用户名: 密码: 验证码:
多级仿生耦合材料吸声性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业生产、交通运输和城市建筑的发展,噪声已成为污染人类社会环境的一大公害,使用新型吸声降噪材料是降低噪声污染的重要途径。当前,应用材料改进和新型声学结构相结合的方式来提高吸声材料的吸声性能,是吸声材料的主流发展趋势。
     本文选用聚氨酯为基材,农作物副产品稻壳为填料,制备了稻壳-聚氨酯复合多孔材料,分析了添加稻壳对聚氨酯声学性能的影响;从声学专业角度设计了一种能够快速测量多孔材料特征参数的方法,测试了聚氨酯及稻壳-聚氨酯复合材料的特征参数,分析了各参数对材料声学性能的影响,并初步探索稻壳-聚氨酯复合材料的吸声机理;根据团队前期开展的鸮类仿生降噪的部分成果,基于鸮皮肤和覆羽的耦合吸声特性,设计了多层仿生耦合吸声结构,应用MATLAB和工程声学软件ACTRAN计算了其吸声性能及每层参数的影响,并应用有限元法模拟分析了其对索道滑舱内声场的影响,探索了多层仿生结构在交通工具上的降噪影响。
     在材料方面,选择温度、总质量以及多元醇与MDI的比例作为试验因素制定试验方案,分析了各因素对聚氨酯泡沫声学性能的影响,并确定了制备聚氨酯的最佳条件。以优化后配方作为基材,添加不同量的稻壳,制备了稻壳-聚氨酯复合材料。应用红外光谱分析技术和扫描电镜分析了稻壳对复合材料化学成分及物理结构的影响。结果表明:稻壳未参与聚氨酯的化学反应,仅影响复合材料的物理结构,稻壳显著影响聚氨酯的孔形成和孔径分布。材料的声学性能测试表明,在不增加厚度的前提下,添加稻壳能够提高聚氨酯的低频吸声性能,且材料的吸声性能趋势与传递损失趋势相反。
     为深入研究聚氨酯泡沫及稻壳聚氨酯复合材料的声学性能,在Johnson-Allard模型和Lafarge-Allard模型的基础上,搭建了一个特殊试验台,能够采用一个试验样本,快速且同时测定多孔材料的所有特征参数,解决了传统测试方法复杂且耗时的不足。该方法的基本原理为:通过改变多孔材料背后的边界条件,测试相应的材料的表面阻抗和吸声系数,然后用MATLAB和最小二乘法来求解多孔材料的特征参数。流阻和孔隙率通过测量材料在低频段的表面阻抗来确定,而曲率、特征长度和热渗透性通过将吸声系数的测试值与Johnson-Allard模型进行拟合或者将有效密度和体积模量的试验值与Lafarge-Allard模型进行拟合得到。通过与其他实验室的测试结果比较和试验值与预测值比较来验证该方法的可靠性。最后,利用该试验台测试了制备的聚氨酯及稻壳-聚氨酯复合材料的各种特征参数,分析了各因素对聚氨酯泡沫的流阻和孔隙率的影响,将得到的特征参数,通过Johnson-Allard模型和Lafarge-Allard模型计算来预测样本在背衬30mm空腔条件下的吸声系数曲线并与试验测试值进行对比,进一步分析了其吸声性能和声学机理。该方法最大的优势就是快速,且不需要其他专业的测试仪器,为多孔材料特征参数的测试提供了一种新的思路。
     在结构方面,基于鸮皮肤和覆羽的多层次组织结构与形态特征,建立了梯形棱纹表面,背衬空腔以及多层耦合仿生模型。通过MATLAB计算及声学软件ACTRAN分析了模型的声学性能,以及各层参数对模型声学性能的影响。不同表面模型的声学性能分析表明:多孔材料背衬空腔,显著提高材料低频段的吸声性能,且吸声系数曲线的峰值向低频方向移动;多孔材料设计为梯形棱纹表面,可显著提高材料中高频段的吸声系数。多孔材料设计为梯形棱纹表面且背衬空腔,吸声性能最好,吸声系数曲线的峰值向低频移动,并且在整个频段内吸声系数显著提高。对于多层耦合模型,仿生耦合模型具有最佳的吸声能力。0-2000Hz内的垂直入射平均吸声系数达到0.778,200-2000Hz内达到0.85。低频吸声系数的显著提高可归功于微缝板和柔性微穿孔膜的Helmholtz效应,与多孔材料结合则导致宽频段内吸声系数的进一步提高。
     以索道滑舱为对象,将多层仿生耦合模型粘贴于滑舱内座椅和地毯部分,用ACTRAN计算滑舱空腔的声学模态,分析添加吸声材料前后的滑舱内声场变化,人耳附近的声压级变化,并计算各板块的贡献量。结果表明:由于车厢空腔的横向和垂向的对称性,使车厢空腔声场的各阶模态振型的横向和垂向两侧对称分布,且频率越高,形变越复杂。添加五种吸声模型后,人耳附近的声压级显著降低,其中,模型2和5表现出最好的吸声效率。正如所期望的,所有部位均添加吸声材料对滑舱内人耳附近的声压级降低最有效,其中地毯的贡献占主导。表明声压级曲线向低频范围移动,吸声材料增加了系统的质量。由吸声结构所提供的声吸收在低频范围非常低,但随着频率增加而提高,多层吸声结构在50Hz以下几乎无能量散射。
With the development of industrial manufacture, transportation and urban architecture,noise pollution has become a big public hazard of polluting the human society environment,the development of new sound absorption materials is an important way to reduce noisepollution. At present, the mainstream development trendency of sound-absorbing material isthe combinative application of material improvement and new acoustic structure to improvethe absorption property of sound-absorbing material.
