用户名: 密码: 验证码:
光纤中基于受激布里渊散射的慢光传输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从2004年D. J. Gauthier提出光纤中基于受激布里渊散射(Stimulated Brillouin scattering, SBS)的慢光和快光思想以来,SBS慢光就一直是慢光领域的研究热点。但是由于SBS固有的特性,使得SBS慢光存在有限的慢光延时和较窄的慢光带宽这两个限制。针对这两个问题,本论文提出了一些创新的解决方案,并进行了理论和实验研究。
     首先,从SBS耦合波方程出发,对光纤中基于SBS的慢光和快光进行了理论研究。分别研究了SBS慢光的稳态小信号解析解、稳态数值解和瞬态数值解。对于稳态小信号情形,SBS慢光延时有解析表达式,它与布里渊增益成正比,与布里渊增益带宽成反比;然而进入增益饱和区后,由于泵浦抽空效应,使得延时开始减小甚至出现负值。对于Stokes脉宽小于声子寿命的瞬态情形,由于声波场迟滞产生的新脉冲引入了一个附加延时,并且会导致脉冲的严重展宽和畸变。
     其次,为了拓展有限的SBS慢光延时,提出了使用布里渊光纤环形放大器进行多次布里渊放大,从而增加可调延时的思想,并在实验上进行了验证。实验上我们获得了脉宽为40ns的探测脉冲在布里渊光纤环形放大器中得到八圈的布里渊放大,共获得215ns的可调延时,相对延时为5.4。
     最后,为了提高SBS慢光带宽,提出多增益谱叠加来获得宽带布里渊增益谱的方法,并且提出了采用多频调相技术获得多条等幅光谱线的方法。首先我们在理论和实验上分别获得了三条、五条、七条、九条和十一条等幅光谱线的光谱;然后,利用获得的具有多条等幅光谱线的泵浦光进行了宽带SBS慢光实验,利用基频为30MHz的十一等幅光谱线,获得了最高为570MHz的布里渊增益带宽。而且,实验结果表明更宽更平的布里渊增益谱可以在一定的展宽因子内获得更大的相对延时。
SBS slow light has been at the research focus in slow light optics community since the fast and slow light based on Stimulated Brillouin scattering (SBS) was proposed by D. J. Gauthier in 2004. Due to the inherent characteristics of SBS, there are still two problems in SBS slow light: the limited slow light delay time and the narrow Brillouin gain linewidth. To address the two problems, this dissertation proposes some innovative solutions, and performs theoretical and experimental studies.
     First, we theoretically study the SBS fast and slow light in an optical fiber based on the SBS coupled wave equations. We study the analytic solutions in stable state with small-signal and the numerical solutions in stable state and transient state, respectively. In the case of stable state with small-signal, SBS slow light delay time can be expressed by an analytic expression, which is proportional to the Brillouin gain parameter and inversely proportional to the Brillouin gain linewidth; while in region of gain saturation, due to the effect of pump depletion, the delay time becomes decreasing and even negative. In the case of transient state when probe pulse duration is smaller than phonon lifetime, a new pulsle induced by the delayed acoustic wave adds an additional delay time and induces large pulse distortion and broadening.
     Second, to extend the controllable delay time, we propose a method based on a Brillouin optical fiber ring amplifier where the probe pulse can be amplified with multiple times in it. In experiment, a maximum time delay of 215 ns, larger than five times of the input probe pulse duration of 40 ns, has been obtained after experiencing eight loops of Brillouin amplification.
     Finally, to broaden SBS linewidth, we propose a method to obtain broadband Brillouin gain linewidth by overlapping multiple gain spectrums, and a method to obtain multiple equal-amplitude spectral lines using the technique of multi-frequency phase modulation. First, we have theoretically and experimentally obtained three, five, seven, nine and eleven equal-amplitude spectral lines, respectively; then we have performed the broadband SBS slow light experiment using pump with multiple equal-amplitude spectral lines, obtaining a maximum Brillouin linewidth of 900 MHz using eleven equal-amplitude spectral lines with the fundamental frequency of 30 MHz. The experimental results also indicate that broader flattened Brillouin gain spectrum can produce larger fractional delay at a fixed broadening factor.
