用户名: 密码: 验证码:
西昆仑增生造山带演化及成矿背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西昆仑造山带是一个长期演化的复杂增生造山带。该造山带的造山过程即震旦纪-寒武纪扩张形成的秦祁昆洋(原特提斯洋)大洋板块从奥陶纪至三叠纪连续向北侧塔里木板块之下的俯冲,塔里木板块向南增生过程,地史跨度达500多Ma。
     震旦纪-寒武纪RODINIA超大陆裂解,形成原特提斯洋。在塔里木大陆板块大洋板块之间存在一个多岛洋盆过度区,过度区由亲塔里木板块的三个微陆块分布其间的小洋盆、裂谷盆地或裂陷海槽构成。奥陶纪开始原特提斯大洋板块沿多岛洋过渡区南缘康西瓦-苏巴什一线开始向北俯冲,使上盘多岛洋区变成岛弧。之后,大洋板块向南退缩,沿俯冲带形成的增生楔向南推进,位于增生楔北侧的岛弧也随之向南跟进。其间经历了晚奥陶世和中二叠世末两次弧/陆碰撞和随之发生的俯冲方式的转化调整,出现统一过程的阶段性构造体制变化。晚二叠世-三叠纪,特提斯洋不再发生洋底扩张,残留盆地被大量陆源碎屑充填的同时,受南侧发生裂离的冈瓦纳大陆块体向北的挤压,残余洋壳继续向北被动俯冲,盆地沉积物发生褶冲变形,于侏罗纪隆起成山,也最终完成了洋陆转化。
     受地质背景控制,西昆仑造山带增生演化过程的成矿作用也很有规律,总体是矿种和类型由简单向多样转变,成矿潜力从弱到强转变。主要成矿作用发生在三个演化阶段。最早在震旦纪-寒武纪RODINIA超大陆裂解形成的小洋盆等裂陷盆地中产生了从基性侵入-火山和火山喷气—沉积作用有关的磁铁矿—赤铁矿。晚古生代为典型的沟—弧—(多)盆构造体制,沿早古生代弧陆碰撞带再次伸展形成的断续相连的三个裂谷盆地构成西昆仑一个重要的铜铅锌成矿带,有6种成矿类型。三叠纪—侏罗纪残余洋壳的向北俯冲,形成了西昆仑造山带规模最大的花岗岩带,同时在也发生了极不均匀的变质作用,形成三个规模不等的热变质穹隆构造。与岩浆侵入和热变质穹隆有关的成矿作用是西昆仑造山带成矿的最高潮,构成西昆仑最具找矿潜力的成矿带。洋壳熔部分融形成的“I”型花岗岩类形成斑岩型铜(银)矿,被洋壳携带的深海沉积岩部分熔融形成的“S”型花形成稀土和稀有金属矿产。热变质穹隆形成变质改造—热液脉型与变质级别相吻合的铁、铜、铅、锌、金、锑、汞矿。早古生代增生楔中的远洋沉积岩为热隆成矿的矿源层,一种是冷水沉积的富铁泥岩,另一种是洋底热水成因的铁铜铅锌矿(富金锰镍钴)。
Based on the recent data of the regional geological surveying (1:250000) and previous studies in the western Kunlun orogen, the basic and economic geology were studied elaborately from field and geochemical studies. Magmatic arc is the key to study tectonic evolution of the western Kun orogen in this paper, and some tectonic units, such as Sinian-Cambrian rock assemblages of continental breakup, Ordovician-Silurian and late-Paleozoic accretionary wedges, and Mesozoic domes were defined. Geology, tectonic units, tectonic evolution and dynamical processes, and mineralization of the western Kunlun orogen were studied systematically, and the geological and resource map with a scale of 1:1000000 of this belt was compiled and modified, which can reflect the tectonic evolution and mineralization of the western Kunlun orogen objectively.The western Kunlun orogen is a complicated accretionary orogen, which was formed by continuous subduction of the Sinian to Cambrian Qin-Qi-Kun Ocean (proto-Tethys) to the Tarim plate in the Ordovician-Silurian, Devonian-middle Permian, late Permian-Triassic, and Jurassic in different mechanisms. Accretion southward along the southern margin of the Tarim plate took place and lasted more 500 Ma periods. This orogeny took place initially along the Kangxiwa-Subashi areas, paleo-ocean subducted northward and the trench retreated southward in these areas.The mineralization as an essential part of the orogen was controlled by the geological setting fully in the western Kunlun Orogen, and the special ore deposits were developed in different tectonic history. Mineral assemblage and ore deposit types also changed regularly during the orogen.The Rodinia Supper-continent broke-up in the Sinian-Cambrian and began spreading in the late-Sunian to form the proto-Tethys ocean. An archipelago between the Tarim plate and the oceanic plate in the south margin of the Kanxiwa-Subashi areas was developed, which consisted of Kulangnagu, Sangzhutage and Saitula micro-continental blocks, and Kegang, Kudi and Qimanyute small ocean basins and rifted basins or fractured ocean trough. Ore-forming system of the magnetite-hematite was produced, which was related to basic intrusion-volcano and volcano exhalative sedimentation.Ordovician-Silurian, proto-Tethys subducted northward along the southern margin (Kangxiwa-Subashi area) of