中国家禽,28(23): 14~17
    杨根焰,张永莲.1999.CAAT区/增强子结合蛋白(C/EBP)的结构与功能.生物化学与生物物理进展,26(1):26~30
    张学余,黄兆明,苏一军,沈晓鹏,季从亮,陈国宏.2004.丝羽乌骨鸡腺苷单磷酸脱氨酶1(AMPD1)基因多态性及其与肌苷酸含量相关研究.畜牧兽医学报,35(6): 605~607
    赵春江,李宁,邓学梅.2003.应用创造酶切位点法检测单碱基突变.遗传,25(3): 327~329.
    郑业华,杨恬,向明明,王韵.2005.CCAAT/增强子结合蛋白在皮脂腺发育中的表达及意义.第三军医大学学报,27(7): 646~648
    J.萨姆布鲁克,D.W.拉塞尔,黄培堂等译.2002.分子克隆实验指南(第三版).北京:科学出版社, 463~470.
    Alain V, et al. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol, 34: 275~305
    Altshuler D, Pollara V J, Cowles C R. 2000. An SNP map of the human genome generatecl by reduced representation shotgun sequencing. Nature, 407(6803): 513~516
    Andreassi M G, Botto N, Laghi-Pasini F, et al. 2005. AMPD1 (C34T) polymorphism and clinical outcomes in patients undergoing myocardial revascularization. Int J Cardiol. 101(2):191~195
    Chen S S, Chen J F, Johnson P F, et al. 2000. C/EBPβ, when expressed from the C/EBPαgene locus,can functionally replace C/EBPαin liver but not in adipose tissue. Mol Cell Biol, 20: 7292~7299.
    Collins F S, Guyer M S, Chakravarti A. 1997. Variations on a theme:Cataloging human DNA sequence variation. Science, 278(5343): 1580~1581
    Collins R P, Palmer B R, Pilbrow A P, et al. 2006. Evaluation of AMPD 1 C34T genotype as a predictor of mortality in heart failure and post-myocardial infarction patients. Am Heart J. 152(2): 312~320
    Constance C M, Morgan J I, Umek R M. 1996. C/EBP alpha regulation of the growth arrest associated gene gadd45. Mol Cell Biol, 16(7): 3878~3883
    Deeb S S, Fajas I, Nemoto M. 1998. A Pro12 Ala substitution in PPAR gamma 2 associated with decreased receptor activity,lower body mass index and improved insulin sensitivity. Nat Genet,20: 284~287
    Francesco D Alo, Johansen L M, Nelson E A, et al. 2003. The aminoterminal and E2F interaction domains are critical for C/EBP alpha-mediated induction of granulopoietic development of hematopoietic cells. Blood, 102(9): 3163~3171
    Gombart A F, Hofmann W K, Kawano S, et al. 2002. Mutations in the gene encoding the trans-cription factor CCAAT/enhancer binding protein-αin myelodysplastie syndromes and acute myeloid leukemias. Blood, 99(4): 1332~1340
    Gottgens B, Barton L M, Gilbert J G, et al. 2000. Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnol, 18: 181~186
    Hand B D, Roth S M, Roltsch M H, et a1. 2006. AMPD1 gene polymorphism and the vasodilat-ory response to ischemia. Life Sci. 79(15): 1413~1418
    Hayashi K. 1992. Getet Anal Tech Appl, 9(3): 73~79
    Hisatome L, Morisaki T, Kamma H, Sugama T, Morisaki H, Ohtahara A, Holmes EW. 1998.Control of AMP deaminase 1 binding to myosin heavy chain. Am J Physiol, 275(3Pt1): 870~881
    Jae-woo Kim, Y H Ahn. 1998.CCAAT/enhancer binding protein regulates the promoter activity of the rat Glut2 glucose transporter gene in the liver cells Biochem. 336: 83~90
    Kalsi K K, Yuen A H, Johnson P H, et al. 2005.AMPD1 C34T mutation selectively affects AMP deaminase activity in the human heart. Nucleosides Nucleotides Nucleic Acids. 24 (4): 287~288
    Kwok S, Kellogg D E, McKinney N, et al. 1990. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus typel model studies. Nucleic Acids Res, 18: 999~1005
    Labeit S, Kolmerer B. 1995. Titins: giant proteins in charge of muscle ultrastructure and elasti-city. Science, 270(5234): 293~296Lekstrom-Himes J, Xanthopouos K G. 1998. Biological role of the CCAAT/enhancer binding protein family of transcription factors. J Biol Chem, 273(44): 28545~28548
    Mahnke-Zizelman D K, Sabinal R L. 2002. N-terminal sequence and distal histidine residues are responsible for pH-regulated cytoplasmic membrane binding of human AMP deaminase isoform E. Biol Chem, 277(45): 42654~42662
    Mahnke-Zizelman D K, D’cunha J, Wojnar J M, Brogley M A, Sabina R L. 1997. Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type. Biochem J, 326 (Pt2): 521~529
    Manoba T, Hasegawa K. 1991. Sensory changes in umami taste of inosine 5'-monophosphate solution after heating. Journal of Food Science, 56(5): 1429~1432
    Marquetant R, Sabina R L, and Holmes E W. 1989. Identification of a noncatalytic domain in AMP deaminase that influences binding to myosin. Biochemistry, 28(22): 8744~8749
    Merkler D J, Schramm V L. 1993. Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase, Zinc content, substrate specificity, pH studies, and solvent isotope effects. Biochemistry, 32(22): 5792~5799
    Mineo I, Clarks P R, Sabina R L, et al. 1990. A novel pathway for alternative splicing: identifi-cation of an RNA intermediate that generates an alternative 5' splice donor site not present in the primary transcript of AMPD1. Mol Cell Biol, 10(10): 5271~5278
    Mineo I, Holmes E W. 1991. Exon recognition and nucleocytoplasmic partitioning determine AMPD1 alternative transcript production. Mol Cell Biol, 11(10): 5356~5363