引文
1 S. Chu and S. Wong. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 1982, 48(11):738~741
    2 A. M. Akulshin, S. Barreiro and A. Lezama. Steep anomalous dispersion in coherently prepared Rb vapor. Phys. Rev. Lett. 1999, 83(21):4277~4280
    3 M. A. I. Talukder, Y. Amagishi and M. Tomita. Superluminal to subluminal transition in the pulse propation in a resonantly absorbing medium. Phys. Rev. Lett. 2001, 86(16):3546~3549
    4 L. J. Wang, A. Kuzmich and A. Dogariu. Gain-assisted superluminal light propagation. Nature. 2000,406 :277~279
    5 A. Dogariu, A. Kuzmich and L. J. Wang. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative froup velocity. Phys. Rev. A. 2001, 63(20):053806
    6 A. M. Steinberg, P. G. Kwait, R. Y. Chiao. Measurement of the Single Photon Tunneling Time. Phys. Rev. Lett. 1993, 71(5): 708~711
    7 C. Spielmann, R. Szip?cs, A. Stingl, F. Krausz. Tunneling of optical pulses through photonic band gaps. Phys. Rev. Lett. 1994, 73(17):2308~2311
    8 C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature. 2001,409:490~493
    9 O. Kocharovskaya, Y. Rostovtsev, M. O. Scully, Stopping light via hot atoms. Phys. Rev. Lett. 2001, 86(4): 628~631
    10 D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin. Storage of light in atomic vapor. Phys. Rev. Lett. 2001, 86(5):783~786
    11 J. B. Khurgin. Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides. Phys. Rev. A. 2005, 72(2):023810
    12 H. Gao, M. Rosenberry and H. Batelaan. Light storage with light of arbitrary polarization. Phys. Rev. A. 2003, 67(5):053807
    13 T. N. Dey and G. S. Agarwal. Storage and retrieval of light pulses at modetate powers. Phys. Rev. A. 2003, 67(3):033813
    14 D. J. Gauthier. Slow Light Brings Faster Communication. Phys. World. 2005, 18: 30~32
    15 C. J. Chang-Hasnain, S. L. Chuang. Slow and fast light in semiconductor quantum-well and quantum-dot devices. Lightwave Technol. 2006, 24(12): 4642~4654
    16 R. W. Boyd, D. J. Gauthier and A. L. Gaeta. Applications of slow-light in telecommunications. Optics & Photonics News. 2006, April: 19~23
    17 R. W. Boyd and D. J. Gauthier.‘Slow’and‘Fast’light. Progress in Optics. 2002, 43: 497~530
    18 D. J. Gauthier, A. L. Gaeta and R. W. Boyd. Slow light: from basics to future prospects. Photonics Spectra. 2006, March: 44~50
    19吴重庆.全光缓存器研究的新进展.半导体光电. 2005, 26(5): 369~373
    20 R. W. Boyd, D. J. Gauthier, A. L. Gaeta and A. E. Willner. Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A. 71(23):023801
    21 S. E. Harris, J. E. Field, A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 1990, 64(10): 1107~1110
    22 S. E. Harris. Electromagnetically induced transparency. Phys. Today. 1997, 50(7): 36~42
    23 S. E. Harris, J. E. Field, A. Kasapi. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A. 1992, 46(1):29~32
    24 A. Kasapi, M. Jain, G. Y. Yin and S. E. Harris. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 1995, 74(13): 2447~2450
    25 L.V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 1999, 397: 594-598
    26 M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Observation of ultraslow light propagation in a Ruby crystal at room temperature. Phys. Rev. Lett. 2003, 90(11):113903
    27 M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Superluminal and slow light propagation in a room-temperature Solid. Science. 2003, 301: 200~202
    28 J. T. Mok and B. J. Eggleton. Expect more delays. Nature. 2005, 433: 811~812