the transitional type of blocks of the archipelago at a low dip of subduction zone, and the island-arc formed in front of the overriding plate. These island arcs became into island-arc chain slowly and collided with Tarim plate in the Late Ordovician along the Kegang-Kudi-QImanyute areas. Additionally, early Ordovician-early Silurian subduction-related granite belt and late Ordovician collision-related granites with hydrothermal vein- and skam-type Fe-Co deposits and 'Hetian' jade deposits respectively were formed during this subduction-accretion. The granite belt related to subduction became younger southward. Accretionary prism was formed and progressively widened along the trench in the forearc area;mineralization was related to the pelagic sediments of this prism, which consists of Fe- riched mudstone and Fe-Cu-Pb-Zn deposits bearing Mn-Ni-Co. This prism is the source bed of Mesozoic mineralization.
    In the Devonian-Permian, paleo-Tethys subducted northward continuously, but the dipping angle of downgoing plate became steep and the trench-arc system was formed. Arc-continent collision took place in the mid-Permian, which is the second accretion orogen in the western Kunlun. Late Paleozoic island arc has the characters of continental margin arc but different from the early continental arc. Early Paleozoic accretionary wedge became into the basement of the late Paleozoic island arc. The accretionary prism consists of Flysh and seamount (basalt and limestone) respectively, were formed in the forearc area;back spreading took place between the early-Paleozoic accretionary wedge and island arc to form the Subashi small ocean basin within the Kangxiwa-Subashi tectonic belt. The Kungaishan, KUerliang and Aqiang rifted basins were formed along the suture between early-Paleozoic island arc and Tarim plate. These basins are equal to the three proto-microblocks, and are important Cu and Pb-Zn mineralized belt. Five types of mineralization were formed within them.In the late Permian-Triassic, the extension of the Tethys ended but became into a remnant ocean basin, and the Gondwana continent moved northward. Then, Trissic remnant basin was filled by clastic rocks and folded, and the ocean became into continent. Accretionary orogen ended in the western Kun orogen.In the Jurassic, early to late Paleozoic accretionary wedge and the Bayankalashan Group in the south of the Kangxiwa fault uplifted and were lack of deposits. However, deep tectonic activities were continuous. The downgoing oceanic crust and sediments were melted in the deep and plutoned into the Paleozoic accretionary wedge to form Triassic-Jurassic granitoid belt with huge scale in the western Kunlun orogen. Oceanic crust partly melted to form I-type granitoid, which associated with S-type granitoid formed by deep-water sediments. Porphyry Cu(-Mo)deposits, and rare-earth and related rare metal resources were formed by I- and S-type granitoid respectively. Synchronically, Muji-Tashikuergan, Kangxiwa, and Huangyangling domains and abundant Fe-Cu-Pb-Zn-Au-Ag-Sb mineral resources were formed by regional metamorphism of the early Paleozoic accretionary prism. The mineral deposits show distinctive metallogenic zoning and different metamorphic grade formed its relatively mineral deposit. Mineralization controlled by plutons and domes is the peak metallogenic epoch in the western Kunlun orogen.