     In this manuscript, rice hull-polyurethane composite porous materials were prepared bytaking polyurethane as basic material and crop byproducts-rice hull as filler, and analyze theinfluence of rice hull for the acoustic performance of polyurethane. A rapid method wasdeveloped for determining all the characteristic parameters of porous materials by means ofacoustic measurements. Tested the characteristic parameters of polyurethane and ricehull-polyurethane, and analyzed the influence of various parameters for the acousticperformance, and also conducted a preliminary exploration of the sound absorptionmechanism of rice hull-polyurethane composite materials. According to the part of previousachievement of owl bionic noise reduction that our team did, a bionic coupling multi-layerabsorbing structure was established based on the coupling sound absorption characteristicsof owl skin and coverts, MATLAB and acoustic software ACTRAN were applied tocalculate its acoustic performance and analyze the influence of different parameters of eachlayer on the absorption coefficients of this model, and finite element method was used toanalyze the influence of the bionic model for the sound filed in the cableway cabin andexplored the noise reduction effect of multi-layered bionic structure in transportation.
     In the respect of material, a testing program was developed by taking the temperature,total mass and the ratio of the polyol and MDI as factors, analyzed the influence of variousfactors for the acoustic performance of polyurethane foam and identified the optimumformula of the polyurethane preparation. Rice hull-polyurethane compound were preparedby taking the optimized formula as base material and adding different amount of rice hull.Attenuated Total Reflection-Fourier Transform Infrared spectroscopy method and scanningelectron microscopy were applied to analyze the influence of rice hull for the chemical andphysical structure of the compound. The results indicated that rice hull did not participate inthe chemical reactions of polyurethane and only affected its physical structure. Rice hullsignificantly affected the pore formation and pore size distribution. The testing of theacoustic performance of materials showed that rice hull improve the sound absorption performance at low frequency without increasing the thickness of the material, and theinsulate performance showed opposite trend compared with the sound absorption coefficientof materials.
     In order to further study the acoustic performance of polyurethane foam and rice hull–polyurethane compound, a unique test bench was established based on Johnson-Allardmodel and Lafarge-Allard model. The bench was able to simultaneous determine all thecharacteristic parameters of porous material rapidly with only one sample, solving thecomplex and time-consuming drawbacks of conventional test methods. The basic principleof this method was as following: firstly, changed the different optional boundary conditionsbehind the materials, then tested the correspondent surface impedance and sound absorptioncoefficient of the material, then used MATLAB and least square method to solve all thecharacteristic parameters. Flow resistance and porosity of the material were determined bymeasuring the surface impedance at low frequencies, while tortuosity, characteristic lengthand thermal permeability were determined by the adjustment of Johnson-Allard model andtest values of absorption coefficients or the adjustment of Lafarge-Allard model and testvalues of effective density and bulk modulus. The reliability of the method was verified bythe comparisons with the test results of other laboratories or the experimental and predictedvalues. Finally, the test bench was used to test the characteristic parameters of preparedpolyurethane foam and rice hull-polyuretane composites, further analyzed the soundabsorption performance and acoustic mechanism. The biggest advantage of this method wasrapid and with no need for other specialized test equipment, which provided a new idea forthe test of characteristic parameters of porous materials.
     In case of the material structure, three bionic models were designed based on themulti-level organization structure and morphological characteristics of skin and coverts ofospreys, including trapezoidal ribbed surface, backing with a cavity and multi-layer couplingbionic models. MATLAB and acoustic analysis software ACTRAN were applied to analyzethe acoustic performances and influence of different parameters of each layer on absorptioncoefficients of this model. The acoustic performance analysis of different surfaces showedthat: the porous material backed with a cavity improved the absorption performance at lowfrequency and the absorption coefficients curve moved to low frequency. The trapezoidalribbed surface effectively improved the sound-absorption performance of materials in theintermediate and high frequency. The porous materials with trapezoidal ribbed surface andbacked with a cavity showed the best acoustic performance, the absorption coefficients curvemoved to the low frequency and significantly increased the absorption coefficients in theentire frequency band. In case of the multi-layer coupling structures, the bionic modelshowed the best sound absorption cability. The average normal incidence absorptioncoefficient reached0.778with frequency range from0to2000Hz while0.85from200to2000Hz. The significant improvement of absorption coefficients can be mainly due to the Helmholtz effects of micro-silt plate and flexible micro-perforated membrane, and thecombination with porous materials lead to even better absorption performance in broadband.
     Cableway cabin was taking as research object, the multi-bionic coupling model andcontrast models were pasted on the seats and carpet of the cabin, ACTRAN was applied tocalculate the acoustic modals of the cabin cavity, to analyze the changes of the sound field ofthe cabin with or without sound-absorbing material and the SPL near the people’s ears, andthe contribution of each segment was also calculated. The results revealed that: the vibrationmode of each modal of the cabin cavity showed symmetric distribution in the two sides ofhorizontal and vertical due to the horizontal and vertical symmetry of the acbin structure,and the higher the frequency, the more complex the deformation. The SPL near the earssignificantly reduced after the five models were added, of which, model2and5showed thebest sound absorption efficiency. As expected, absorption material was added at all parts wasmost effective to reduce the SPL in the cabin, in which, the carpet contribution seems to bepredominant. The SPL curve moved to low frequency, indicating the absorption materialincreased the mass of the system. The sound absorption provided by the sound absorbingstructure at low frequency is very low, but improved as the frequency increases. There wasalmost no energy scattering for multi-layer structure below50Hz.