    29 D. J. Gauthier. Physics and applications of slow light. 2nd Annual summer school, Fitzpatrick center for photonics and communication system, Duke University, July 27, 2004
    30 K. Y. Song, M. G. Herraez and L. Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express. 2005, 13(1): 82~88
    31 Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu and A. Schweinsberg. Tunable all-optical delay via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 2005, 94(15): 153902
    32 Z. Zhu and D. J. Gauthier. Nearly transparent SBS slow light in an optical fiber. Opt. Express. 2006, 14:7238~7245
    33 T. Schneider, M. Junker and K. U. Lauterbach. Time delay enhancement in stimulated Brillouin scattering slow light systems. Opt. Lett. 2007, 32: 220~223
    34 S. Chin, M. G. Herraez and L. Thevenaz. Zero-gain slow and fast light propagation in an optical fiber. Opt. Express. 2006, 14:10684~10692
    35 T. Schneider, R. Henker, K. U. Lauterbach and M. Junker. Comparison of delay enhancement mechanisms for SBS-based slow light systems. Opt. Express. 2007, 15:9606~9613
    36 K. Y. Song, M. G. Herraez and L. Thevenaz. Long optically controlled delays in optical fibers. Opt. Lett. 2005, 30(14): 1780~1784
    37 M. G. Herráez, K. Y. Song, and L. Thévenaz. Arbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express. 2006, 14:1395~1400
    38 M. G. Herraez, K. Y. Song and L. Thevenaz. Broad-bandwidth Brillouin slow light in optical fibers. in Proc. OFC 2006, paper OTuA2
    39 Z. Zhu, A. M. C. Dawes and D. J. Gauthier. 12-GHz-Bandwidth SBS Slow Light in Optical Fibers. in Proc. OFC 2006, paper PDP11
    40 Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang and A. E. Willner. Broadband SBS slow light in an optical fiber. Lightwave Technol. 2007,25:201~206
    41 A. Zadok, A. Eyal and M. Tur. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp. Opt. Express. 2006, 14:8498~8505
    42 T. Schneider, M. Junker and K. U. Lauterbach. Potential ultra wide slow-light bandwidth enhancement. Opt. Express. 2006, 14:11082~11087
    43 K. Y. Song and K. Hotate. 25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett. 2007, 32:217~219
    44 M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes and D. J. Gauthier. Distortion management in slow-light pulse delay. Opt. Express. 2005, 13: 9995~10002
    45 A. Minardo, R. Bernini and L. Zeni. Low distortion Brillouin slow light in optical fibers using AM modulation. Opt. Express. 2006, 14:5866~5876
    46 C. Jauregui, H. Ono, P. Petropoulos and D. J. Richardson. Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber. in Proc. OFC 2006, Paper PDP2
    47 K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez and L. Thévenaz. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber. Opt. Express. 2006, 14:5860~5865
    48 C. Yu, T. Luo, L. Zhang and A. E. Willner. Data pulse distortion induced by a slow-light tunable delay line in optical fiber. Opt. Lett. 2007, 32:20~22
    49 L. Zhang, T. Luo, W. Zhang, C. Yu, Y. Wang and A. E. Willner. Optimizing operating conditions to reduce data pattern dependence induced by slow light elements. in Proc. OFC 2006, Paper OFP7
    50 B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu and D. J. Gauthier. Slow light on Gbit/s differential-phase-shift-keying signals. Opt. Express. 2007, 15:1878~1883
    51 B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang and A. E. Willner. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line. Opt. Express.2007, 15:8317~8322