引文
1.丁道桂等,西昆仑造山带与盆地,1996,地质出版社
    2.王登红,地幔柱及其成矿作用,1998,地震出版社
    3.王志洪等,西昆仑库地蛇绿岩地质、地球化学及其成因研究,地质科学,2000,35(2):151-160
    4.王志洪,候泉林,李继亮等,西昆仑库地蛇绿岩铂族元素初步研究,科学通报,1999,44 (15),1676-1680
    5.王书来,西昆仑造山带花岗岩形成的构造环境,矿产与地质,14(1总75):5-10
    6.王元龙等,西昆仑库地蛇绿岩的地质特征及其形成环境,长春地质学院学报,1997,27 (3):304—309
    7.计文化,韩芳林,王炬川,西昆仑于田县南苏巴什蛇绿混杂岩带的组成,地球化学特征及其地质意义,地质通报,2003,23(12),1196-1201
    8.方锡廉、汪玉珍,西昆仑山加里东期花岗岩类浅识,新疆地质,1990,8(2)153—158
    9.方爱民等,西昆仑库地西北依萨克群首次发现放射虫化石,地质科学,1998,33(3),384
    10.方爱民、李继亮、候泉林,新疆西昆仑“依沙克群”中放射虫组合及其形成时代探讨,地质科学,2000,35(2):212-218
    11.方爱民,李继亮,候泉林等,西昆仑库地复理石源区性质及构造背景分析,岩石学报,2003,11(1),153-166
    12.方爱民,李继亮,刘小汉,新疆库地混杂岩中基性火山岩构造环境分析,岩石学报,2003,19(13),409-417
    13.文世宣等,1993,喀喇昆仑山-昆仑山地区古生物,科学出版社
    14.邓万明,喀喇昆仑山-西昆仑地区基性——超基性岩初步考察,自然资源学院,1989,5 (3),1-11
    15.邓万明,西昆仑蛇绿岩研究的新进展,中国西部特提斯构造演化及成矿作用,电子科技出版社,1991
    16.邓万民,西昆仑-喀喇昆仑地区蛇绿岩的地质特征及其大地构造意义,岩石学报,1995,11(增刊),98-111
    17.李继亮,孙枢,郝杰等,论碰撞造山带的类型,地质科学,34(2),129-138
    18.李继亮,碰撞造山带大地构造相,现代地质学文集(上),南京大学出版社,1991
    19.李友林,赵磊,何明跃,西昆仑克里阳地区钾镁煌斑岩岩石学特征及其意义,现代地质,2000a,14(14),385-391
    20.李友枝,莫宣学,西昆仑深源岩浆活动及金刚石成矿地质条件评价,现代地,2000b,44
    21.孙文珂,金宜生、涂承林,中国及其毗邻海区重力系列图编图说明书,1999
    22.孙海田,李纯杰,吴海等,西昆仑金属成矿省概论,地质出版式社,2003
    23.刘训等,塔里木板块周缘的沉积-构造环境,新疆科技卫生出版社,1997
    24.刘训,天山-西昆仑地区沉积-构造演化史——新疆地学断面走廊及邻区不同地体的沉积-构造演化,古地理学报,2001,3(3)
    25.任纪舜等,中国及邻区大地构造图及说明书,地质出版社,1997
    26.任留东,高岩,西昆仑南带斜长角闪岩中方柱石的形成及流体挥发份的作用,岩石矿物杂志,2002,21(4),0398-0406
    27.许志琴,戚成祥,刘福来等,西昆仑康西瓦加里东期孔兹岩系及其地质意义,地质学报, 2004,78(6),733-743
    28.肖序常,王军,苏犁,2003,再论西昆仑库地蛇绿岩及其构造意义,地质通报,22(10),745-750
    29.肖序常,王军,西昆仑-喀喇昆仑及邻区岩石圈结构、演化中几个问题的讨论,地质论评,2004,50(3),285-294
