用户名: 密码: 验证码:
激光型光纤传感器在电流测量和光纤激光陀螺中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器是指以光纤或掺杂光纤作为工作媒质的一类激光器,因为它具有低阂值、高效率、窄线宽、可调谐、稳定性可靠、紧凑小巧、重量轻和高性能价格比等众多优点,可以广泛的应用于传感、通信、医疗、军事等领域。特别是可以作为激光型光纤传感器(Polarimetric Fiber Laser Sensor),通过直接测量光纤激光器正交模式的拍频变化来监控外界扰动。由于它具有高灵敏度、易于测量等特点,近年来受到了广泛关注。目前,对激光型光纤传感器的研究主要集中在测量压力、电流、液压、温度等方面。
     本论文的工作主要围绕着两种用作激光型传感器的光纤激光器及其在非互易测量(包括电流传感和陀螺)中的应用来展开。在激光型光纤传感器的设计、实验现象的理论解释等方面做了如下的研究工作:
     光纤激光器的基本原理与设计方案
     概述了激光和光纤激光器的基本原理,包括光与物质的相互作用,激光振荡的条件及频谱分布等激光产生的基本原理:掺铒光纤的增益性质,空间烧孔效应和外界扰动对激光输出稳定性的影响,光纤激光器的实际极限带宽等光纤激光器的相关知识;分别讨论了双向单纵模环形腔激光器和多波长激光器的设计方案;系统地分析了掺杂光纤饱和吸收体中形成的动态光栅的反射谱特性。
     激光型电流传感器的实验研究
     利用空间烧孔和饱和吸收体设计了一种三波长光纤F-P腔激光器,给出了设计原则以及激光器的本征偏振态:采用琼斯矩阵方法分析了三波长光纤激光器用作电流传感时的理论模型。着重分析了传感区光纤双折射对电流传感的影响,同时对温度特性进行了讨论;实验验证了激光器的设计方案,得到了稳定的三波长光纤激光器;通过外加感应区,得到了线性系数为3.05KHz/A的激光型电流传感器。
     线偏振光光纤激光陀螺的研究
     提出并设计了一个光纤非互易器件—方向相关偏振器,理论上分析了器件的工作原理并给出了测试方法。样品测试的结果为插入损耗为0.61dB,消光比大于23.35dB;首次采用方向相关偏振器和由窄带薄膜滤波器与M-Z干涉型梳状滤波器组合而成的混合滤波器实现了一种新型稳定的双向单纵模掺铒光纤环形腔激光器。对存在双折射时,温度变化对零漂的影响做了分析,得出在折射率差为0.01,温度变化0.01℃时,零漂约为10KHz的数量级:实验验证了线偏振态光纤环形腔激光器的设计方案,得到了激光阈值为16mW的双向单纵模光纤环形腔激光器。当泵浦功率为20mW—70mW时,在CW和CCW方向上始终保持为单纵模工作。用于光纤环形腔激光陀螺系统中时,其拍频输出有大于30dB的信噪比。调节腔内的偏振控制器,当零频偏置分别为1.68MHz和409KHz时,均得到了较好的拍频漂移量与角速度的线性曲线,其斜率分别为1.38KHz/(deg/sec)和1.23KHz/(deg/sec),零漂约为7kHz,与理论相符。对实验中出现的零频偏置较小时陀螺的比例因子降低的现象进行了分析,并给出解决思路。得到了第一台连续波的光纤激光陀螺。
     圆偏振光光纤激光陀螺的研究
     提出一种圆偏振态工作的光纤激光陀螺。从理论上分析了互易器件—圆偏振起偏器的原理,以及圆保偏光纤—扭转光纤的保偏特性,并改进了扭转光纤的制作方法;首次推导了光纤激光陀螺闭锁现象的解析表达式,并做了数值模拟,得到在FSR=34MHz,D=38cm,λ=1.55μm情况下,闭锁阈值约为Ω≈7.3°/s;首次实现和证实了圆偏振态激光器的设计方案,得到激光阈值为35mW的双向单纵模光纤环形腔激光器。实验中的工作泵浦功率用在50mW,处于连续波工作状态,运行基本稳定,工作波长为1549.956nm,两路输出功率相当,均可大于0.1mw。用于光纤环形腔激光陀螺系统中时,其拍频输出有大于30dB的信噪比;斜率(即比例因子)为2.67KHz/(deg/sec);零漂为±1.5KHz;灵敏度为1°/s:闭锁阈值约为10°/s,与理论相符。最后对实验中存在的一些问题进行了分析,并给出解决思路。证明了圆偏振光光纤激光陀螺工作机理的正确性。
Fiber laser is a kind of lasers with fibers or doped fibers as its working media. Recently much effort has devoted to the theoretical and experimental investigations of fiber lasers due to their attractive characteristics,such as low-threshold,high efficiency,narrow linewidth,tunable output frequency,compact structure,light weight,high performance and cost ratio,as well as the stability and reliability.Fiber lasers can be widely used in many fields such as sensing,communications,medical and military areas.During these applications,polarimetric fiber laser sensor(PFLS), which detects external perturbations by a direct measurement on the beat frequency's change of the orthogonal modes in a fiber laser,has attracted more and more interests for their remarkable advantages such as high sensitivity and ease of measurement.Currently,most of the research on PFLS is to measure pressure, current,hydrostatic pressure and temperature.