    52 B. Zhang, L. S. Yan. J. Y. Yang, I. Fazal and A. E. Willner. A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels. Photon. Technol. Lett. 2007, 19:1081~1083
    53 E. Mateo, F. Yaman and G. Li. Control of four-wave mixing phase-matching condition using Brillouin slow-light effect in fibers. Opt. Lett. 2008, 33(5): 488~490
    54 S. G. Yang, H. W. Chen, C. Y. Qiu, M. Chen, M. H. Chen, S. Z. Xie, J. Y. Li and W. Chen. Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering. Opt. Lett. 2008, 33(2): 95~97
    55 T. Arditi, E. Granot and S. Sternklar. Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scattering. Opt. Lett. 2007, 32(18):2689~2691
    56 C. Jauregui, P. Petropoulous and D. J. Richardson. Delay-gain decoupling in Brillouin-assisted slow light. Opt. Lett. 2007, 32(18):2701~2703
    57 C. Jauregui, P. Petropoulous and D. J. Richardson. Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects. Opt. Express. 2007, 15(8):5126~5135
    58 G. S. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki and Y. Ohishi. Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation. Lightwave Technol. 2008, 26:492~498
    59 R. Pant, M. D. Stenner, M. A. Neifeld and D. J. Gauthier. Optimal pump profile designs for broadband SBS slow-light systems. Opt. Express. 2008, 16(4):2764~2777
    60 B. Zhang, L. S. Yan, L. Zhang, S. Nuccio, L. Christen, T. Wu and A. E. Willner. Spectrally efficient slow light using multilevel phase-modulated formats. Opt. Letts. 2008, 33(1):55~57
    61 K. Y. Song, K. S. Abedin and K. Hotate. Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering. Opt. Express. 2008, 16(1):225~230
    62 L. Yi, Y. Jaouen, W. Hu, J. Zhou, Y. Su and E. Pincemin. Simultaneous demodulation and slow light of differential phase-shift keying signals using stimulated-Brillouin-scattering-based optical filtering in fiber. 2007, 32(21):3182~3184
    63 A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd and S. Jarabo.Observation of superluminal and slow light propagation in Erbium-doped fiber. Europhys. Lett. 2006, 73(2): 218~224
    64 M. S. Bigelow. Ultra-slow and superluminal light propagation in solids at room temperature. Doctoral Dissertation in University of Rochester. 2004
    65 Yun Dong Zhang, Wei Qiu, He Tian, Jian-Bo Ye and Ping Yuan. Observation of superluminal and slow light in Doped Er+ fiber. OSA Topical meeting on slow and fast light 2006, paper ME14
    66掌蕴东,范保华,袁萍.红宝石晶体中慢光现象的实验观测.光学学报. 2004, 24(12):1688~1690
    67范保华,掌蕴东,袁萍.固体介质中光速减慢现象的研究.物理学报. 2005, 54(10): 4692~4695
    68范保华,掌蕴东,袁萍.固体介质中光速减慢研究的若干进展.物理. 2005, 34(9): 672~675
    69 E. Shumakher, A. Willinger, R. Blit, D. Dahan and G. Eisenstein. Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification. Opt. Express. 2006, 14(19): 8540~8545
    70 E. Shumakher, R. Blit, A. Willinger, D. Dahan and G. Eisenstein. Large delay and low distortion of a 40Gb/s signal propagating in a slow light system based on parametric amplification in optical fibers. in Proc. ECOC 2006, paper We4.3.4
    71 Lilin Yi, Weisheng Hu, Yikai Su, Lufeng Leng, Jian Wu, Xiangqin Tian, Guangtao Zhou and Li Zhan. Propagation of 10-Gb/s RZ Data Through a slow-light fiber delay-line based on parametric process. in Proc. OFC 2006, paper OFH3
    72 Yikai Su, Lilin Yi and Weisheng Hu. System performance of a slow-light delay line for 10-Gb/s data packets. OSA Topical meeting on slow and fast light 2006, paper WB4