    30.肖序常,李廷栋,,青藏高原的构造演化与隆升机制,广东科技出版社,2005
    31.肖文交、侯泉林、李继亮等,2000,西昆仑大地构造相解剖及其多岛增生过程,中国科学(D辑):地球科学,30(增刊):22—28
    32.肖文交,李继亮,候泉林,西昆仑东南构造样式及其对增生弧造山作用的意义,地球物理学报,1998,41(增刊),132-141
    33.许荣华等,1994,西昆仑北部早古生代构造岩浆岩带的发现,地质科学,vol.29,No.4,313-328
    34.何国琦等,1994,中国新疆古生代地壳演化及成矿,新疆人民出版社、香港文化教育出版社
    35.匡文龙,刘玉华,刘继顺等,西昆仑地区卡兰古MXXB河谷型铅锌矿床成矿地质特征及成矿作用探讨.世界地质,2002,21(4),349-346
    36.匡文龙,古德生,刘继顺等,西昆仑地区MXXB河谷型矿床的流体包裹体特征研究,
    37.邱建平,王旭东,李明,西昆仑卡拉塔什矿区含铜砂岩中发现钴矿,地质通报,2003,22(9),736-740
    38.邱建平,田倍仁,戚成祥,西昆仑塔木-卡兰古铅锌铜矿带含矿岩系的地质地球化学特征,现代地质,2003,17(2),
    39.张国伟等,秦岭造山带与大陆动力学,科学出版社,2001
    40.张洪涛,陈仁义,韩芳林,2004,重新认识中国斑岩铜矿的成矿地质条件,矿床地质,32(2),0258-7106(2004)02-0150-14
    41.张旗:1995,蛇绿岩研究中的几个问题,岩石学报,11(增刊):228-240
    42.张旗,1996,蛇绿岩与地球动力学研究,张旗主编,地质出版社
    43.张传林,于海峰,沈空林,西昆仑洄地伟晶辉长岩体和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体,地质论评,2004,50(6),639-642
    44.汪玉珍,西昆仑依萨克群的时代及其构造意义,新疆地质,1983,1(1):1-8
    45.汪玉珍、方锡廉,西昆仑山、喀喇昆仑山花岗岩类时空分布规律初步探讨,新疆地质,1987,5(1):15-25
    46.成都矿产地质研究所,1997,1:150万青藏高原及邻区地质图,地质出版社
    47.帕拉提.阿布都卡迪尔,西昆仑北缘钾镁煌斑岩及超镁铁岩地质特征,新疆地质,2000,18(2),163-166
    48.陈哲夫等,新疆开合构造与成矿,新疆科技卫生出版社,1997
    49.杨树锋,1999,西昆仑山库地蛇绿岩的特征及其构造意义,地质科学,34(3):281-288
    50.周辉等,1998,库地蛇绿混杂岩带中早古生代放射虫的发现及其构造意义,科学通报,43(22):2448-2451
    51.周辉,李继亮,候泉林等,西昆仑库地大型韧性剪切带的厘定,科学通报,1999,44(16),1774-1777
    52.姜春发等,昆仑开合构造,地质出版社,1992
    53.姜春发等,中央造山带开合构造,地质出版社,2000
    54.姜耀辉,芮健行,贺菊瑞等,西昆仑山加里东期花岗岩的类型及其大地构造意义,岩石 学报,1999,15(1),105-115
    55.周辉,李继亮,西昆仑库地煌斑岩的年代学及地球化学特征,岩石学报,2000,16(3),380-384
    56.周正毅主编,塔里木盆地各纪地层,科学出版社,2001
    57.郝杰,刘小汉,方爱民等,西昆仑“库地蛇绿岩”的解体及有关问题探讨,自然科学进展,2003,13(10),1116
