用户名: 密码: 验证码:
全光微波信号处理技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对宽带无线通信需求的增长,无线通信向高频的微波频段拓展。然而由于处理速率的限制,传统的电子技术对于高速微波信号的处理显得捉襟见肘。同时,随着频率的提高,微波信号在空气中的传输损耗也增加,因此微波信号无法进行长距离的传输。光子具有天然的带宽巨大的优势,因此采用光子技术处理高速的微波信号可以摆脱电子技术处理速率瓶颈的限制。并且,光纤具有低损耗长距离传输的能力,因此可以借助光纤通信技术来实现微波信号的长距离传输,如光纤无线电(RoF)、光纤超宽带(UWB over fiber)技术等等。此外,采用光子技术处理微波信号还具有极强的抗电磁干扰能力,因而微波光子技术在军事、民用通信等方面均具有重要的应用价值。
     本论文基于电光调制器、光学滤波器以及半导体光放大器(SOA)开展了微波光子技术方面的研究,主要的研究内容包括微波光子滤波器、光学产生及调制超宽带(UWB)信号以及光学产生相位编码的微波信号。本论文的贡献主要体现在以下几个方面:
     (1)利用光学带通滤波器对相位调制的光信号进行失谐滤波,得到功能新颖的微波光子滤波器。提出了基于相位调制和两个可调光学滤波器(TOBF)实现可切换的微波光子滤波器,通过控制TOBF对相位调制的光信号失谐方向,在光域内实现微波信号的相加或相减,得到在带通滤波和带阻滤波之间相互切换的微波光子滤波器;同时对方案进行改进,提出了采用阵列波导光栅(AWG)的两个信道对相位调制的两列光信号分别进行反向失谐滤波,得到通带更加平坦以及阻带频率选择性更强的微波光子带阻滤波器;提出了采用延时干涉仪(DI)结合TOBF同时得到微波带通与微波带阻滤波器,利用DI的两个输出端口的传递函数反相的特点,在DI的两个输出端口分别得到微波带通滤波器和微波带阻滤波器,实现对微波信号的路由功能。
     (2)提出了采用法布里-珀罗半导体光放大器(FP-SOA)对相位调制的光信号失谐滤波来得到微波光子滤波器。通过简单的调节FP-SOA的偏置电流改变FP-SOA的增益谱来改变FP-SOA的增益谱与光载波之间的频率关系,在0-40GHz的范围内分别得到Q值为184的单通带微波光子滤波器和形状因子为1.26的平通带、边沿陡峭的微波光子滤波器,并可实现微波滤波器通带中心频率可调。
     (3)提出了利用级联的马赫-曾德尔调制器(MZM)产生UWB脉冲。采用两个马赫-曾德尔调制器(MZM)级联产生UWB monocycle脉冲,当两个调制器均工作在推挽状态时产生单波长无啁啾的:monocycle脉冲。同时对级联三个或四个MZM产生doublet或triplet脉冲进行了模拟验证。
     (4)利用MZM和SOA的非线性效应产生UWB脉冲。提出将MZM和1个半导体光放大器(SOA)级联,利用SOA的增益饱和效应对光脉冲进行非均匀放大得到两个极性相反的monocycle脉冲,同时提出采用电的方法切换MZM的偏压点实现对产生的]monocycle脉冲的双相位调制并进行仿真验证;提出采用MZM和两个SOA级联,通过两次利用SOA的增益饱和效应产生一对极性相反的doublet脉冲;为简化系统,提出了将MZM和FP-SOA级联,利用FP-SOA中FP腔的反馈作用和SOA的增益饱和效应产生一对极性相反的UWB脉冲,并对产生的UWB脉冲在光纤和空气中的传输也进行了实验研究。
     (5)利用频率上转换将厘米波段UWB脉冲经过频率上转换为毫米波段UWB脉冲。在实验中采用延时干涉仪(DI)对相位调制的光信号进行失谐滤波得到厘米波段monocycle脉冲,结合MZM的载波抑制调制将厘米波段monocycle脉冲进行频率上转换得到毫米波段monocycle脉冲。
     (6)采用正交相移键控(QPSK)调制器产生相位编码的微波信号。通过调节QPSK调制器中包含的两个MZM的偏压,使这两个MZM分别实现载波抑制调制和双相相移键控(BPSK)编码,在QPSK调制器的输出端可以得到相位编码的微波信号,微波信号的相移为π。
As the increasing demand of wireless communication bandwidth, the wireless communications will be extended to high frequency microwave band. However, limited by the processing speed, it is hard for conventional electrical techniques to process high speed microwave signals. At the same time, as the increasing of the microwave frequency, the transmission loss of the microwave signal in the air is also increased, thus microwave signals cannot be transmitted in the air over a long distance. Photonics exhibites the nature advantage of broad bandwidth, therefore using photonic techniques to process high speed microwave signals can overcome the bottle neck existing in the electrical techniques. Meanwhile, as the optical fiber exhibits the character of low-loss transmission, thus using the optical fiber communication technique can transmit microwave signal over a long distance, such as radio over fiber (RoF) and ultra-wideband (UWB) over fiber. Besides, microwave signal processing with photonic approach has strong immunity to electromagnetic interference (EMI). Thus, the technique of microwave photonics has important applications in military, civil communication, etc.
     In the thesis, microwave photonic techniques are studied based on electrooptic modulators, optical filters and semiconductor optical amplifiers (SOAs). The main study area includes microwave photonic filter, photonic generation and modulation of UWB, and photonic generation of phase-coded microwave signal. The contributions of the thesis are list as follows:
     (1) Novel microwave photonic filters realized by using detuned optical bandpass filters to filt the phase modulated optical signal. It is proposed to achieve a microwave photonic filter based on an electrooptic phase modulator (EOPM) and two tunable optical bandpass filters (TOBFs). By controlling the detuning direction of the tunable optical bandpass filters (TOBFs), the microwave addition and the microwave subtraction in the optical domain are achieved respectively. Correspondingly, a microwave photonic filter switchable between bandpass filtering and bandstop filtering is achieved. An improved scheme based on arrayed waveguide grating (AWG) is also proposed. Two channels of AWG are oppositely detuned from the phase modulated signal and a microwave bandstop filter with much flatter passband and higher frequency selectivity is achieved. It also proposed to achieve a microwave photonic filter realizing bandpass and bandstop filtering shape simultaneously. By using the opposite transfer functions at the two output ports of the delay interferometer (DI), a microwave bandpass and microwave bandstop filtering shapes are obtained at the two output ports of DI respectively. Thus, microwave routing can be realized.