    Mondal D, Alam J, Prakash O. 1995. N F-kappa B site-mediated negative regulation of the HIV-1 promoter by CCAAT/enhancer binding proteins in brain-derived cells. J Mol Neurosci, 5(4):241~258
    Morisaki H, Morisaki T, Kariko K, Genetta T, Holmes E W. 2000. Positive and negative eleme-nts mediate control of alternative splicing in the AMPD1 gene. Gene, 246(1-2): 365~372
    Morisaki T, Cross M, Morisaki H, et al. 1992. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci, 89(14): 6457~6461
    Morisaki T, Sabina R L, Holmes E W. 1990.Adenylate deaminase.A multigene family in humans and rats. J Biol Chem, 265(20): 11482~11486
    Mullikin J C, Hunt S E, Cole C G. 2000. An SNP map of human chromosome 22. Nature, 407(6803): 516
    Nerlov C, Ziff E B. 1994. Three levels of functional interaction determine the activity of of CCAAT/enhancer binding protein-alpha on the serum albumin promoter. Genes Dev, 8(3): 350~362
    Orita M, Suzuki Y, Swkiya T, Hayashi K. 1989. Rapid and sensitive detection of point mutations and genetic polymorphism using polymerase chain reaction. Genomics, 5: 874~879
    Osada S, Yamamoto H, Nishihara T, et al. 1996. DNA binding specificity of the CCAAT/ enhancer-binding protein transcription factor family. J Biol Chem, 271: 3891~3896
    Ossipow V, Descomhes P, Schibler U. 1993. CCAAT/enhancer binding protein mRNA is transl-ated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci USA, 90:8219~8223
    Pabst T, Mueller B U, Zhang P, et al. 2001a. Dominant-negative mutations of CABPA, encodi-ng CCAAT/enhancer binding protein-alpha (C/EBP alpha), in acute myeloid leukemia. Nat Genet, 27: 263~270
    Pabst T, Muller Bu, Harakawa N, et al. 2001b. AML1-ETO downregulates the granulocytie differtiation factor C/EBPαin t(8;21) myeloid leukemia. Nature Med, 7(1): 444~451
    Petkovich M. 1992. Vitamin A regulation of gene expression: the role of retinoic acid receptor. Annu Rev Nutr, 12: 443~471
    Prusty D, Park B H, Davis K E, et al. 2002. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPAR gamma) and CEBP-alpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem, 277: 46226~46232.
    Ravi S, David W, Steven C. Schmidt et al. 2001. The Internationa1 SNPMap Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409: 928~933
    Ronca F, Ranieri-Raggi M, Brown P E, Moir A J, Raggi A. 1994. Evidence of a species-differentiated regulatory domain within the N-terminal region of skeletal muscle AMP deaminase.Biochim Biophys Acta, 1209(1): 123~129
    Ronca-Testoni S, Ronca G. 1974.Muscle 5'-adenylic acid aminohydrolase. Kinetic properties of rat muscle enzyme treated with pyridoxal 5'-phosphate. J Biol Chem, 249(24): 7723~7728
    Rosenfield R L, Deplewski D, Kentsis A, et al. 1998. Meehanisms of and rogen induction of sebocyte differentiation. Dermatology, 196(1): 43~46
    Rundell K W, Tullson P C, Terjung R L. 1992. Altered kinetics of AMP deaminase by myosin binding. Am J Physiol, 263(2 Pt 1): 294~299
    Sabina R L, Marquetant R, Desai N M, et al. 1987. Cloning and sequence of rat myoadenylate deaminase cDNA: evidence for tissue specific and developmental regulation. J Biol Chem, 262 (26): 12397~12400.
    Shook G E. 1982.Approaches to summarizing somatic cell counts which improve interpretability (A). Proc Natl Mastitis Countil, Arlington, AV: 150~166
    Snaddon J, Smith M L, Neat M, et al. 2003. Mutation of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer, 37(1): 72~78
    Strail A, Knoll A, Moser G, et al. 2000. The porcine adenosine monophosphate deaminase l (AMPD1) gene maps to chromosome 4. Anim Genet, 31(2): 147~148
    Stram D O. 2004. Tag SNP selection for association studies. Genet Epidemical, 27: 365~374
    Takeshita T, Morimoto K, Shimanuki S, et al. 1994. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japannese population. Hun Genet, 94: 217~223
    Takiguchi M. 1998. The C/EBP family of transcription factors in the liver and other organs. Int J Exp Pathol, 79: 369~391
    Tao H, Cox D R, Frazer K A. 2006. Allele-specific KRT1 expression is a complex trait. PLoSGenet, 2(6):93
    Tenen D G, Homars R, Licht J D, et al. 1997. Transcription factors, normal myeloid developme-nt, and leukemia. Blood, 90(2): 489~519
    Truong B-TH, Lee Y J, Lodie T A, et al. 2003. CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood, 101(3): 1141~1148
    Wang N D, Finegold M J, Bradley A, et al. 1995. Impaired energy homeostasis in C/EBP alpha knockout mice. Science, 269(5227): 1108~1112
    Wessels J A, Kooloos W M, DeJonge R, et al. 2006. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recen-onset rheumatoid arthritis. Arthritis Rheum, 54 (9): 2830~2839
    Wheeler T J, Lowenstein J M. 1979. Adenylate deaminase from rat muscle.Regulation by purinenucleotides and orthophosphate in the presence of 150m M KCl. J Biol Chem. 254(18): 8994~8999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700