    58.贾群子,,西昆仑块状硫化物矿床成矿条件和成矿预测,地质出版社,1999
    59.郭坤一,张传林,王家鑫,西昆仑东段北缘花岗岩微量元素及同位素地球化学,吉林大学学报,2002,32(2),116-121
    60.黄汲清,陈炳蔚,中国及邻区特提斯海的演化,地质出版社,1987
    61.袁超,孙敏,周辉,西昆仑阿卡阿孜岩体的年龄、源区及构造意义,新疆地质,2003,21(1),37-39
    62.袁超,孙敏,肖文交,原特提斯的消减极性:西昆仑128Km岩体的启示,岩石学报,2003,9(3),0399-0408
    63.袁超,孙敏,李继亮等,西昆仑库地蛇绿岩的构造背景:来自玻安系列岩石的新依据,地球化学,2002,31(1),43-48
    64.韩芳林 崔建堂 计文化,西昆仑加里东期造山作用初探,陕西地质,200119(2),8-18
    65.韩芳林 崔建堂 计文化 李海平 郝俊武,西昆仑其曼于特蛇绿混杂岩带的发现及地质意义,地质通报,2002,Vol.21,Nos.8~9,573-578
    66.韩芳林,西昆仑其曼于特蛇绿混杂岩带特征及地质意义,硕士论文,2001,共38页
    67.韩芳林,崔建堂,计文化等,于田县幅、伯力克幅地质调查新成果及主要进展,地质通报,2004,23(5-6),555-559
    68.新疆矿产地质研究所、新疆第一区调大队,新疆古生界(上、下册),新疆人民出版社,1990,
    69.缪长泉,新疆昆仑山和阿尔金山前寒武系及叠层石,新疆科技卫生出版社,1993
    70.新疆地质矿产局,新疆维吾尔族自治区区域地质志,地质出版社,1993
    71.潘裕生,1989,昆仑山区构造区划初探,自然资源学报,4,(3),196-203
    72.潘裕生,1990,西昆仑山构造特征与演化,地质科学,(3),224-232
    73.潘裕生等,2000,喀喇昆仑山-昆仑山地区地质演化,科学出版社
    74.潘桂棠等,东特提斯组成与地质演化,2000,地质出版社
    75.湛宏伟,罗照华,莫宣学,西昆仑阿卡阿孜岩体的地质特征,现代地质,2005,19(2),
    76.翟裕生等,区域成矿学,地质出版社,1999
    77.Sengor,A.M.,板块构造与造山运动——特提斯例析,丁晓等译,复旦大学出版社,1992
    78. A. H. G. Mitchell and M. S. Garson Mineral Deposits and Globol Tectonic Settings,1981,Acadernic press
    79. Arculus R. J and Powell r., 1986, Source component mixing in the region of arc magma generation. J. Geophys. Res.,91:5931-5926
    80. Bhatia, M. R., Rare earth element geochemistry of Autralian Palaeozoic graywackes and provenance and tectonics, Sedimentary Geology, 1985,45:97-113
    81. Blonford, W. T.,1878, Scientific results of the second Yar Kand mission, Geology, Based upon the collections and notes of Stolizka, F. Calcuffa.