引文
[1]周新祥.噪声控制技术及其新进展[M].北京:冶金工业出版,2007.
    [2]许思.噪声的危害及控制[J].现代职业安全,2009(3):102-103.
    [3]孙广荣.吸声、隔声材料和结构浅说[J].艺术科技,2001(3):12-17.
    [4]秦佑国,王炳麟.建筑声环境[M].清华大学出社,1999.
    [5]刘惠玲主编.环境噪声控制[M].哈尔滨工业大学出版社,2002.
    [6]薛迪庚.现代纺织品的开发[M].北京:中国纺织出版社,1994.
    [7] Shoshani Y, Rosenhouse G. Noise absorption by woven fabrics [J]. Applied Acoustics,1990,30(4):321-333.
    [8] Dias T, Monaragala R. Sound absorbtion in knitted structures for interior noise reductionin automobiles [J]. Measurement Science and Technology,2006,17(9):2499-2505.
    [9]荣格.有效的预过滤提高HEPA过滤器效率[EB/OL].行情快报.[2011-12-13].http://www.qqzl.cc/news/show-53983.html
    [10]朱纪磊,汤慧萍,葛渊,等.多孔吸声材料发展现状与展望[J].功能材料,2007,38(10):3723-3726.
    [11]钟祥璋,莫方朔.铝纤维吸声板的材料特性及应用[J].新型建筑材料,2000(11):19-22.
    [12]李海涛,朱锡,石勇,等.多孔性吸声材料的研究进展[J].材料科学与工程学报,2004,22(6):935-938.
    [13]苑改红,王宪成.吸声材料研究现状与展望[J].机械工程师,2006(6):17-19.
    [14]平静阻尼隔音吸声棉[EB/OL]. http://www.515car.com/detail11.htm
    [15]汽车隔音材料详细资料[EB/OL].中国NVH技术论坛.http://wenku.baidu.com/view/afbb1df8941ea76e58fa0447.html.
    [16]程桂萍,陈宏灯,何德坪,等.多孔铝的声学性能[J].东南大学学报:自然科学版,1998,28(6):169-172.
    [17] Lee H J, Eom S H, Song Y K, et al. Effects of aluminium powder content and coldrolling on foaming behaviour of xAlp/Al5Si4Cu4Mg/0.8TiH2composites[J]. Materialsscience and technology,2003,19(6):819-825.
    [18]王月.孔结构对通孔泡沫铝水声吸声性能的影响[J].材料开发与应用,2001,16(4):1624-1627.
    [19]田庆华.电沉积法制备金属锌泡沫材料[D].长沙:中南大学,2007.
    [20]中国科学院.我国科学家超轻多孔金属材料研究获重要突破[EB/OL].2006-12-07.http://www.edu.cn/cheng_guo_zhan_shi_1085/20061207/t20061207_208465.shtml
    [21] H. P蒂吉斯切, B.克雷兹特.多孔泡沫金属(第1版)[M].左孝青,周芸译.北京:化学工业出版社,2005.
    [22]陈军.糠醛生产技术进展[J].贵州化工,2005,30(2):6-8.
    [23] Jung K J, Gaset A, Molinier J. Furfural decarbonylation catalyzed by charcoal supportedpalladium: Part I-Kinetics [J]. Biomass,1988,16(1):63-76.
    [24]盛美萍,王敏庆,孙进才.噪声与振动控制技术基础[M].科学出版社,2001.
    [25] Wang X, Lu T J. Optimized acoustic properties of cellular solids [J]. The Journal of theAcoustical Society of America,1999,106(2):756-765.
    [26]刘伯伦,钟祥璋.提高多孔材料低频性能的探讨[J].声学技术,1992.1.
    [27]郑长聚.环境工程手册环境噪声控制卷[M],高等教育出版社,2002.
    [28]曹孝振,曹勤,姚安子.建筑中的噪声控制(第2版)[M].国防工业出版社,2005.1.
    [29]李汉堂.短纤维一橡胶复合材料的发展前景[J].现代橡胶技术,2006,32(4):5-12.
    [30]汤振杰.丁基橡胶复合材料薄片吸声性能研究[J].功能材料,2008,39(1):133-135.
    [31]钟爱昇.耐压低频吸声方面的橡胶材料与结构[J].天津橡胶,2001(2):21-30.
    [32] Geethamma V G, Kalaprasad G, Groeninckx G, et al. Dynamic mechanical behavior ofshort coir fiber reinforced natural rubber composites[J]. Composites Part A: AppliedScience and Manufacturing,2005,36(11):1499-1506.
    [33] Lv L, Bai S, Zhang H, et al. Dynamic properties of glass-fiber-cored lead-wirereinforced rubber composites[J]. Materials Science and Engineering: A,2006,429(1):124-129.
    [34] Lv L, Bai S, Zhang H, et al. Damping property of polymer chain structured GF/Pb-wirereinforced rubber composite[J]. Materials Science and Engineering: A,2006,433(1):121-123.