     (2) A microwave photonic filter by using a Fabry-Perot semiconductor optical amplifier (FP-SOA) to filt the phase modulated signal is proposed. By simply adjusting the bias current of FP-SOA to shift the gain spectrum of FP-SOA, a single-passband microwave photonic filter with a Q factor of184, and a flat-top microwave photonic filter with transition edges and a shape factor of1.26are obtained respectively. The tunability of the microwave photonic filter is also demonstrated.
     (3) Photonic generation of UWB impulses by using cascaded Mach-Zehnder modulators (MZMs) is proposed. Two Mach-Zehnder modulators (MZM) are cascaded to generate a pair of polarity-reversed UWB monocycle pulses. When the two MZMs are operating under the push-pull condition, the generated UWB impulses are chirp free. The generation of higher order UWB pulses by cascading more MZMs is also demonstrated by simulation.
     (4) Photonic generation of UWB impulses by using the MZM and the SOA. By cascading an MZM and an SOA to exploit the gain saturation effect of SOA to ununiformly amplify the modulated optical pulse, a pair of polarity-reversed monocycle impulses is generated. To electrically alternate the bias of MZM to realize binary phase modulation of monocycle impulse is also proposed and simulated. It is also proposed to generate a pair of polarity-reversed doublet impulses by cascading an MZM and two SOAs to exploit the gain saturation effect twice. It is also proposed to generate UWB impulses by cascading an MZM and an FP-SOA. By exploiting the feedback of FP cavity and the gain saturation effect of SOA, a pair of polarity-reversed UWB impulses is generated. The UWB transmission in the optical fiber and the space is also experimentally studied.
     (5) Millimeter wave band UWB impulses generation by using frequency up conversion of centimeter wave band UWB impulses. In the experiment, the DI is detuned from the phase modulated optical signal to achieve centimeter wave band UWB. By using carrier suppressed modulation in the MZM, the centimeter wave band UWB is frequency up converted and millimeter wave band UWB impulses are achieved.
     (6) A quadrature phase shift keying (QPSK) modulator is used to achieve phase-coded microwave signals. By adjusting the biases of the two MZMs included in the QPSK modulator seperately, carrier suppressed modulation and binary phase shift keying (BPSK) modulation are achieved respectively. Correspondingly, a phase-coded microwave signal is obtained at the output of the QPSK modulator, and the phase shift is precise π.
引文
[1]D. M. Pozar. Microwave Engineering. Addison-Wesley Publishing Company,1993. ISBN 0-201-50418-9
    [2]R. Sorrentino, G. Bianchi. Microwave and RF Engineering. UK:A John Wiley and Sons, Ltd.,2010.4
    [3]S. Xie, M. Chen, H. Chen. Advance in Microwave Photonics. ZTE Communications, 2009,6(10):6-10
    [4]J. Capmany, D. Novak. Microwave photonics combines two worlds. Nature Photonics,2007,1(6):319-330
    [5]J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. Journal of Lightwave Technology,2006,24(1):201-229
    [6]J. Capmany, B. Ortega, D. Pastor, et al. Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology,2005,23(2):702-723
    [7]T. A. Yost, P. R. Herczfeld, A. Rosen, et al. Hybrid transversal filter utilizing MMIC and optical fiber delay lines. IEEE Microwave and Guided Wave Letters,1995,5(9): 287-289
    [8]J. Capmany, J. Mora, B. Ortega, et al. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients. Optics Express,2005,13(5):1412-1417
    [9]E. Xu, X. Zhang, L. Zhou, et al. All-optical microwave notch filter with flat passband based on semiconductor optical amplifier. Optics Communications,2009, 282(12):2297-2300
    [10]E. Xu, X. Zhang, L. Zhou, et al. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Optics Letters, 2010,35(8):1242-1244
    [11]D. B. Hunter, and R. A. Minasian. Tunable microwave fiber-optic bandpass filters. IEEE Photonics Technology Letters,1999,11(7):874-876
    [12]J. Capmany, D. Pastor, and B. Ortega. New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays. IEEE Transactions on Microwave Theory and Techniques,1999,47(7):1321-1326
    [13]D. B. Hunter, R. A. Minasian, P. A. Krug. Tunable optical transversal filter based on chirped gratings. Electronics Letters,1995,31(25):2205-2207
    [14]J. Zhou, S. Fu, F. Luan, et al. Tunable Multi-Tap Bandpass Microwave Photonic Filter Using a Windowed Fabry-Perot Filter-Based Multi-Wavelength Tunable Laser. Journal of Lightwave Technology,2011,29(22):3381-3386
    [15]F. Zeng, and J. Yao. All-optical bandpass microwave filter based on an electro-optic phase modulator. Optics Express,2004,12(16):3814-3819
    [16]J. Mora, B. Ortega, J. Capmany, et al. Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings. Optics Express,2002,10(22):1291-1298
    [17]B. Vidal, V. Polo, J. L. Corral, et al. Photonic tunable microwave transversal filter based on optical switches and fiber dispersion, in:Microwave Symposium Digest, IEEE MTT-S International,2003.1399-1402
    [18]D. Pastor, B. Ortega, J. Capmany, et al. Flexible and tunable microwave filters based on arrayed waveguide gratings, in:International Topical Meeting on Microwave Photonics (MWP'2002),2002.189-192
    [19]D. Pastor, J. Capmany, S. Sales, et al. Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers. IEEE Photonics Technology Letters, 2001,13(11):1224-1226