     The research work in this thesis mainly focus on the study of two types fiber lasers for PFLS,as well as its applications in non-reciprocity measurement including current measurement and fiber laser gyro.More concretely,their design work has been carried out in a comprehensive manner and validated through experiments.The major contributions of this thesis are summarized as follows: (?)
     Studies on basic working principles and designs of fiber lasers
     The basic working principles as well as the major characteristics of laser and fiber lasers are firstly reviewed,including the interaction between light and matter, the laser oscillation conditions and the spectrum distribution,the gain characteristic and spatial hole burning effect,the influence of external environment on the stability of laser output and the actual limits of fiber laser bandwidth;The designs of bidirectional single-mode Er-doped fiber ring laser and multi-wavelength laser is then discussed,respectively;The characteristics of dynamic grating reflection spectrum of the fiber saturable absorber is systematically analyzed. (?)
     Studies on polarimetric fiber laser current sensors
     Three-wavelength fiber F-P cavity laser is designed by utilizing the spatial hole burning effect and the fiber saturable absorber.The design principles and eigen state of polarization of the laser is presented;The theoretical model of three-wavelength fiber lasers used as current sensors is formulated by using Jones matrix method.The analysis is emphasized on the influence of fiber birefringence at the sensing area on the current sensor,and temperature characteristics are also discussed;The design of the fiber laser is verified through experimental research,and a stable three wavelength fiber laser is thus achieved.When the laser is used in a current sensor system,a good linear relation between the beat frequency shift and the current is acquired,with a slope of 3.05KHz/A. (?)
     Studies on linear polarization fiber laser gyro
     A direction related polarizer(DRP) is proposed and designed as a non-reciprocal optical device.The theoretical analysis of the working principle and test methods of the device are introduced.Experimental results show that insertion loss is 0.61 dB,the extinction ratio is larger than 23.35 dB;A novel and stable bidirectional single-mode Er-doped fiber ring laser making use of a DRP and a combined filter based on a narrowband thin film filter and a Mach-Zehnder comb filter is realized for the first time to best of our knowledge.Taking account of the effect of fiber birefringence,the influence of the temperature change on the null-drift from the frenquency bias(NDFFB) is analyzed.When the refractive index difference is 0.01 and temperature change is 0.01℃,the NDFFB is on the order of magnitude of 10KHz;The design of linear polarization fiber laser gyro is experimentally verified.The fiber laser with a pumping power threshold of about 16 mW and a lasing wavelength of 1550 nm is realized.When the pumping power is between 20 mW and 70 mW,the fiber laser maintains single longitudinal mode operation in both CW and CCW directions.The signal to noise ratio of the CW-CCW beat signal is larger than 30dB.By adjusting the polarization controller,a good linear relation between the beat frequency shift and the cavity rotation rate is observed in a gyro system when the frequency bias is 1.68 MHz or 409 KHz respectively.The scale factor is 1.38 KHz/(deg/sec) and 1.23 KHz/(deg/sec) respectively,and the NDFFB is about 7 KHz,which are all consistent with the theoretical analysis.The phenomenon that the scale factor reduces with the decrease of the frequency bias is analyzed,and its solution is then given theoretically.A continuous-wave fiber laser gyro is achieved for the first time. (?)
     Studies on circular polarization fiber laser gyro
     A circular polarization fiber laser gyro is proposed.The principle of the circular polarizer and twisting fiber is analyzed.The fabrication methods of the twisting fiber are improved;The closed-form expression of the lock-in effect in fiber laser gyro is deduced for the first time Numerical simulation shows that the lock-in threshold of about 7.3°/s is obtained when the working wavelength is 1550 nm,the FSR and the diameter of the ring cavity is 34 MHz and 38 cm,respectively;The design of circular polarizationpolarized? fiber laser is implemented and validated for the first time.The threshold pumping power of the fiber ring laser is about 35 mW and the lasing wavelength is 1549.956 nm.A stable and continuous laser operation is observed for the bidirectional single mode Er-doped fiber laser and the laser output is larger than 0.1 mW.When the laser was used in a gym system,it is observe that the signal to noise ratio of the CW-CCW beat signal is larger than 30 dB;the scale factor is 2.67 KHz/(deg/sec);the NDFFB is about±1.5KHz;the sensitivity of the fiber laser gyro is 1°/s and the lock-in threshold is about 10°/s.These experimental results are consistent with that of the theoretical simulation,which hence validates the proposed design idea of the circular polarization fiber laser gyro Finally,the problems encountered in the experiment are analyzed and possible solutions are suggested.