    82. Eoward, M. P. and Rise, A. C., Collision tectonics, Geol. Soc. Pub.,London, 1986
    83. Cater, N. L.,and Uyeda, s., Collision Tectonics:deformation of continental lithosphere, Tectonophysics, 1985,199
    84. Coleman, R. G., Oman Ophiolite, J. Geophys. Res., 1981, 86, (B4):1-2782
    85. Coleman, R. G.,1977,Ophiolite-Ancient Oceanic Lthosphere?Berline: Springer-Verlag
    86. Desio, A., Geological work of the Italian expedition to the Karakorun. Geogr. Journ, 1930,75:402-411
    87. De. TERRA, H., Geologische forschungen in westlichen Kunlun and Karakorum-Himalaya: Wissensch Ergebn. Trinkler schen. Zentralasien Exped. 2 Berlin
    88. Dewey, J. F. and Burke, K. C. A., Tibetan Variwan and basement reactivation Products of continental collision, Jounal of Geology, 1973,81:673-682
    89. Dewey, J. F. and W. C. Pitma, IU, W. B. F. Ryan, and J. Bonnin, plate tectonic and the evolution of the alpine system, Geol. Sec. Am. Bull.,1973,3137-3180
    90. F. J. Sawkins, Metal Deposits in Relafion to Plat Tectonics,1984
    91. Hsu, K. J., The concept of tectonic facies, Bull. Tech. Univ. Istanbul, 1991, 44:25-42
    92. Ingersoll R. V., Graham S. A., Dickinson W. R., 1995. Remnant ocean basins. In: Busby C. J., Ingersoll R. V., eds.,Tectonics of Sedimentary Basins. Blackwell Science, p.363-392.
    93. Phinny, A. et al.,continental Dynamics:A national research Project of USA, 1989
    94. Pearce, J. a.,1984, The Role at Active Continental Margin. In:Continentanl Basalts and Marital Xendiths(Ed. by nawkesworth, C.J. and Norry, M.J)103
    95. Pearce, J. a.,1982, Trace elements characterics of Lavas from destrctive plate bundaries. In:Thorpe R.S(ed.),Andesites. Wiley, chichester, PP. 525-548
    96. Matle ph, Tapponnier p, Amsud N et al, Fectomics of westem Tibet, Between the Tarim and the Indus. Earth and planetary Science Letters 1996 ,142,311-330
    97. Mattem F and Schneider W, Suturing of the proeo-and paleo-Tethys Oceans in the westem Kunlun(Xinjiang), China, Jounavl of Asian Earth Sciences ,2000,18,637-650
    98. Sengor, A. M. C., The palaeothethys suture a line of demarcation between two fundamentally different architectural stytle in the structure of Asia, The island Arc, 1992,1:78-91
    99. Sengor, A. M. C., 1989, The Tetbyside orogenic system:An introduction. In: Sengor, A. M. C(ed),Tectonic Evlotion of the tethyan Region. Istanbul University Faculty of Mines, 1-22
    100. Sengor, A. M. C.,1990, Plate Tectonics and Research after 25 Year:A Tethyan perspective. Earth-science Reviews, 27,1-201
    101. Steinmann, G.,1906, Geologische Beobachtungen in den Alpen(Ⅱ).Die Schardtsche berfaltungstheorie und die geologische Bedeutung der Tiefseeabsatz und der OphiolithischenMassengesteine, Ber. Nartf. Ges. Freibergi. B. 16:1-49
    102. Steinmann, G.,1927, Die Ophiolithichen Zonen in dem mediterrance Kettengebirge, 14th Inter. Geol. Cong. Madirid. 2:683-667
    103. WENJIAO XIAO FANGLIN HAN BRIN F. WINDLER CHAO YU AN HUI ZHOU JILIANG LI, Mulfiple Accretionary Orogenesis and Episodic Growth of Continents:Insights from the Westre Kunlun Range Central Asia, Internafional Geology Review, Vol.45,2003
    104. W. J. Xao, B. F. Windley, D. Y. Liu, et al, Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implication for the Growth of Southern Eurasia , Journal of Geology , 2005, 113
    105.Wen Jiao Xao, Brian Lin Chen, Guo Cheng Zhang , Ji Liang Li, Carboniferous-Triassic subduction and accretion in the western Kunlun , China: Implication for the collisional and accretionary tectonics of the northern Tibetan Plateau,Geology ,2002 ,30(4),295-298
    106.Wenjiao Xao ,Brian F.Windley ,Jie Hao ,Jiliang Li,Arc-ophiolite obduction in the Western Kunlun Rang(China):implications for the Palaeozoic evolution of central Asia , J. Geol. Soc. Lond, 2002, 159,517-528

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700