    [35]乔冬平,魏军光,王利.蛭石粉对橡胶吸声件性能影响[J].热固性树脂,2005,19(6):22-23.
    [36]丁航.水下吸声橡胶的性能研究[J].特种橡胶制品,2005,25(6):21-23.
    [37] Corsaro R D, Klunder J D, Jarzynski J. Filled rubber materials system: Application toecho absorption in waterfilled tanks[J]. The Journal of the Acoustical Society ofAmerica,1980,68(2):655-664.
    [38] Philip B, Abraham J K, Varadan V K, et al. Passive underwater acoustic dampingmaterials with Rho-C rubber–carbon fiber and molecular sieves[J]. Smart Materials andStructures,2004,13(6):99-104.
    [39] Yang T L, Chiang D M, Chen R. Development of a novel porous laminated compositematerial for high sound absorption[J]. Journal of Vibration and Control,2001,7(5):675-698.
    [40]蒋兴华.聚合物基泡体复合材料的隔声原理与加工性能[J].合成材料老化与应用,2002,31(3):32-35.
    [41] Bolton R, Mendelsohn M A, Navish Jr F W. Sound absorbing and decoupling syntacticfoam: U.S. Patent5422380[P].1995-6-6.
    [42]席莺,李旭祥,方志刚等.聚氯乙稀基混合吸声材料的研究[J].高分子材料科学与工程,2001,17(3):129-132
    [43] Saint-Michel F, Chazeau L, Cavaillé J Y. Mechanical properties of high densitypolyurethane foams: II Effect of the filler size[J]. Composites Science and Technology,2006,66(15):2709-2718.
    [44]李浩,朱锡,梅志远,等.填料及空腔对聚氨酯弹性体夹芯复合结构水声性能的影响[J].高分子材料科学与工程,2010,26(7):26-30.
    [45]周成飞,郭建梅,翟彤.聚氨酯杂化复合泡沫体声学材料的研究[J].聚氨酯工业,2006,21(2):18-21.
    [46] Cushman W B, Thomas G B. Acoustic attenuation and vibration damping materials:U.S. Patent5400296[P].1995-3-21.
    [47] Cushman W B. Acoustic absorption or damping material with integral viscous damping:U.S. Patent5745434[P].1998-4-28.
    [48]马大猷.微穿孔板吸声结构的理论和设计[J].中国科学,1975,1(1):38-50.
    [49]马大献.微缝吸声体理论[J].声学学报,2000.
    [50]茅祚麻,茅宏迪.一种吸声材料及其制造方法和应用:中国,201110314711[P].2012-01-18.
    [51]蔺磊,王佐民,姜在秀.微穿孔共振吸声结构中吸声材料的作用[J].声学学报.2010(4):385-392.
    [52] Chen W H, Lee F C, Chiang D M. On the acoustic absorption of porous materials withdifferent surface shapes and perforated plates[J]. Journal of Sound and Vibration,2000,237(2):337-355.
    [53]苑青波,苑增来.一种贴面吸声板:中国,02291459.5[p].2013-12-17.
    [54]周成飞,郭建梅,翟彤,等.聚氨酯泡沫材料吸声频率特性研究[J].聚氨酯,2008,72(5):84-87.
    [55]翟彤,周成飞,郭建梅,等.聚氨酯泡沫材料的多层复合及其吸声性能研究[J].功能材料.2007,38:3732-3734.
    [56]黄光速,周洪,李波,等.高分子微粒复合吸声材料及其制备方法和用途:中国,200610020455.5[p].2006-09-20.
    [57]姚熊亮,计方,庞福振等.聚氨酯空腔尖劈吸声性能实验研究[J].振动与冲击.2010,1(29):88-93.
    [58]周洪.高分子微粒吸声材料的制备,吸声特性及计算机仿真研究[D].四川:四川大学,2004.
    [59]朱蓓丽,王慧英.蜂窝芯吸声结构[J].噪声与振动控制.1986,4.15-19.
    [60]蒋伟康,严莉,刘秀娟.微孔泡沫双面吸声型超薄声屏障:中国,200610023901.8[p].2006-07-26.
    [61]李小敏.吸音消声隔音多结构高分子复合材料:中国,200720155131.2[p].2008-05-28.
    [62]小德尔东.R.汤普森,刘小鹤.厚度低的吸声的多层复合体:中国,200580022441.0[p].2007-08-01.
    [63]李兴,张立晨,韩双立,等.双层吸声复合板:中国,200920095981.7[p].2010-02-17.
    [64]张荣初,闻小明,嵇正毓,等.一种阻燃环保的多孔吸声材料构件:中国,201020116340[p].2010-12-29.
    [65]庄文雄,庄家捷.环保型高效吸声体:中国,00209737.0[p].2001-05-30.
    [66]许灿辉.一种双面开槽的吸声板及其构成的复合吸声:中国,200610065179.4[p].2007-08-01.
    [67] Olson H F.空间吸声体的设计与应用[J]. RCA Review,1946,7(4):503.
    [68]盛胜我.无规入射时空间吸声板的声学特牲[J].同济大学学报,1984,(2):66-71.
    [69]赵松龄,盛胜我. Acoustic behavior o f sound absorptive panel suspending in a diffusefield [J]. Proceedings Internoise84,1984:397-400.