    73 Lilin Yi, Weisheng Hu, Yikai Su, Mingyi Gao and Lufeng Leng. Design and system demonstration of a tunable slow-light delay line based on fiber parametric process. IEEE Photon. Technol. Lett. 2006, 18(24):2575~2577
    74 Fangfei Liu, Yikai Su and Paul L. Voss. Optimal operating conditions and modulation format for 160 Gb/s signals in a fiber parametric amplifier usedas a slow-light delay line element. in Proc. OFC 2007, paper OWB5
    75 D. Dahan, G. Eisenstein. Tunable all optical delay via slow and fast Light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering. Opt. Express. 2005, 13(16): 6234~6249
    76 E. Shumakher, A. Willinger, R. Blit, D. Dahan and G. Eisenstein. Low distortion propagation of high bit rate data streams in a slow light system based on narrow band Raman assisted parametric amplification in optical fibers. in Proc. OFC 2006, paper WB5
    77 J. E. Sharping, Y. Okawachi and A. L. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier. Opt. Express. 2005, 13(16): 6092~6098
    78 Goldblattn. Stimulated Brillouin scattering. Appl. Opt. 1969, 8(8):1559~1566
    79 V. I. Kovalev and R. G. Harrison. Threshold for stimulated Brillouin scattering. Opt. Express. 2007, 15(26):17625~17630
    80 I. Velchev and W. Ubachs. High-order stimulated Brillouin scattering with nondiffracting beams. Opt. Lett. 2001, 26(8):530~532
    81 A. Djupsjobacka, G. Jacobsen and B. Tromborg. Dynamic stimulated Brillouin scattering analysis. Lightwave Technol. 2000, 18(3):416~424
    82 R. G. Harrsion, D. Yu, W. Lu and P. M. Ripley. Chaotic stimulated Brillouin scattering: Theory and experiment. Physica D. 1995, 86(1):182
    83 R. E. Giacone and H. X. Vu. Nonlinear kinetic simulations of stimulated Brillouin scattering. Phys. Plasmas. 1998, 5(5):1455~1460
    84 M. A. Okey and M. R. Osborne. Broadband stimulated Brillouin scattering. Opt. Commun. 1992, 89(2):269~275
    85 R. Chu, M. Kanefsky and J. Falk. Numerical study of transient stimulated Brillouin scattering. Appl. Phys. 1992, 71(10):4653
    86 K. S. Abedin. Stimulated Brillouin scattering in single-mode tellurite glass fiber. Opt. Express. 2006, 14(24):11766~11772
    87 H. L. Sang and C. M. Kim. Chaotic stimulated Brillouin scattering near the threshold in a fiber. Opt. Lett. 2006, 31(21):3131~3133
    88 G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed, (Academic, San Diego, 1995)
    89 R. W. Boyd. Nonlinear Optics (Academic, 1992)
    90 M. J. Damzen, V. I. Vlad, V. Babin and A. Mocofanescu. Stimulated Brillouin Scattering (IOP, 2003)
    91 Z. Zhu, D. J. Gauthier et al. Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fibers. J. Opt. Soc. Am. B. 2005, 22(11):2378~2384
    92 C. M. de Sterke, K. R. Jackson and B. D. Robert. Nonlinear coupled-mode equations on a finite interval: a numerical procedure. J. Opt. Soc. Am. B. 1991, 8:403~412
    93 N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov and V.S. Letokhov. Propagation velocity of an intense light pulse in a medium with inverted population. Sov. Phys. Dokl. 1966, 10:1039~1040
    94 Y. Tannka and K. Hotate. Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber. Lightwave Technol. 1997, 15(5): 838~844
    95 V. Lecoeuche, P. Niay, M. Douay, P. Bernage, S. Randoux and J. Zemmouri. Bragg grating based Brillouin fibre laser. Opt. Commun. 2000, 177:303~306