引文
[1].孙运旺,传感器技术与应用[M].杭州:浙江大学出版社,2006.
    [2].W.A.Gambling(英)and张志鹏,光纤传感器原理[M].北京:中国计量出版社,1991.
    [3].C.K.Kao and GHockham,Dirlectric fiber surface waveguides for optical frequecies[J].Proc.IEE,1966.113:pp.1151-1158.
    [4].T.GGiallorenii and e.al,Optical fiber sensor teclmology[J].IEEE J.of Quantum Electronics,1982.18:pp.626.
    [5]何慧灵,et al..光纤传感器现状[M].激光与光电子学进展.2004.41(3):pp.39-41.
    [6].R.J.Mears,et al.,High-gain rare-earth-doped fiber amplifer at 1.54μm[C].Proc.OFC 1987,Reno,NV,1987.
    [7].R.J.Mears,et al.,Low-noise erbium-doped fiber amplifer operating at 1.54μm[J].ELECTRONICS LETTERS,1987.23(19):pp.1026-1028.
    [8].E.desurvire,Erbium-Doped Fiber Amplifiers:Principles and Applications[R].Wiley,John&Sons,Inc.,1994.
    [9].E.Snitzer,Optical Maser Action of Nd~(+3) in a Baritun Crown Glass[J].Phys.Rev.Let.,1961.7(12):pp.444.
    [10].M.J.Ludowise,Metalorganic chemical vapor-d(?)position of Ⅱ-Ⅴ semiconductors[J].Journal of applied physics,1985.58(8):pp.31-55.
    [11].I.P.Alcock,et al.,Q-switched operation of a neodymium-doped monomode fiber laser[J].Electronics Letters,1986.22:pp.84-85.
    [12].S.B.Poole,et al.,Fabracation of low -loss optical fibers containing rare-earth ions[J].Electronics Letters,1986.4(7):pp.870-876.
    [13].I.D.Millar,New all fiber laser[C].OFC1987,1987.
    [14].D.Paster,et al.,Amplified double coupler fiber optic delay line filter[J].IEEE Photonics Tech.Lett.,1995.7(1):pp.75-77.
    [15].J.R.Qian,et al.,Active optical fiber ring resonator filter[C].APOC/OECC99,1999.2:pp.1299-1402.
    [16].S.K.Kim,et al.,Wideband multiwavelength erbium-doped fiber ring laser[C].OFC 2000,2000.3:pp.8-10.
    [17].R.E.Meyer,et al.,Passive fiber optic ring resonator for rotation sensing[J],opt.Lett.,1983.8(12):pp.644-646.
    [18].S.K.Kim and e.al.,Bidirection Er-doped fiber ring laser for RLG application[J].SPIE, 1995.2837:pp.279.
    [19].H.K.Kim,et al.,Polarimetric fiber laser sensors[J].Optics Letters,1993.18(4):pp.317-319.
    [20].聂秋华,光纤激光器和放大器技术[M].北京:电子工业出版社,1997.
    [21].R.Kashyap,et al.,All fiber narrowband reflection gratings at 1500nm.[J].Electron.Lett.,1990.26(12):pp.730-731.
    [22].J.S.Park,et al.,Polarization- and frequency-stable fiber laser for magnetic-field sensing[J].OPTICS LETTERS,1996.21(14):pp.1029-1031.
    [23].S.L.Gilbetr,Frequency stabilization of a tunable erbium-doped fiber laser[J].Opt.Lett.,1991.16:pp.150-152.
    [24].C.Spiegelberg,et al.,Low-noise narrow-linewidth fiber at 1550nm[J].LIGHTWAVE TECHNOLOGy,2004.22(1):pp.57-62.
    [25].Y.H.Ja,A vernier double-ring resonator using degenerate two-wave mixing[J].Microwave Opt.Technol.Lett.,1992.5(2):pp.181-183.
    [26].L.Wci and J.W.Y.Lit,Compound ring resonator with double couplers[J].Optics Communications,2000.186(12):pp.283-290.