    [70] Graham R R.The slight flight of owls[J]. Journal of Royal Aeronautical Society,1934,38:837-843.
    [71] Vad J, Koscsó G, Gutermuth M, et al. Study of the aero-acoustic and aerodynamiceffects of soft coating upon airfoil[J]. JSME International Journal Series C,2006,49(3):648-656.
    [72] Geyer T, Sarradj E, Fritzsche C. Measurement of the noise generation at the trailingedge of porous airfoils[J]. Experiments in fluids,2010,48(2):291-308.
    [73]张春华.基于信鸽体表的减阻降噪功能表面耦合仿生[D].吉林:吉林大学,2008.
    [74]梁桂强.轴流风机降噪技术的仿生学研究[D].吉林:吉林大学,2005.
    [75]刘庆萍.轴流风机叶片仿生降噪研究[D].吉林:吉林大学,2006.
    [76]陈坤,刘庆萍,廖耿华,等.利用雕鸮羽毛的消音特性降低小型轴流风机的气动噪声[J].吉林大学学报:工学版,2012,42(1):79-84.
    [77]陈坤.仿生耦合风机叶片模型降噪与增效研究[D].吉林:吉林大学,2009.
    [78]孙少明,徐成宇,任露泉,等.轴流风机仿生叶片降噪试验研究及机理分析[J].吉林大学学报:工学版,2009,39(2):382-387.
    [79]孙少明.风机气动噪声控制耦合仿生研究[D].吉林:吉林大学,2008.
    [80]任露泉,孙少明,徐成宇.鸮翼前缘非光滑形态消声降噪机理[J].吉林大学学报:工学版,2009.
    [81] Howard G T. Biodegradation of polyurethane: a review[J]. InternationalBiodeterioration and Biodegradation,2002,49(4):245-252.
    [82] Wilkes G L. Tutorial lecture on a review of structure/property relationships inpolyurethane elastomers and foams[C]. Abstracts of Papers of the American ChemicalSociety.2001,222: U322-U322.
    [83] Ramesh S, Tharanikkarasu K, Mahesh G N, et al. Synthesis, physicochemicalcharacterization, and applications of polyurethane ionomers: a review[J]. Journal ofmacromolecular science. Reviews in Macromolecular Chemistry and Physics,1998,38(3):481-509.
    [84] Tsai H C, Hong P D, Yen M S. Preparation and Physical Properties of MDEA-basedPolyurethane Cationomers and their Application to Textile Coatings[J]. TextileResearch Journal,2007,77(9):710-720.
    [85] Karger-Kocsis J, Gremmels J, Mousa A, et al. Application of hygrothermallydecomposed polyurethane in rubber recipes: Part1: Natural rubber (NR) and nitrilerubber (NBR) stocks[J]. KGK. Kautschuk, Gummi, Kunststoffe,2000,53(9):528-533.
    [86] Chew M Y L, Zhou X, Tay Y M. Application of ATR in characterizing aging conditionsof polyurethane sealants[J]. Polymer Testing,2000,20(1):87-92.
    [87] Furtado C A, De Souza P P, Goulart Silva G, et al. Electrochemical behavior ofpolyurethane ether electrolytes/carbon black composites and application to double layercapacitor[J]. Electrochimica Acta,2001,46(10):1629-1634.
    [88] Murphy J G, Rogerson G A. A method to model simple tension experiments using finiteelasticity theory with an application to some polyurethane foams[J]. InternationalJournal of Engineering Science,2002,40(5):499-510.
    [89] Cho Y S, Lee J W, Lee J S, et al. Hyaluronic acid and silver sulfadiazine-impregnatedpolyurethane foams for wound dressing application[J]. Journal of Materials Science:Materials in Medicine,2002,13(9):861-865.
    [90] Dmitrienko S G, Pyatkova L N, Zolotov Y A. Sorption of Ion Associates onPolyurethane Foams and Its Application to Sorption–Spectroscopic and Test Methods ofAnalysis[J]. Journal of Analytical Chemistry,2002,57(10):875-881.
    [91]秦清明,贾一峰.减震,吸声,隔声复合材料及其在工程中的应用[J].噪声与振动控制,1994(4):2-7.
    [92]项端祈.英国的声学材料(或结构)及其应用[J].噪声与振动控制,1986,5: l7-22.
    [93] Hilyard N C, Cunningham A. Fundamental aspects of the behaviour of automotive noisecontrol composites[J]. Progress in rubber and plastics technology,1995,11(1):34-55.
    [94] Van der Wal H R. New chemical recycling process for polyurethanes[J]. Journal ofReinforced Plastics and Composites,1994,13(1):87-96.
    [95] HANDA Y P, Zhang Z. Layered foams: A new class of cellular polymers[J]. CellularPolymers,2000,19(4):241-255.
    [96] Sahraoui S, Mariez E, Etchessahar M. Mechanical testing of polymeric foams at lowfrequency[J]. Polymer testing,2000,20(1):93-96.
    [97] Yang T L, Chiang D M, Chen R. Development of a novel porous laminated compositematerial for high sound absorption[J]. Journal of Vibration and Control,2001,7(5):675-698.
    [98]周洪.高分子微粒吸声材料的制备_吸声特性及计算机仿真研究[D].四川:四川大学,2004.
    [99]1985G B J.驻波管法吸声系数与声阻抗率测量规范[S],1985.
    [100]曲波,朱蓓丽.驻波管中隔声量的四传感器测量法[J].噪声与振动控制,2002,22(6):44-46.