    96 M. K. A. Rahman, M. K. Abdullah and H. Ahmad. Multiwavelength, bidirectional operation of twin-cavity Brillouin/erbium fiber laser. Opt. Commun. 2000, 181:135~139
    97 J. Geng, S. Staines, Z. Wang, J. Zoug, M. Blake and S. Jiang. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth. Photon. Technol. Lett. 2006, 18(17):1813~1815
    98 W. Y. Oh, J. S. Ko, D. S. Lim and W. Seo. 10 and 20 GHz optical combs generation in Brillouin/erbium fiber laser with shared cavity of Sagnac reflector. Opt. Commun. 2002, 201:399~403
    99 P. A. Nicati, K. Toyama and H. J. Shaw. Frequency stability of a Brillouin fiber ring laser. Lightwave Technol. 1995, 13(7):1445~1451
    100 J. Geng and S. Jiang. Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers. Opt. Lett. 2007, 32(1):11~13
    101 S. Randoux, V. Lecoeuche, B. Segard and J. Zemmouri. Dynamical analysis of Brillouin fiber lasers: An experimental approach. Phys. Rev. A. 1995, 51(6):4345~4348
    102 W. W. Tang and C. Shu. Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber. Opt. Express. 2005, 13(4):1328~1333
    103 V. I. Kovalev and R. G. Harrison. The dynamics of a SBS fibre laser: the nature of periodic spiking at harmonics of the fundamental oscillation frequency. Opt. Commun. 2002, 204:439~354
    104 Y. J. Song, L. Zhan, S. Hu, Q. H. Ye and Y. X. Xia. Tunable multiwavelength Brillouin-Erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter. Photon. Technol. Lett. 2004, 16(9):2015~2017
    105 S. P. Smith, F. Zarinetchi and S. Ezekiel. Narrow linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 1991, 16(6):393~395
    106 J. Boschung, L. Thevenaz and P. A. Robert. High accuracy measurements of the linewidth of a Brillouin fiber ring laser. Electron. Lett. 1994, 30(18): 1488~1489
    107 A. Debut, S. Randoux and J. Zemmouri. Linewidth narrowing in Brillouin lasers: Theoretical analysis. Phys. Rev. A. 2000, 62(2):023803
    108 N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh. Wide area gigabit access net work based on 12.5 GHz spaced 256 channel super-dense WDM technologies. Electro. Lett. 2001, 37(5): 309~311
    109 H. Suzuki, M. Fujiwara, and K. Iwatsuki. Design and performance of a superdense WDM ring network using multiwavelength generators and tapped-type optical add/drop multiplexers. J. Opt. Netw. 2007, 6(6): 631~641
    110 S. Arahira, S. Oshiba, Y. Matsui, T. Kanii, and Y. Ogawa. Terahertz-rate optical pulse generation from a passively mode-lock semiconductor laser diode. Opt. Lett. 1994, 19(11): 834~836
    111 H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, K. Jinguji, Y. Inoue, T. Shibata, T. Morioka, and K. I. Sato. Over 1000 channel optical frequency chain generation from a single supercontinuum source with 12.5 GHz channel spacing for DWDM and frequency standard. in Proc. ECOC’2000, 2000, PD3.1
    112 M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki. Optical carrier supply module using flattened multicarrier generation based on sinusoidal amplitude and phase hybrid modulation. IEEE J. Lightwave Tech. 2003, 21(11): 2705~2714
    113 T. Healy, F. C. G. Gunning, and A. D. Ellis. Multi-wavelength source using low drive–voltage amplitude modulators for optical communications. Opt. Express 2007, 15(6): 2981~2986
    114 T. Sakamoto, T. Kawanishi, and M. Izutsu. Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation. Opt. Lett. 2006, 31(6): 811~813
    115 B. Lathi, Communication Systems. New York: Wiley, 1968, ch. 4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700