    [27].S.Langois and J.W.YLit,S-resonator with an end reflector[J].LIGHTWAVE TECHNOLOGY,1999.17(8):pp.1487-1492.
    [28].H.Okamure and K.Iwatsuki,A finesse enhanced Er-doped-fiber ring resonator[J].LIGHTWAVE TECHNOLOGY,1991.9(11):pp.1554-1560.
    [29].钱景仁,et al.,光纤放大器增益饱和对有源光纤环形腔滤波特性的影响[J].光学学报,2002.22(3):pp.303-307.
    [30].R.Larose,et al.,Simple frequency ttming for locking a singlemode erbium-doped fiber laser to the centre of molecular resonances[J].Electron.Lett.,1994.30(10):pp.791-793.
    [31].J.L.Zhang,et al.,Stable single-mode compound-ring erbium-doped fiber laser[J].LIGHTWAVE TECHNOLOGY,1996.14(1):pp.104-110.
    [32].Y.Cheng,et al.,Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter[J].OPTICS LETTERS,1995.20(8):pp.875-877.
    [33].C.J.Koester and E.Snitzer,Amplification in a fiber laser[J].Appl.Opt.,1964.3(10):pp.1182.
    [34].卢卫民,et al.,光纤激光器的研究进展及趋势[J].光通信,2008:pp.34-36.
    [35].S.Amano,Lasing characteristics of Nd:phosphat glass fiber lase[C].ECOC.Helsinki,Finland:European Conference on Optical Communication,1987:pp.182-189.
    [36].M.Shimitzu,High efficiency Nd-doped fibre lasers using direct-coated dielectric mirrors[J].Electron.Lett.,1987.23:pp.126-129.
    [37].陈益新,光纤技术及其应用展望[J].光通信,2008 9:pp.6-8.
    [38].杨青,et al.,光纤激光器的发展现状[J].光电子技术与信息,2002.15(5):pp.13-18.
    [39].H.K.Kim,et al.,Polarization control of polarimetric fiber-laser sensors[J],optics Letters,1993.18(17):pp.1465-1467.
    [40].H.Z Kim,et al.,Polarization properties of a twisted fiber laser[J].OPTICS LETTERS;1995.20(4):pp.386-388.
    [41].H.Y.Kim,et al.,Response of fiber lasers to an axial magnetic field[J].Optics Letters,1995.20(16):pp.1713-1715.
    [42].N.E.Fisher and D.A.Jackson,Vibration immunity and Ampere's circuital law for a near perfect triangular Faraday current sensor[J].Meas,Sci.Technol.,1996.7(8):pp.1099-1102.
    [43].K.H.Park,et al.,Mode-locked fiber laser gyroscope based on a distributed-feedback semiconductor laser amplifier[J].Optics Letters,1996.21(1):pp.92-94.
    [44].B.W.Lee,et al.,High-sensitivity mode-locked fiber laser gyroscope[J].Optics Letters,1997.22(2):pp.129-131.
    [45].B.Y.Kim,Fiber lasers for sensing[J].Proc.SPIE,1998.3483:pp.12-19.
    [46].M.L.Lee,et al.,A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser[J].Meas.Sci.Technol.,1998.9:pp.952-959.
    [47].G Liu and S.L.Chuang,Polarimetric optical fiber weight sensor[J].Sensors and Actuators A:Physical,1998.69(2):pp.143-147
    [48].O.Hadeler,et al.,Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements[J].Applied Optics,1999.38(10):pp.1953-1958.
    [49].J.C.Yong,et al.,Frequency-division-mnltiplexed polarimetric fiber laser current-sensor array[J].OPTICS LETTERS,1999.24(16):pp.1097-1099.
    [50].k.Bohnert,et al.,Effects of dispersion in a polarimetric fiber laser sensor with highly birefringent fiber grating reflectors[J].CLEO 2002,2002.1:pp.393-394.
    [51].A.Frank,et al.,High resolution fiber laser sensor for hydrostatic pressure[J].Optical Fiber Sensors Conference,2002.1:pp.359-362.
    [521.H.Karim,el al.,Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors[J].Optics letters,2002.27(11):pp.897-899.
    [53].K.Bohnert,et al.,Polarimetric Fiber Laser Sensor for Hydrostatic Pressure[J].Applied Optics,2004.43(1):pp.41-48
    [54].J.-H.Lee,et al.,Fiber-optic AC current sensor nsing metal coated intrinsic FFPI,and silicon micromachining technology[J].Sensors,2004.Proceedings of IEEE,2004.3:pp.1308-1311.
    [55].A.Rosales-Garc(?)a,et al.,Fiber lasers with hybrid birefringence resonators[J].Optics and Lasers in Engineering 2005.44(10):pp.1027-1038.