    [101]贺加添.混响室法测量材料吸声系数的有效性[J].烟台大学学报(自然科学与工程版),1995,3.
    [102] Ersoy S, Kü ük H. Investigation of industrial tea-leaf-fibre waste material for its soundabsorption properties[J]. Applied Acoustics,2009,70(1):215-220.
    [103] Chen D, Li J, Ren J. Study on sound absorption property of ramie fiber reinforced poly(l-lactic acid) composites: Morphology and properties[J]. Composites Part A: AppliedScience and Manufacturing,2010,41(8):1012-1018.
    [104] Mohanty A K, Wibowo A, Misra M, et al. Effect of process engineering on theperformance of natural fiber reinforced cellulose acetate biocomposites[J]. CompositesPart A: Applied Science and Manufacturing,2004,35(3):363-370.
    [105] Bengtsson M, Gatenholm P, Oksman K. The effect of crosslinking on the properties ofpolyethylene/wood flour composites[J]. Composites Science and Technology,2005,65(10):1468-1479.
    [106] Prasad B M, Sain M M. Mechanical properties of thermally treated hemp fibers ininert atmosphere for potential composite reinforcement[J]. Materials ResearchInnovations,2003,7(4):231-238.
    [107] Li Y, Mai Y W, Ye L. Sisal fibre and its composites: a review of recentdevelopments[J]. Composites Science and Technology,2000,60(11):2037-2055.
    [108] Van de Velde K, Kiekens P. Thermoplastic polymers: overview of several propertiesand their consequences in flax fibre reinforced composites[J]. Polymer Testing,2001,20(8):885-893.
    [109] Hong C K, Hwang I, Kim N, et al. Mechanical properties of silanizedjute–polypropylene composites[J]. Journal of Industrial and Engineering Chemistry,2008,14(1):71-76.
    [110] Sreekala M S, George J, Kumaran M G, et al. The mechanical performance of hybridphenol-formaldehyde-based composites reinforced with glass and oil palm fibres[J].Composites Science and Technology,2002,62(3):339-353.
    [111] Chen X Y, Guo Q P, Mi Y L. Bamboo fiber‐reinforced polypropylene composites: Astudy of the mechanical properties[J]. Journal of Applied Polymer Science,1998,69(10):1891-1899.
    [112] Wang D H, Sun X S. Low density particleboard from wheat straw and corn pith[J].Industrial Crops and Products,2002,15(1):43-50.
    [113] Yang H S, Kim D J, Kim H J. Rice straw–wood particle composite for soundabsorbing wooden construction materials[J]. Bioresource Technology,2003,86(2):117-121.
    [114] Tsai W T, Chang C Y, Lee S L. A low cost adsorbent from agricultural waste corn cobby zinc chloride activation [J]. Bioresource technology,1998,64(3):211-217.
    [115] Rozman H D, Yeo Y S, Tay G S, et al. The mechanical and physical properties ofpolyurethane composites based on rice husk and polyethylene glycol [J]. Polymertesting,2003,22(6):617-623.
    [116] Panthapulakkal S, Sain M, Law S. Effect of coupling agents on rice‐husk‐filledHDPE extruded profiles [J]. Polymer international,2005,54(1):137-142.
    [117] Chaudhary D S, Jollands M C, Cser F. Recycling rice hull ash: A filler material forpolymeric composites [J]. Advances in Polymer Technology,2004,23(2):147-155.
    [118] Zhang X M, Xu R J, Wu Z G, et al. The synthesis and characterization ofpolyurethane/clay nanocomposites [J]. Polymer international,2003,52(5):790-794.
    [119] Allard J F, Champoux Y. New empirical equations for sound propagation in rigid framefibrous materials [J]. The Journal of the Acoustical Society of America,1992,91(6):3346-3353.
    [120] Allard J F. Propagation of sound in porous media: Modelling sound absorbingmaterials [J].1993.
    [121] Lafarge D, Lemarinier P, Allard J F, et al. Dynamic compressibility of air in porousstructures at audible frequencies [J]. The Journal of the Acoustical Society of America,1997,102(4):1995-2006.
    [122] Olny X. Absorption acoustique des milieux poreux à simple et double porosité.Modélisation et validation expérimentale [D],1999.
    [123] Delany M E, Bazley E N. Acoustical properties of fibrous absorbent materials [J].Applied acoustics,1970,3(2):105-116.
    [124] Stinson M R. The propagation of plane sound waves in narrow and wide circular tubes,and generalization to uniform tubes of arbitrary cross‐sectional shape [J]. The Journalof the Acoustical Society of America,1991,89(2):550-558.
    [125] Tijdeman H. On the propagation of sound waves in cylindrical tubes [J]. Journal ofSound and Vibration,1975,39(1):1-33.
    [126] Biot M A. Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid.I. Low‐Frequency Range [J]. The Journal of the Acoustical Society of America,1956,28(2):168-178.
    [127] Biot M A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid.II. Higher Frequency Range [J]. Acoustical Society of America Journal,1956,28:179-191.
    [128] Zwikker C, Kosten C W. Sound absorbing materials [M]. Elsevier,1949.
    [129] Roh H S, Arnott W P, Sabatier J M, et al. Measurement and calculation of acousticpropagation constants in arrays of small air-filled rectangular tubes [J]. The Journal ofthe Acoustical Society of America,1991,89(6):2617-2624.