    [20]D. Pastor, B. Ortega, J. Capmany, et al. Tunable microwave photonic filter for noise and interference suppression in UMTS base stations. Electronics Letters,2004, 40(16):997-999
    [21]C. K. Oh, T. Y. Kim, C. S. Park. Reconfigurable photonic microwave bandpass filter with negative coefficients based on polarisation modulation. Electronics Letters, 2007,43(11):639-641
    [22]B. Moslehi. Fibre-optic filters employing optical amplifiers to provide design flexibility. Electronics Letters,1992,28(3):226-228
    [23]M. C. Vazquez, B. Vizoso, M. Lopez-Amo, et al. Single and double amplified recirculating delay lines as fibre-optic filters. Electronics Letters,1992,28(11): 1017-1019
    [24]J. Capmany, J. Cascon. Optical programmable transversal filters using fibre amplifiers. Electronics Letters,1992,28(13):1245-1246
    [25]J. H. Lee, Y. M. Chang, Y, G. Han, et al. Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source. Applied Optics,2007,46(22):5158-5167
    [26]F. Zeng, J. Yao. All-optical microwave filters using uniform fiber Bragg gratings with identical reflectivities. Journal of Lightwave Technology,2005,23(3):1410-1418
    [27]E. Hamidi, D. E. Leaird, A. M. Weiner. Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb. IEEE Transactions on Microwave Theory and Techniques,2010,58(11):3269-3278
    [28]S. Xiao, A. M. Weiner. Coherent photonic processing of microwave signals using spatial light modulators, in:Conference on Lasers and Electro-Optics, and Quantum Electronics and Laser Science Conference (CLEO/QELS'2006),2006.1-2
    [29]V. Polo, F. Ramos, J. Marti, et al. Synthesis of Photonic Microwave Filters Based on External Optical Modulators and Wide-Band Chirped Fiber Gratings. Journal of Lightwave Technology,2000,18(2):213
    [30]K. P. Jackson, S. A. Newton, B. Moslehi, et al. Optical Fiber Delay-Line Signal Processing. IEEE Transactions on Microwave Theory and Techniques,1985,33(3): 193-210
    [31]H. F. Taylor. Fiber And Integrated Optical Devices For Signal Processing. Proc. SPIE 0176, Guided Wave Optical Systems and Devices Ⅱ,1979.17-27
    [32]S. Sales, J. Capmany, J. Marti, et al. Experimental demonstration of fibre-optic delay line filters with negative coefficients. Electronics Letters,1995,31(13):1095-1096
    [33]F. Coppinger, S. Yegnanarayanan, P. D. Trinh, et al. All-optical incoherent negative taps for photonic signal processing. Electronics Letters,1997,33(11):973-975
    [34]E. Xu, X. Zhang, X. Li, et al. A microwave photonic notch filter based on semiconductor optical amplifier and optical filter. Proc. SPIE.7516, Photonics and Optoelectronics Meetings (POEM) 2009:Optoelectronic Devices and Integration, 2009.75160Y-75160Y
    [35]E. Xu, X. Zhang, L. Zhou, et al. All-optical tunable microwave interference suppression filter based on SOA. in:Proc. SPIE 7279, Photonics and Optoelectronics Meetings (POEM'2008):Optoelectronic Devices and Integration, 2008.72790L
    [36]J. Li, K. K. Y. Cheung, K. K. Y. Wong. Photonic Microwave Filter with Negative Coefficients Using Fiber Optical Parametric Amplifier, in:Optical Fiber Communications (OFC2009), San Diego,2009.1-3
    [37]Y. Yan, F. Zeng, Q. Wang, et al. Photonic Microwave Filter with Negative Coefficients Based on Cross Polarization Modulation in a Semiconductor Optical Amplifier, in:Optical Fiber Conference (OFC2007), Anaheim,2007. OWU6
    [38]Oh C. K., Kim T. Y, Baek S. H., et al. Photonic microwave notch filter using cross polarization modulation in highly nonlinear fiber and polarization-dependent optical delay in high birefringence fiber. Optics Express,2006,14(15):6628-6633
    [39]T. Y. Kim, C. K. Oh, S. J. Kim, et al. Tunable Photonic Microwave Notch Filter With Negative Coefficient Based on Polarization Modulation. IEEE Photonics Technology Letters,2007,19(12):907-909
    [40]J. Capmany, D. Pastor, A. Martinez, et al. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Optics Letters, 2003,28(16):1415-1417
    [41]S. Mansoori, A. Mitchell, K. Ghorbani. Photonic reconfigurable microwave filter with negative coefficients. Electronics Letters,2004,40(9):541-543
    [42]J. Capmany, D. Pastor, A. Martinez, et al. Using phase inversion in an electro-optic modulator to implement RF incoherent photonic filters with negative coefficients, in: IEEE International Topical Meeting on Microwave Photonics (MWP'2003),2003. 315-320
    [43]B. Vidal, J. L. Corral, J. Marti. All-optical WDM microwave filter with negative coefficients. IEEE Photonics Technology Letters,2005,17(3):666-668
    [44]D. Pastor, J. Capmany, B. Ortega, et al. Reconfigurable RF photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2×1 integrated Mach-Zehnder modulator. IEEE Photonics Technology Letters,2004,16(9):2126-2128
    [45]F. Zeng, J. Wang, J. Yao. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings. Optics Letters,2005,30(17):2203-2205
    [46]Y. Yan, J. Yao. Tunable optical microwave bandpass filter with negative coefficients using an optical phase modulator and chirped fiber Bragg gratings, in:Proc. SPIE, Photonics North,2007.67962L
    [47]Y. Yan, S. R. Blais, J. Yao. Tunable Photonic Microwave Bandpass Filter With Negative Coefficients Implemented Using an Optical Phase Modulator and Chirped Fiber Bragg Gratings. Journal of Lightwave Technology,2007,25(11):3283-3288
    [48]W. Xue, S. Sales, J. M(?)rk, et al. Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects. IEEE Photonics Technology Letters,2009, 21(3):167-169
    [49]Y. Yan, J. Yao. A Tunable Photonic Microwave Filter With a Complex Coefficient Using an Optical RF Phase Shifter. IEEE Photonics Technology Letters,2007, 19(19):1472-1474