    [56].N.Li,et al.,Intra-cavity fiber laser technique for high accuracy birefringence measurement[J].Opt.Express 2006.14(17):pp.7594-7603
    [57].M.Wevers,et al.,Acoustic emission monitoring rising a polarimetric Single Mode optical fibre sensor[J].Int.J.Materials and Structural Integrity,2007.1(1/2/3):pp.148-160.
    [58].GA.Cranch,et al.,Distributed Feedback Fiber Laser Strain Sensors[J].Sensors Journal,IEEE,2008.8(7):pp.1161-1172.
    [59].L.Y.Shao,et al.,Fibre-optic load sensor based on polarimetric DBR fibre laser[J].Electronics Letters,2008.44(2):pp.99-100.
    [60].T.R.WOLINSKI,et al.,Polarimetric optical fiber seusors of a new generation for industrial applications[J].BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES,2008.56(2):pp.1251-132.
    [61].梁铨廷,物理光学[M].北京:机械工业出版社,1980:pp.339-341.
    [62].刘公强,et al.,磁光学[M].上海:上海科学技术出版社,2001:pp.30-36.
    [63].G.Sagnac,L'ether dans demontre par l'effect du vent relative d'ether dans us interferometre en rotation unifrome[J].C.R.Acad Sci.,1913.95:pp.708.
    [64].H.Lefevre,The fiber optic gyroscopy[M].Norwood:Artech,1993.
    [65].W.K.Burns,Optical fiber rotation sensing[San Diego:Academic,1994.
    [66].D.C.Ericksan,The Use of Fiber Optics for Conununications Measurement and Control with in Voltage Substation[J].IEEE Trans.Power Apparatus and Systems,1980.99(3):pp.105-106.
    [67].R.Malewski,High-Voltage Current Transformers with Optical Signal Transmission[J].Optics Engineering,1981.20(1):pp.54-57.
    [68].G.H.Moulton,Light Pulse System Shrinks High-Voltage Protection Device[J].Electronics,1965.38(5):pp.71-75.
    [69].S.Saito,et al.,The laser current transformer for EHV power transmission lines[J].IEEE J.of Quantum Electronics,1966.2(8):pp.255-259.
    [70].S.Saito,et al.,Development of the laser current transformer for Extra-High-Voltage power transmission lines[J].IEEE J.of Quantum Electronics,1967.3(11):pp.589-597.
    [71].A.J.Rogers,Optical methods for measurement of voltage and current on power systems[J]. optics,and Laser Technology,1977(12):pp.273-283.
    [72].A.M.Smith,Optical fibers for current measnrement applications[J[.Optics and Laser Teclmology,1980(2):pp.25-29.
    [73].A.Papp and H.Harms,Magneto-Optical Current Transformer 1:Principles]J].Applied Optics,1980.19(22):pp.3729-3734.
    [74].H.Aulich,et at.,Magnetooptical Current Transformer 2:Components[J].Applied Optics,1980.19(22):pp.3735-3740.
    [75].H.Harms and A.Papp,Magnetooptical Current Transformer 3:Measurements[J].Applied Optics,1980.19(22):pp.3741-3745.
    [76].P.Menke and T.Bosselmann,Temperature Compensation in Magnetooptic AC Current Sensors Using an Intelligent AC-DC Signal Evaluation[J].Lightwave Teclmology;,1995.13(7):pp.1362-1370.
    [77].A.J.Rogers,et at.,Vibration Immunity for Optical-Fiber Current Measurement[J].Ligbtwave Teclmology,1995.13(7):pp.1371-1377.
    [78].X.Fang,et al.,A Reciprocal-compensated Fiber-optic Electric Current Sensor[Jl.Lightwave Tectmology,1994.12(10):pp.1882-1889.
    [79].P.Tantaswadi,Simulation of Birefringence Effects in Reciprocal Fiber-Optic Polarimetric Curent Sensor[J].SPIE Proc.,2001.4517:pp.158-164.
    [80].GA.Sanders,et al.,Commercialization of Fiber-Optic Current and Voltage Sensors at NxtPhase[J].IEEE Prec.,2002.7289:pp.31-34,
    [81].T.Mitsui,et al.,Development of Fiber-Optic Voltage Sensors and Magnetic-Field Sensors[J].IEEE Trans.Power Delivery,1987.2(1):pp.87-93.
    [82].T.W.Cease and P.Johnston,A Magneto-Optic Current Transformer[J].IEEE Trans.Power Delivery,1990.5(5):pp.548-555.