    [130] Attenborough K. Acoustical characteristics of rigid fibrous absorbents and granularmaterials [J]. The Journal of the Acoustical Society of America,1983,73(3):785-799.
    [131] Auriault J L, Borne L, Chambon R. Dynamics of porous saturated media, checking ofthe generalized law of Darcy [J]. The Journal of the Acoustical Society of America,1985,77(5):1641-1650.
    [132] Burridge R, Keller J B. Poroelasticity equations derived from microstructure [J]. TheJournal of the Acoustical Society of America,1981,70(4):1140-1146.
    [133] Allard J F. Modèles récents pour la propagation du son dans les matériaux poreux [J].Le Journal de Physique IV,1994,4(C5): C5-177-C5-182.
    [134] Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity influid-saturated porous media [J]. Journal of fluid mechanics,1987,176:379-402.
    [135] Champoux Y, Allard J F. Dynamic tortuosity and bulk modulus in air‐saturatedporous media [J]. Journal of Applied Physics,1991,70(4):1975-1979.
    [136] Tarnow V. Measurement of sound propagation in glass wool [J]. The Journal of theAcoustical Society of America,1995,97(4):2272-2281.
    [137] Tarnow V. Calculation of sound propagation perpendicular to fixed fibres in glass wool.4th European Conference on Noise Control, Patra,2001.
    [138] Scott R A. The absorption of sound in a homogeneous porous medium [J]. Proceedingsof the Physical Society,1946,58(2):165.
    [139] Yaniv S L. Impedance tube measurement of propagation constant and characteristicimpedance of porous acoustical material [J]. The Journal of the Acoustical Society ofAmerica,2005,54(5):1138-1142.
    [140] Utsuno H, Tanaka T, Fujikawa T, et al. Transfer function method for measuringcharacteristic impedance and propagation constant of porous materials [J]. The Journalof the Acoustical Society of America,1989,86(2):637-643.
    [141] Galland M A, Frey V, Lacour O. Matériaux poreux et contr le actif [J]. Publications duLMA,1998:243-257.
    [142] Smith C D, Parrott T L. Comparison of three methods for measuring acousticproperties of bulk materials [J]. The Journal of the Acoustical Society of America,1983,74(5):1577-1582.
    [143] Ahuja K K, Gaeta Jr R J, Ahuja K, et al. A new wide-band acoustic liner with hightemperature capability [J]. AIAA Paper,1997(97-1701).
    [144] Ingard K U. Notes on Sound absorption technology[M], chapter10: Materialcharacteristics, Noise control foundation,1994,10/1-10/26.
    [145] Dauchez N. Etude vibroacoustique des matériaux poreux par éléments finis [D].Université du Maine, France, University of Sherbrooke, Canada,1999. Translate inEnglish: Vibroacoustic study of porous materials using a finite element approach.
    [146] Beranek L L. Acoustic impedance of porous materials [J]. The Journal of theAcoustical Society of America,2005,13(3):248-260.
    [147] Champoux Y, Stinson M R, Daigle G A. Air‐based system for the measurement ofporosity [J]. The Journal of the Acoustical Society of America,1991,89(2):910-916.
    [148] Brown R J S. Connection between formation factor for electrical resistivity andfluid-solid coupling factor in Biot's equations for acoustic waves in fluid-filled porousmedia [J]. Geophysics,1980,45(8):1269-1275.
    [149] Melon M, Castagnède B. Correlation between tortuosity and transmission coefficientof porous media at high frequency [J]. The Journal of the Acoustical Society of America,1995,98(2):1228-1230.
    [150] Ayrault C. Influence de la pression statique sur la caractérisation ultrasonore dematériaux poreux: étude du régime de faible diffusion [D]. Universitédu Maine (LeMans),1999.
    [151] Kelders L, Lauriks W, Jansens G, et al. Evaluating material parameters of a poroelasticlayers[C]//Proc. EURONOISE.2001.
    [152] Fellah Z E A, Berger S, Lauriks W, et al. Measuring the porosity and the tortuosity ofporous materials via reflected waves at oblique incidence [J]. The Journal of theAcoustical Society of America,2003,113(5):2424-2433.
    [153] Castagnede B, Melon M, Brown N R. Caractérisation des matériaux poreux àl'aided'ultrasons de basse fréquence (20-200khz)[J]. Publications du LMA,1996:133-145.
    [154] Lemarinier P, Henry M, Allard J F, et al. Connection between the dynamic bulkmodulus of air in a porous medium and the specific surface [J]. The Journal of theAcoustical Society of America,1995,97(6):3478-3482.
    [155] Kirchhoff G. On the influence of heat conduction in a gas on sound propagation [J].Ann. Phys. Chem,1868,134:177-193.
    [156] Ren M, Jacobsen F. A method of measuring the dynamic flow resistance and reactanceof porous materials [J]. Applied Acoustics,1993,39(4):265-276.
    [157] Attenborough K. Acoustical characteristics of porous materials [J]. Physics Reports,1982,82(3):179-227.
    [158] Lambert R F. Propagation of sound in highly porous open‐cell elastic foams [J]. TheJournal of the Acoustical Society of America,1983,73(4):1131-1138.
    [159] Attenborough K. On the acoustic slow wave in air‐filled granular media [J]. TheJournal of the Acoustical Society of America,1987,81(1):93-102.