    [50]N. You, R. A. Minasian. A novel tunable microwave optical notch filter. IEEE Transactions on Microwave Theory and Techniques,2001,49(10):2002-2005
    [51]S. T. Winnall, A. C. Lindsay, G. A. Knight. A wide-band microwave photonic phase and frequency shifter. IEEE Transactions on Microwave Theory and Techniques, 1997,45(6):1003-1006
    [52]X. Li, J. Dong, Y. Yu, et al. A Tunable Microwave Photonic Filter Based on an All-Optical Differentiator. IEEE Photonics Technology Letters,2011,23(5):308-310
    [53]A. Loayssa, J. Capmany, M. Sagues, et al. Demonstration of incoherent microwave photonic filters with all-optical complex coefficients. IEEE Photonics Technology Letters,2006,18(16):1744-1746
    [54]W. Xue, S. Sales, J. Capmany, et al. Wideband 360°microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Optics Express, 2010,18(6):6156-6163
    [55]J. Sancho, J. Lloret, I. Gasulla, et al. Fully tunable 360°microwave photonic phase shifter based on a single semiconductor optical amplifier. Optics Express,2011, 19(18):17421-17426
    [56]M. Sagues, A. Loayssa, J. Capmany. Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering. IEEE Photonics Technology Letters,2007,19(16):1194-1196
    [57]W. Li, W. Zhang, J. Yao. A wideband 360°photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating. Optics Express,2012,20(28):29838-29843
    [58]M. Pu, L. Liu, W. Xue, et al. Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator. IEEE Photonics Technology Letters,2010, 22(12):869-871
    [59]J. Lloret, J. Sancho, M. Pu, et al. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator. Optics Express,2011,19(13):12402-12407
    [60]M. Tur, B. Moslehi, J. W. Goodman. Theory of laser phase noise in recirculating fiber-optic delay lines. Journal of Lightwave Technology,1985,3(1):20-31
    [61]J. Capmany. Investigation of phase-induced intensity noise in amplified fibre-optic recirculating delay line. Electronics Letters,1993,29(4):346-348
    [62]J. T. Kringlebotn, K. Blotekjaer. Noise analysis of an amplified fiber-optic recirculating-ring delay line. Journal of Lightwave Technology,1994,12(3):573-582
    [63]J. Mora, B. Ortega, M. V. Andres, et al. Dynamic optical transversal filters based on a tunable dispersion fiber Bragg grating, in:IEEE International Topical Meeting on Microwave Photonics (MWP'2001),2001.203-206
    [64]D. B. Hunter, R. A. Minasian. Microwave optical filters using in-fiber Bragg grating arrays. IEEE Microwave and Guided Wave Letters,1996,6(2):103-105
    [65]M. Popov, P. Y. Fonjallaz, O. Gunnarsson. Compact microwave photonic transversal filter with 40-dB sidelobe suppression. IEEE Photonics Technology Letters,2005, 17(3):663-665
    [66]V. Polo, B. Vidal, J. L. Corral, et al. Novel tunable photonic microwave filter based on laser arrays and N/spl times/N AWG-based delay lines. IEEE Photonics Technology Letters,2003,15(4):584-586
    [67]X. Feng, C. Lu, H. Y. Tam, et al. Reconfigurable Microwave Photonic Filter Using Multiwavelength Erbium-Doped Fiber Laser. IEEE Photonics Technology Letters, 2007,19(17):1334-1336
    [68]B. Vidal, V. Polo, J. L. Corral, et al. Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media. Electronics Letters,2003,39(6):547-549
    [69]C. Pulikkaseril, E. H. W. Chan, R. A. Minasian. Coherence-Free Microwave Photonic Bandpass Filter Using a Frequency-Shifting Recirculating Delay Line. Journal of Lightwave Technology,2010,28(3):262-269
    [70]E. H. W. Chan, R. A. Minasian. Coherence-Free High-Resolution RF/Microwa-ve Photonic Bandpass Filter With High Skirt Selectivity and High Stopband Attenuation. Journal of Lightwave Technology,2010,28(11):1646-1651
    [71]E. H. W. Chan. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique. Optics Express,2012,20(21):22987-22996
    [72]N. You, R. A. Minasian. Novel photonic recursive signal processor with reduced phase-induced intensity noise. Journal of Lightwave Technology,2006,24(7):2558-2563
    [73]E. H. W. Chan, R. A. Minasian. Novel all-optical RF notch filters with equivalent negative tap response. IEEE Photonics Technology Letters,2004,16(5):1370-1372
    [74]E. H. W. Chan, R. A. Minasian. Photonic Notch Filter Without Optical Coherence Limitations. Journal of Lightwave Technology,2004,22(7):1811
    [75]E. H. W. Chan, R. A. Minasian. Novel Coherence-Free RF/Microwave Photonic Bandpass Filter. IEEE Photonics Technology Letters,2009,21(4):197-199
    [76]X. Yi, R. A. Minasian. Novel Multitap, Flat-Top Microwave Photonic Filter Based on Sinusoidal Group Delay Gratings. Journal of Lightwave Technology,2008, 26(15):2578-2583
    [77]汪洋,张乃通.超宽带无线通信概述.云南名族大学学报(自然科学版),2005,14(1):3-7
    [78]Federal Communication Commission. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems. Tech. Rep., ET-Docket 98-153,2002. FCC02-48
    [79]J. Yao, F. Zeng, Q. Wang. Photonic Generation of Ultrawideband Signals. Journal of Lightwave Technology,2007,25(11):3219-3235
    [80]H. Ishida, K. Araki. Design and analysis of UWB band pass filter with ring filter, in: Microwave Symposium Digest, IEEE MTT-S International,2004.1307-1310
    [81]W. P. Lin, J. Y. Chen. Implementation of a new ultrawide-band impulse system. IEEE Photonics Technology Letters,2005,17(11):2418-2420
    [82]L. Zhu, S. Sun, W. Menzel. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microwave and Wireless Components Letters,2005, 15(11):796-798