    [83].T.D.Mafferone and T.M.McClelland,345kV Substation Optical Current Measurement System for Revenue Metering and Protective Relaying[J].IEEE Trans.Power Delivery,1991.6(4):pp.1430-1437.
    [84].Y.Toshilhiko,et al.,Fiber-Linked Faraday Effect Current Sensor by Use of A Flint Glass Cell with Dielectric-coated Retardation-compensated Total Reflection Surfaces[J].Applied Optics,2002.41(28):pp.5963-5968.
    [85].Y.Hasegawa,et al.,Development of a New Type of Optical Transducer for Measuring Fault Current[J].IEEE Trans On Power Delivery 1994.9(3):pp.1245-1250.
    [86].焦斌亮,Sagnac干涉型光纤电流传感器研究[D].河北:燕山大学信息科学与工程学院,2004.
    [87].Y.Yoshida,et al.,New Fanlt Locating System for Air-insnlated Substations Using Optical Current Detector[J].IEEE Trans On Power Delivery.,1992.7(4):pp.1805-1812.
    [88].N.Inoue,et al.,Fault Section Detection Systera for 275Kv XLPE-Insulated Cables with Optical Sensing Techniqne[J].IEEE Trans On Power Deliver,1995.10(3):pp.1148-1155.
    [89].张涛,et al.,激光供能的光纤电流传感器[J].传感技术学报,2001(4):pp.271-276.
    [90].张涛,et al.,罗果夫斯基线圈测量高电爪及电力系统中的暂态电流[J].电工电能新技术,2002.2l(3):pp.53-56.
    [91].马仙云,et al.,磁光式光电电流互感器及其双折射问题[J].高电压技术,1996.22(1):pp.3-5.
    [92].徐雁,et al.,光学电流传感器温度影响的理论与试验研究[J].仪表技术与传感器,2001(2):pp.6-9.
    [93].郭晓华,et al.,新型组合式电压电流传感器的研究[J].高压电器,2002.38(3):pp.23-26.
    [94]刘晔.et al,三相光学电流互感器基础理论研究[J].高电压技术,1999.25(4):pp.84-85
    [95].T.Wang,et al.,A Fiber-Optic Current Sensor Based on A Differentiating Sagnac Interferometer[J].IEEE Transactions on Instrumentation and Measurement,2001.50(3):pp.705-708.
    [96].J.R.Qian,et al.,Spun Linear Birefringence Fibers and Their Sensing Mechanism in Current Sensors With Temperature Compensation[J].IEE Proc.-Optoelectronics,1994.141(6):pp.373-380.
    [97].钱景仁,et al.,保持法拉第效应的光纤环形腔结构[J].光学学报,1998.18(3):pp.324-329.
    [98].W.M.Macek and D.T.M.Davis,Rotation rate sensing with traveling-wave ring lasers[J].Appl.Phys.Lett,1963.2:pp.67-68.
    [99].V.Vali and R.W.Shorthill,Fiber ring interferometer[J].Appl.Opt.,1976.5:pp.1099-1100.
    [100].G.A.Sanders,Fiber optic gyros for space,marine and aviation applications[J].Proc.SPIE,1996.2837:pp.61-65.
    [101].K.Suzuki,et al.,Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J],IEEE J Lightwave Teclraol.,2000.18(1):pp.66-72.
    [102].Y.Tanaka and K.Hotate,Analysis of fiber brillouin ring laser coraposed of single-polarization single-mode fiber[J].IEEE J Lightwave Technaol.,1997.15(5):pp.838-844.
    [103]张春熹,et al.,居于DSP的全数字闭环光纤陀螺[J].北京航空航天大学学报,1998.24(6):pp.695-698.
    [104].谢增华,et al.,环形腔光纤陀螺中减少偏振噪声的方法研究[J].压电与声光,1997.19(6):pp.372-374.
    [105].延风平,et al.,受激布里渊散射光纤中光纤光源的阈值光功率的研究[J].中国激光,2000.27(9):pp.790-794.
    [106].马新宇,et al.,谐振式光纤陀螺中全保偏环形腔的研究[J].清华大学(自然科学版),1999.39(2):pp.68-80.
    [107].Z.Y.Hu,et al.,Re-entrant fiber optic rotation sensor with active ring resonator using semiconductor optical amplifier[J].Electron.Lett.,1999.35(25):pp.2226-2227.
    [108].李芙英,et al.,再入式光纤角速度传感器的研究[J].光学学报,2001.21(3):pp.363-366.
    [109].R.K.Kadiwat and I.P.Giles,Optical fiber Brillouin ring laser gyroscopes[J].Electron.Lett.,1989.25:pp.1729-1731:
    [110].S.K.Kim,et al.,Er3+-doped fiber ring laser for gyroscope applicatiou[J].Opt.Lett.,1994.19(22):pp.1810-1812.