    [83]J. Yao. Photonics for ultrawideband communications. IEEE Microwave Magazine, 2009,10(4):82-95
    [84]C. R. Nassar, F. Zhu, Z. Wu. Direct sequence spreading UWB systems:frequency domain processing for enhanced performance and throughput, in:IEEE International Conference on Communications (ICC'2003),2003.2180-2186
    [85]H. Bo, N. C. Beaulieu. Accurate performance evaluation of time-hopping and direct-sequence UWB systems in multi-user interference. IEEE Transactions on Communications,2005,53(6):1053-1062
    [86]C. M. Canadeo, M. A. Temple, R. O. Baldwin, et al. Code selection for enhancing UWB multiple access communication performance using TH-PPM and DS-BPSK modulations, in:IEEE Wireless Communications and Networking Conference (WCNC'2003),2003.678-682
    [87]W. D. Wu, C. C. Lee, C. H. Wang, et al. Signal-to-Interference-Plus-Noise Ratio Analysis for Direct-Sequence Ultra-Wideband Systems in Generalized Saleh-Valenzuela Channels. IEEE Journal of Selected Topics in Signal Processing,2007, 1(3):483-497
    [88]Y. Dai, J. Yao. Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating. Journal of Lightwave Technology,2008,26(15):2513-2520
    [89]W. P. Siriwongpairat, M. Olfat, K. J. R. Liu. Performance analysis of time hopping and direct sequence UWB space-time systems, in:IEEE Global Telecommunications Conference (GLOBECOM'2004),2004.3526-3530
    [90]A. Batra, J. Balakrishnan, A. Dabak. Multi-band OFDM:a new approach for UWB. in:IEEE International Symposium on Circuits and Systems (ISCAS'2004),2004. V-365-V-368
    [91]T. A. Phan, J. Lee, V. Krizhanovskii, et al. A 18-pJ/Pulse OOK CMOS Transmitter for Multiband UWB Impulse Radio. IEEE Microwave and Wireless Components Letters,2007,17(9):688-690
    [92]A. T. Phan, J. Lee, V. Krizhanovskii, et al. Energy-Efficient Low-Complexity CMOS Pulse Generator for Multiband UWB Impulse Radio. IEEE Transactions on Circuits and Systems I:Regular Papers,2008,55(11):3552-3563
    [93]W. P. Siriwongpairat, W. Su, K. J. R. Liu. Performance characterization of multiband UWB communication systems using Poisson cluster arriving fading paths. IEEE Journal on Selected Areas in Communications,2006,24(4):745-751
    [94]B. Razavi, T. Aytur, C. Lam, et al. Multiband UWB transceivers, in:IEEE Custom Integrated Circuits Conference (CICC'2005),2005.141-148
    [95]W. P. Siriwongpairat, W. Su, M. Olfat, et al. Space-time-frequency coded multiband UWB communication systems, in:IEEE Wireless Communications and Networking Conference (WCNC'2005),2005.426-431
    [96]X. Chen, S. Kiaei. Monocycle shapes for ultra wideband system, in:IEEE International Symposium on Circuits and Systems (ISCAS'2002),2002.1-597-I-600
    [97]S. Wang, H. Chen, M. Xi, et al. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture. Optics Letters, 2009,34(20):3092-3094
    [98]F. Zeng, J. Yao. Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator. IEEE Photonics Technology Letters,2006,18(19):2062-2064
    [99]F. Wang, J. Dong, E. Xu, et al. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination. Optics Express,2010,18(24):24588-24594
    [100]P. Velanas, A. Bogris, A. Argyris, et al. High-Speed All-Optical First-and Second-Order Differentiators Based on Cross-Phase Modulation in Fibers. Journal of Lightwave Technology,2008,26(18):3269-3276
    [101]H. Huang, K. Xu, J. Li, et al. UWB Pulse Generation and Distribution Using a NOLM Based Optical Switch. Journal of Lightwave Technology,2008,26(15): 2635-2640
    [102]F. Zeng, Q. Wang, J. Yao. All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination. Electronics Letters,2007, 43(2):121-122
    [103]Z. Jia, J. Yu, G. K. Chang. All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems. IEEE Photonics Technology Letters,2005,17(12):2724-2726
    [104]F. Zeng, Q. Wang, J. Yao. An Approach to All-Optical UWB Pulse Generation, in: International Topical Meeting on Microwave Photonics (MWP'2006),2006.1-4
    [105]J. Dong, X. Zhang, J. Xu, et al. Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Optics Letters,2007, 32(10):1223-1225
    [106]F. Wang, J. Dong, E. Xu, et al. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination. Optics Express,2010,18(24):24588-24594
    [107]F. Zeng, J. Yao. An approach to ultrawideband pulse generation and distribution over optical fiber. IEEE Photonics Technology Letters,2006,18(7):823-825
    [108]S. Pan, J. Yao. Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer. Optics Letters,2009, 34(2):160-162
    [109]H. Chen, M. Chen, C. Qiu, et al. UWB monocycle pulse generation by optical polarisation time delay method. Electronics Letters,2007,43(9):542-543
    [110]Y. Dai, J. Yao. Nonuniformly Spaced Photonic Microwave Delay-Line Filters and Applications. Transactions on Microwave Theory and Techniques,2010,58(11): 3279-3289
    [111]S. Pan, J. Yao. Photonic generation of chirp-free UWB signals for UWB over fiber applications, in:IEEE International Topical Meeting on Microwave Photonics (MWP'2009),2009.1-4
    [112]M. Bolea, J. Mora, B. Ortega, et al. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats. Optics Express,2009,17(7):5023-5032
    [113]Q. Wang, J. Yao. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express,2007,15(22): 14667-14672
    [114]M. Bolea, J. Mora, B. Ortega, et al. Flexible Monocycle UWB Generation for Reconfigurable Access Networks. IEEE Photonics Technology Letters,2010,22(12): 878-880
    [115]H. Mu, J. Yao. Polarity-and Shape-Switchable UWB Pulse Generation Based on a Photonic Microwave Delay-Line Filter With a Negative Tap Coefficient. IEEE Photonics Technology Letters,2009,21(17):1253-1255
    [116]S. Pan, J. Yao. IR-UWB-Over-Fiber Systems Compatible With WDM-PON Networks. Journal of Lightwave Technology,2011,29(20):3025-3034
    [117]H. Chen, M. Chen, T. Wang, et al. Methods for Ultra-Wideband Pulse Generation Based on Optical Cross-Polarization Modulation. Journal of Lightwave Technology, 2008,26(15):2492-2499
    [118]J. Li, S. Fu, K. Xu, et al. Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator. Optics Letters,2008,33(3):288-290
    [119]C. Wang, J. Yao. Simultaneous Optical Spectral Shaping and Wavelength-to-Time Mapping for Photonic Microwave Arbitrary Waveform Generation. IEEE Photonics Technology Letters,2009,21(12):793-795
    [120]M. Abtahi, M. Dastmalchi, and S. LaRochelle, et al. Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs. Journal of Lightwave Technology,2009,27(23):5276-5283
    [121]M. H. Khan, H. Shen, Y. Xuan, et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics.2010,4(2):117-122
    [122]M. Bolea, J. Mora, B. Ortega, et al. Photonic arbitrary waveform generation applicable to multiband UWB communications. Optics Express,2010,18(25): 26259-26267
    [123]C. Wang, F. Zeng, J. Yao. All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion. IEEE Photonics Technology Letters,2007,19(3):137-139
    [124]M. Abtahi, J. Magne, M. Mirshafiei, et al. Generation of Power-Efficient FCC-Compliant UWB Waveforms Using FBGs:Analysis and Experiment. Journal of Lightwave Technology,2008,26(5):628-635
    [125]I. S. Lin, J. D. McKinney, A. M. Weiner. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microwave and Wireless Components Letters,2005,15(4):226-228
    [126]M. Abtahi, M. Mirshafiei, J. Magne, et al. Ultra-Wideband Waveform Generator Based on Optical Pulse-Shaping and FBG Tuning. IEEE Photonics Technology Letters,2008,20(2):135-137
    [127]T. B. Gibbon, X. Yu, I. T. Monroy. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection. IEEE Photonics Technology Letters,2009,21(15):1060-1062
    [128]P. Li, H. Chen, X. Wang, et al. Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator. IEEE Photonics Technology Letters,2013,25(2):144-146
    [129]W. C. Chung, D. S. Ha. On the performance of bi-phase modulated UWB signals in a multipath channel, in:The 57th IEEE Semiannual Vehicular Technology Conference (VTC'2003 Spring),2003.1654-1658
    [130]Y. Chen, J. Chen, T. Lv. A high order biphase modulation scheme for UWB transmission, in:The 60th IEEE Vehicular Technology Conference (VTC'2004 Fall), 2004.5209-5213
    [131]S. Pan, J. Yao. Provision of IR-UWB wireless and baseband wired services over a WDM-PON. Optics Express,2011,19(26):B209-B217
    [132]A. T. Kalghatgi. Challenges in the Design of an Impulse Radio Based Ultra Wide Band Transceiver, in:IEEE International Conference on Signal Processing, Communications and Networking (ICSCN'2007),2007.1-5
    [133]S. Pan, J. Yao. Simultaneous Provision of UWB and Wired Services in a WDM-PON Network Using a Centralized Light Source. IEEE Photonics Journal, 2010,2(5):712-718
    [134]H. Zhang, T. A. Gulliver. Performance and capacity of PAM and PPM UWB systems with multiple receive antennas, in:IEEE Pacific Rim Conference on Communications, Computers and signal Processing (PACRIM'2003),2003.740-743
    [135]W. Cao, A. Nallanathan, and C. C. Chai. Exact BER Analysis of DS PAM UWB Multiple Access System in Lognormal Multipath Fading Channels, in:The 64th IEEE Vehicular Technology Conference (VTC'2006 Fall),2006.1-5
    [136]Z. Bai, K. Kwak. Performance analysis of TH-PAM of UWB system and the coded scheme, in:International Conference on Wireless Communications, Networking and Mobile Computing (WCNM'2005),2005.296-299
    [137]G. T. F. De Abreu, R. Kohno. Design of jitter-robust orthogonal pulses for UWB systems, in:IEEE Global Telecommunications Conference (GLOCOM'2003),2003. 739-743
    [138]J. A. Ney da Silva, M. L. R. De Campos. Spectrally Efficient UWB Pulse Shaping With Application in Orthogonal PSM. IEEE Transactions on Communications,2007, 55(2):313-322
    [139]S. Pan, J. Yao. A Photonic UWB Generator Reconfigurable for Multiple Modulation Formats. IEEE Photonics Technology Letters,2009,21(19):1381-1383
    [140]J. A. N. Da Silva, M. L. R. De Campos. Method for obtaining spectrally efficient orthogonal UWB pulse shapes, in:IEEE International Telecommunications Symposium (ITS'2006),2006.46-51
    [141]R. Pasand, S. Khalesehosseini, J. Nielsen, et al. Exact evaluation of M-ary TH-PPM UWB systems on AWGN channels for indoor multiple-access communications. IEE Proceedings Communications,2006,153(1):83-92
    [142]H. Mu, J. Yao. Photonic generation of UWB pulses with pulse position modulation. Electronics Letters,2010,46(1):99-100
    [143]P. Xiang, X. Zheng, H. Zhang, et al. A novel approach to photonic generation of high speed PPM coded UWB signals, in:International Conference on Microwave and Millimeter Wave Technology (ICMMT2012),2012.1-4
    [144]S. Fu, W. D. Zhong, P. Shum, et al. Photonic monocycle pulse generation and modulation for ultra-wideband-over-fiber application, in:Proc. SPIE, Optical Transmission, Switching, and Subsystems VI,2008.71362K
    [145]D. Porrat, U. Mitra. Multipath Delay Profile Acquisition for Ultra-Wideband PPM Systems. IEEE Journal of Selected Topics in Signal Processing,2007,1(3):372-382
    [146]S. Pan, J. Yao. UWB-Over-Fiber Communications:Modulation and Transmission. Journal of Lightwave Technology,2010,28(16):2445-2455