    [111].Y.B.Yeo,et al.,Loss Modulation Effect on the Second-Harmonically Mode-Locked Erbium-Doped Fiber Laser Based on Sagnac Loop Reflector With Y-branch LiNbO3Phase Modulator[J].IEEE J.of Quantum Electronics,2003.39(6):pp.766-772.
    [112].J.R.Qian and Z.F.Hu,Single-Longitudinal Mode and Single-Polarization State Er3+Doped Fiber Compound-Ring Laser with a M-Z Intefferometer[C].APMC'97,1997:pp.377-379.
    [113].Z.f.Hu and J.R.Qian,Effects of resonator's optical path fluctuation on the characteristics of a fiber-optic ring resonator[J].J.of Modern Physics,1998.45(1):pp.45-50.
    [1].B.E.A.Saleh and M.C.Teich,Fundamentals of Photonics[M].Wiley,New York,1991.
    [2].GP.Agrawal,Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics(Third Edition)[M].Elsevier Science,2001.
    [3].A.Yariv,量子电子学(刘颂豪等译)[M].北京:科学出版社,1983.
    [4].张书练,正交偏振激光原理[M1.北京:清华大学出版社,2005.
    [5].邵加峰,光学双稳态及光纤激光器的研究[D].上海:上海交通大学物理系,2008.
    16].A.Y.Aziv,量子电子学(刘颂豪等译)[M].北京:科学出版社,1983.
    [7].周炳琨,et al.,激光原理(第4版)[M].北京:国防工业出版社,2000.
    [8].伍波,1.5μm掺铒窄线宽光纤激光器研究[D].成都:电子科技大学,2007.
    [91.胡宗福,全光纤环形腔及单频激光的研究[D].合肥:中国科学技术大学,1997.
    [10].R.Kiyan and B.Y.Kim,An Er-Doped bidirectional ring fiber laser with 90 Faraday rotator as phase nonreciprocal element[J].IEEE Photonics Technology Letters.1998.10(3):pp.340-342.
    [11].H.Sabert and R.Ulrich,Gain stabilization in a narrow-band optical filter[J].Opt.Lett.,1992.17:pp.1161-1163.
    [12].K.Suzuki,et al.,Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J].IEEE J Lightwave Technol.,2000.18(1):pp.66-72.
    [13].D,I.Chang,et al.,Single-frequency erbium fiber laser using the twisted-mode technique[J].Electron.Lett.,1996.32(19):pp.1786-1787.
    [14].A.E.Siegman,Lasers[M].University Science Books,Mill Valley,CA,1986.
    [15].J.Chow,et al.,Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters[J].IEEE Photonics Tech.Lett.,1996.8(1):pp.60-62.
    [16].A.Bellemare,et al.,Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid[J].LIGHTWAVE TECHNOLOGY,2000.18(6):pp.825-831.
    [17].S.KKim,el al.,Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback[J].OPt.Commun.,2001.190(1-6):pp.291-302.
    [18].K.J.Zhou,et at.,Room-temperature mnltiwaveleugth erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback[J].Opt.Lett.,2003.28(11):pp.893-895.
    [19].孙军强,et al.,窄线宽多波长掺铒光纤激光器[J].中国激光,2000.27(9):pp.773-776.
    [20].G.Das aud J.W.Y.Lit,L-band Multiwavelength fiber laser using an elliptical fiber[J].IEEE Photonics Tech.Lett.,2002.14(5):pp.606-608.
    [21].C.L.Zhao,et,al.,Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber[J].Opt.Commun.,2004.230(4-6):pp.313-317.
    [22].O.Graydon,et al.,Triple-frequency operation of an erbium-doped twincore fiber loop laser[J].IEEE Photonics Tech.Lett.,1996.8(1):pp.63-65.
    [23].Q.H.Mao and J.W.Y.Lit,Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities[J].IEEE Photonics Tech.Lett.,2002.14(5):pp.612-4514.
    [24].R.Slavik,et al.,Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure[J].IEEE Photonics Tech.Lett.,2004.16(4):pp.1017-1019.
    [25].G.J.Cowle and D.Y.Stepanov,Multiple wavelength generation with Brillouin/erbium fiber lasers[J].IEEE Photonics Tech.Lett.,1996.8(11):pp.1465-1467.
    [26].M.Horowitz,et al.,Narrow-linewidth,singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber[J].Electron.Lett.,1994.30(8):pp.648-649.
    [27].A.Y.Aziv,Quantum Electronics,2nd ed[M].New York:Wiley,1989.