    [147]M. Cohen. Pulse Compression in Radar Systems, Part 4 of Principles of Modern Radar.1st edition. New York:Springer,1987.465-501
    [148]M. I. Skolnik. Introduction to Radar. New York:McGraw-Hill.1962,10.1-10.4
    [149]H. Chi, J. Yao. An Approach to Photonic Generation of High-Frequency Phase-Coded RF Pulses. IEEE Photonics Technology Letters,2007,19(10):768-770
    [150]Y. Dai, J. Yao. Microwave pulse phase encoding using a photonic microwave delay-line filter. Optics Letters,2007,32(24):3486-3488
    [151]Z. Li, M. Li, H. Chi, et al. Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization-Maintaining Fiber Bragg Grating. IEEE Microwave and Wireless Components Letters,2011,21(12): 694-696
    [152]Z. Li, W. Li, H. Chi, et al. Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability. IEEE Photonics Technology Letters,2011,23(11): 712-714
    [153]C. Wang, J. Yao. Phase-Coded Millimeter-Wave Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating. IEEE Photonics Technology Letters, 2012,24(17):1493-1495
    [154]P. Ghelfi, F. Scotti, F. Laghezza, et al. Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars. Journal of Lightwave Technology,2012,30(11):1638-1644
    [155]J. Ye., L. Yan, Z. Chen, et al. Photonic Generation of Microwave Phase-Coded Signals Based on Frequency-to-Time Conversion. IEEE Photonics Technology Letters,2012,24(17):1527-1529
    [156]H. Wang, J. Zheng, L. Wang, et al. Photonic Generation of Chirp-Free Phase-Coded Microwave With Accurate π Phase Shift and Large Continuous Operating Bandwidth. IEEE Photonics Journal,2013,5(2):5500306-5500306
    [157]L. Goldberg, H. F. Taylor, J. F. Weller, et al. Microwave signal generation with injection-locked laser diodes. Electronics Letters,1983,19(13):491-493
    [158]A. C. Bordonalli, C. Walton, A. J. Seeds. High-Performance Phase Locking of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection Locking and Optical Phase-Lock Loop. Journal of Lightwave Technology,1999,17(2): 328-342
    [159]F. Z. Fan, M. Dagenais. Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop. IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1296-1300
    [160]X. Chen, Z. Deng, J. Yao. Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):804-809
    [161]D. Wake, C. R. Lima, P. A. Davies. Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser. IEEE Transactions on Microwave Theory and Techniques,1995,43(9):2270-2276
    [162]X. S. Yao, L. Maleki. Optoelectronic oscillator for photonic systems. IEEE Journal of Quantum Electronics,1996,32(7):1141-1149
    [163]X. S. Yao, L. Maleki. Dual microwave and optical oscillator. Optics Letters,1997, 22(24):1867-1869
    [164]S. Pan, J. Yao. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection. Optics Letters,2010,35(11):1911-1913
    [165]X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. Journal of the Optical Society of America B.,1996,13(8):1725-1735
    [166]S. Pan, J. Yao. A Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator. IEEE Photonics Technology Letters,2009,21(13):929-931
    [167]T. Davidson, P. Goldgeier, G. Eisenstein, et al. High spectral purity CW oscillation and pulse generation in optoelectronic microwave oscillator. Electronics Letters, 1999,35(15):1260-1261
    [168]U. Gliese, T. N. Nielsen, M. Bruun, et al. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers. IEEE Photonics Technology Letters,1992,4(8):936-938
    [169]X. S. Yao, L. Maleki. Multiloop optoelectronic oscillator. IEEE Journal of Quantum Electronics,2000,36(1):79-84
    [170]M. Shin, P. Kumar. Optical Microwave Frequency Up-Conversion Via a Frequency-Doubling Optoelectronic Oscillator. IEEE Photonics Technology Letters,2007, 19(21):1726-1728
    [171]A. Loayssa, F. J. Lahoz. Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technology Letters,2006,18(1):208-210
    [172]W. Xue, S. Sales, J. Capmany, et al. Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Optics Express, 2010,18(6):6156-6163
    [173]D. E. Leaird, A. M. Weiner. Femtosecond optical packet generation by a direct space-to-time pulse shaper. Optics Letters,1999,24(12):853-855
    [174]A. Vega, D. E. Leaird, A. M. Weiner. High-speed direct space-to-time pulse shaping with 1 ns reconfiguration. Optics Letters,2010,35(10):1554-1556
    [175]J. D. McKinney, D. E. Leaird, A. M. Weiner. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Optics Letters,2002,27(15): 1345-1347
    [176]S. Xiao, J. D. McKinney, A. M. Weiner. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper. IEEE Photonics Technology Letters,2004,16(8):1936-1938
    [177]J. Chou, H. Yan, B. Jalali. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters,2003,15(4):581-583
    [178]H. Chi, J. Yao. Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator. Electronics Letters,2007,43(7):415-417
    [179]A. M. Weiner. Femtosecond pulse shaping using spatial light modulators. Review of Scientific Instruments,2000,71(5):1929-1960
    [180]R. E. Saperstein, N. Alic, D. Panasenko, et al. Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses. Journal of the Optical Society of America B.,2005,22(11):2427-2436
    [181]Y. Dai, J. Yao. Chirped Microwave Pulse Generation Using a Photonic Microwave Delay-Line Filter With a Quadratic Phase Response. IEEE Photonics Technology Letters,2009,21(9):569-571
    [182]E. Yoshida, N. Shimizu, M. Nakazawa. A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm. IEEE Photonics Technology Letters,1999,11(12):1587-1589
    [183]S. Gee, S. Ozharar, F. Quinlan, et al. Self-Stabilization of an Actively Mode-Locked Semiconductor-Based Fiber-Ring Laser for Ultralow Jitter. IEEE Photonics Technology Letters,2007,19(7):498-500
    [184]G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics,1989,25(11):2297-2306
    [185]M. J. Connelly. Wideband semiconductor optical amplifier steady-state numerical model. IEEE Journal of Quantum Electronics,2001,37(3):439-447
    [186]K. Petermann. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE Journal of Quantum Electronics,1979,15(7):566-570
    [187]Y. Boucher, A. Sharaiha. Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers. IEEE Journal of Quantum Electronics,2000, 36(6):708-720
    [188]J. Mora, A. Martinez, M. D. Manzanedo, et al. Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in soa based xgm wavelength converter. Electronics Letters,2005,41(16):53-54
    [189]X. Yi, F. Wei, N. J. Hong, et al. Tunable microwave filter design using wavelength conversion technique and high dispersion time delays. IEEE Photonics Technology Letters,2001,13(8):857-859
    [190]F. Coppinger, S. Yegnanarayanan, P. D. Trinh, et al. All-optical RF filter using amplitude inversion in a semiconductor optical amplifier. IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1473-1477
    [191]J. Dong, X. Zhang, J. Xu, et al. All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier. Optics Letters,2007,32(15):2158-2160
    [192]Q. Wang, F. Zeng, S. Blais, et al. Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier. Optics Letters, 2006,31(21):3083-3085
    [193]S. Fu, W. D. Zhong, Y. J. Wen, et al. Photonic Monocycle Pulse Frequency Up-Conversion for Ultrawideband-Over-Fiber Applications. IEEE Photonics Technology Letters,2008,20(12):1006-1008
    [194]H. Chen, M. Chen, C. Qiu, et al. A Novel Composite Method for Ultra-Wideband Doublet Pulses Generation. IEEE Photonics Technology Letters,2007,19(24): 2021-2023
    [195]J. Capmany, J. Cascon, D. Pastor, et al. Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators. IEEE Photonics Technology Letters,1999,11(9):1174-1176
    [196]R. A. Minasian, K. E. Alameh, E. H. W. Chan. Photonics-based interference mitigation filters. IEEE Transactions on Microwave Theory and Techniques,2001, 49(10):1894-1899
    [197]E. H. W. Chan, R. A. Minasian. Reflective Amplified Recirculating Delay Line Bandpass Filter. Journal of Lightwave Technology,2007,25(6):1441-1446
    [198]E. H. W. Chan. Double Coupler Amplified Recirculating Delay Line Microwave Photonic Bandpass Filter. IEEE Photonics Technology Letters,2008,20(11): 918-920
    [199]E. Xu, X. Zhang, L. Zhou, et al. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Optics Letters, 2010,35(8):1242-1244
    [200]F. Zeng, and J. Yao. Frequency domain analysis of fiber bragg grating based phase modulation to intensity modulation conversion, in Proc. SPIE 5971, Photonic Applications in Nonlinear Optics, and Microwave Photonics,2005:59712B-59712B
    [201]D. B. Hunter, R. A. Minasian. Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure. IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1463-1466
    [202]E. H. W. Chan, K. E. Alameh, R. A. Minasian. Photonic bandpass filters with high skirt selectivity and stopband attenuation. Journal of Lightwave Technology,2002, 20(11):1962-1967
    [203]J. Mora, B. Ortega, A. Diez, et al. Photonic Microwave Tunable Single-Bandpass Filter Based on a Mach-Zehnder Interferometer. Journal of Lightwave Technology, 2006,24(7):2500-2509
    [204]K. Kitayama, A. Stohr, T. Kuri, et al. An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems. IEEE Transactions on Microwave Theory and Techniques,2000,48(12):2588-2595
    [205]G. D. Kim, S. S. Lee. Photonic Microwave Channel Selective Filter Incorporating a Thermooptic Switch Based on Tunable Ring Resonators. IEEE Photonics Technology Letters,2007,19(13):1008-1010
    [206]X. Yi, R. A. Minasian. Microwave photonic filter with single bandpass response. Electronics Letters,2009,45(7):362-363
    [207]J. Palaci, G. E. Villanueva, J. V. Galan, et al. Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator. IEEE Photonics Technology Letters,2010, 22(17):1276-1278
    [208]B. Moslehi, J. W. Goodman. Novel amplified fiber-optic recirculating delay line processor. Journal of Lightwave Technology,1992,10(8):1142-1147
    [209]F. Wang, Y. Yu, X. Huang, et al. Single and Multiwavelength All-Optical Clock Recovery Using Fabry-Perot Semiconductor Optical Amplifier. IEEE Photonics Technology Letters,2009,21(16):1109-1111
    [210]J. Dong, X. Zhang, S. Fu, et al. Ultrafast All-Optical Signal Processing Based on Single Semiconductor Optical Amplifier and Optical Filtering. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(3):770-778
    [211]E. J. M. Verdurmen, Y. Liu, A. M. J. Koonen, et al. Chirp Properties of SOA-Based Wavelength Converters for FSK/IM Combined Modulation Format, in:The 29th European Conference on Optical Communication (ECOC'2003),2003. TU4.4.5
    [212]Y. Zhang, S. Pan. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter. Optics Letters, 2013,38(5):766-768
    [213]H. Chi, J. Yao. All-Fiber Chirped Microwave Pulses Generation Based on Spectral Shaping and Wavelength-to-Time Conversion. IEEE Transactions on Microwave Theory and Techniques,2007,55(9):1958-1963
    [214]Y. Dai, J. Yao. Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating. Journal of Lightwave Technology,2008,26(15):2513-2520

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700