    [28].E.desurvire,Study of the complex atomic susceptibility of erbium-doped fiber amplifier[J].LIGHTWAVE TECHNOLOGY,1990.8:pp.1517-1527.
    [29].C,Thirstrup,et al.,Pump-induced refractive index modulation and dispersions in Er3+-doped fiber[J].Electron.Lett.,1996.27(21):pp.1959-1961.
    [30].M.Janos and S.C.Guy,Signal-iuduced refractive index changes in erbium-doped fiber amplifier[J].LIGHTWAVE TECHNOLOGY,1998.16(4):pp.542-548.
    [31].J.D.Jackson,Classical Electrodynamics(2nd ed)[M].New York:Wiley,1975.
    [32].M.Horowitz,et al.,Linewidth narrowing mechanism in lasers by nonlinear wave mixing[J].Opt.Lett.,1994.19(18):pp.1406-1408.
    [33].H.S.Kim,et al.,Longitudinal mode control in few-mode erbium-doped fiber laser[J].Opt.Lett.,1996.21(15):pp.1144-1146.
    [34].M.S.Kang,et al.,Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter[J].LIGHTWAVE TECHNOLOGY,2006.24(4):pp.1812-1813.
    [1].V.Svyryd,et al.,Accessing refractive index of absorptive liquid media with optical fibre evanescent-field sensor[C].SPIE,2007.66191B.
    [2].钱景仁.et al.,激光型光纤电流传感器频率的零漂[J].中国激光,2006.33(6):pp.791-794
    [3].K.S.C.Kuang,et al.,Plastic optical fibre sensor for structural health monitoring[C].SPIE,2005:pp.86-93.
    [4].庞碧波,et al.,一种光纤电流传感器的设计[J].红外,2008.29(11):pp.33-35.
    [5].J.S.Park,et al.,Polarization- and frequency-stable fiber laser for magnetic-field sensing[J].OPTICS LETFERS,1996.21(14):pp.1029-1031.
    [6].P.B.Gallion and G.Debarge,Quantum phase noise and field correlation in single frequency semiconductor laser systems[J].IEEE J Quantum Electron,1984.20:pp.343-349.
    [7].廖延彪,偏振光学[M].北京:科学出版社,2003.
    [8].H.S.Kim,et al.,Longitudinal mode control in few-mode erbium-doped fiber lasers[J].OPTICS LETTERS,1996.21(15):pp.1144-1146.
    [9].M.S.Kang,et al.,Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter[J].LIGHTWAVE TECHNOLOGY,2006.24(4):pp.1812-1813.
    [10].刘方,激光型光纤电流传感器频率零漂的研究[D].合肥:中国科学技术大学,2006.
    [1].S.K.Kim,et al.,Bidirection Er-doped fiber ring laser for RLG application[J].SPIE,1995.2837:pp.279.
    [2].S.K.Kim,et al.,Er3+-doped fiber ring laser for gyroscope application[J].Opt.Lett.,1994.19(22):pp.1810-1812.
    [3].J.R.Qian and Z.F.Hu,Single-Longitudinal Mode and Single-Polarization State Er3+ Doped Fiber Compound-Ring Laser with a M-Z Interferometer[C].APMC'97,1997:pp.377-379.
    [4].Z.F.Hu and J.R.Qian,Effects of resonator's optical path fluctuation on the characteristics of a fiber-optic ring resonator[J].J.of Modern Physics,1998.45(1):pp.45-50.
    [5].Y.B.Yeo,et al.,Loss Modulation Effect on the Second-Harmonically Mode-Locked Erbium-Doped Fiber Laser Based on Sagnac Loop Reflector With Y-branch LiNbO3 Phase Modulator[J].IEEE J.of Quantum Electronics,2003.39(6):pp.766-772.
    [6].钱景仁and苏觉,方向相关的光纤偏振器,中国,200420062821[P]2004.
    [7].廖延彪,偏振光学[M].北京:科学出版社,2003.
    [1].钱景仁,et al.,Er-doped fiber ring laser gyroscopes operating in continuous waves[J].Chinese Optics Letters,2007.5(4):pp.229-231.
    [2].廖延彪,偏振光学[M].北京:科学出版社,2003.
    [3].王许旭,应用于陀螺的圆偏振双向掺铒光纤环形腔激光器[D].合肥:中国科学技术大学,2007.
    [4].《数学手册》编写组,数学手册[M].北京:高等教育出版社,1979.
    [5].张志淳,光纤环形腔电流传感器初探[D].合肥:中国科学技术大学,1997.
    [6].钱景仁,耦合模理论(讲义)[M].合肥:中国科学技术大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700