    [160] Berryman J G. Comparison of upscaling methods in poroelasticity and itsgeneralizations [J]. Journal of Engineering Mechanics,2005,131(9):928-936.
    [161] Voronina N N, Horoshenkov K V. A new empirical model for the acoustic properties ofloose granular media [J]. Applied Acoustics,2003,64(4):415-432.
    [162] Allard J F, Aknine A, Depollier C. Acoustical properties of partially reticulated foamswith high and medium flow resistance [J]. The Journal of the Acoustical Society ofAmerica,1986,79(6):1734-1740.
    [163] Stinson M R, Champoux Y. Propagation of sound and the assignment of shape factorsin model porous materials having simple pore geometries [J]. The Journal of theAcoustical Society of America,1992,91(2):685-695.
    [164] Pride S R, Morgan F D, Gangi A F. Drag forces of porous-medium acoustics [J].Physical review B,1993,47(9):4964.
    [165] Lafarge D. Propagation du son dans les matériaux poreux àstructure rigide saturés parun fluide viscothermique: Définition de paramètres géométriques, analogieelectromagnétique, temps de relaxation [D],1993.
    [166] Chapman A M, Higdon J J L. Oscillatory Stokes flow in periodic porous media [J].Physics of Fluids A: Fluid Dynamics (1989-1993),1992,4(10):2099-2116.
    [167] Borne L. Harmonic Stokes flow through periodic porous media: a3D boundaryelement method [J]. Journal of Computational Physics,1992,99(2):214-232.
    [168] Schladitz K, Peters S, Reinel-Bitzer D, et al. Design of acoustic trim based ongeometric modeling and flow simulation for non-woven [J]. Computational MaterialsScience,2006,38(1):56-66.
    [169] Zhou M Y, Sheng P. First-principles calculations of dynamic permeability in porousmedia [J]. Physical Review B,1989,39(16):12027-12039.
    [170] Gasser S, Paun F, Bréchet Y. Absorptive properties of rigid porous media: Applicationto face centered cubic sphere packing [J]. The Journal of the Acoustical Society ofAmerica,2005,117(4):2090-2099.
    [171] Perrot C, Chevillotte F, Panneton R. Bottom-up approach for microstructureoptimization of sound absorbing materials [J]. The Journal of the Acoustical Society ofAmerica,2008,124(2):940-948.
    [172] Allard J F, Champoux Y. New empirical equations for sound propagation in rigid framefibrous materials [J]. The Journal of the Acoustical Society of America,1992,91(6):3346-3353.
    [173] Tikander M. Model-based curvefitting for in-situ impedance measurements [D].Helsinki University of Technological,2002.
    [174] Mendibil X. Medida de la absorción acústica de los materiales poroelásticos[D].Thesis presented in the University of Mondragón,2004.
    [175] Miki Y. Acoustical properties of porous materials-Modifications of Delany-Bazleymodels [J]. Acoust. Soc. Jpn.(E),1990,11(1):19-24.
    [176] Allard J F, Aknine A, Depollier C. Acoustical properties of partially reticulated foamswith high and medium flow resistance [J]. The Journal of the Acoustical Society ofAmerica,1986,79(6):1734-1740.
    [177] Allard J F, Depollier C, Rebillard P, et al. Inhomogeneous Biot waves in layered media[J]. Journal of Applied Physics,1989,66(6):2278-2284.
    [178] Terzaghi K. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf derhydrodynamischen spannungserscheinungen [J]. Sitz. Akad. Wiss. Wien, Abt. IIa,1923,132:125-138.
    [179] Biot M A. General Theory of Three-Dimensional Consolidation [J]. Journal of AppliedPhysics,1941,12:155-164.
    [180] Schanz M. On the equivalence of the linear Biot’s theory and the linear theory ofporous media [C]//16th ASCE engineering mechanics conference.2003.
    [181] Allard J F, Atalla N. Propagation of Sound in Porous Media: Modelling SoundAbsorbing Materials2e [M]. John Wiley&Sons,2009.
    [182] Sellen N, Galland M A, Hilbrunner O. Identification of the characteristic parameters ofporous media using active control [C]//8th AIAA/CEAS aeroacoustics conference.2002.
    [183] Bodén H, Abom M. Influence of errors on the two‐microphone method formeasuring acoustic properties in ducts [J]. The Journal of the Acoustical Society ofAmerica,1986,79(2):541-549.
    [184] Seybert A F, Ross D F. Experimental determination of acoustic properties using a two‐microphone random‐excitation technique [J]. The Journal of the Acoustical Societyof America,1977,61(5):1362-1370.
    [185] Chung J Y, Blaser D A. Transfer function method of measuring in‐duct acousticproperties. II. Experiment [J]. The Journal of the Acoustical Society of America,1980,68(3):914-921.
    [186] Cheung W S, Jho M J, Kim Y H. Improved method for the measurement of acousticproperties of a sound absorbent sample in the standing wave tube [J]. The Journal of theAcoustical Society of America,1995,97(5):2733-2739.
    [187] Jones M G, Stiede P E. Comparison of methods for determining specific acousticimpedance [J]. The Journal of the Acoustical Society of America,1997,101(5):2694-2704.
    [188] Lind-Nordgren E, G ransson P. Optimising open porous foam for acoustical andvibrational performance[J]. Journal of Sound and Vibration,2010,329(7):753-767.
    [189] Yang X, Wang Y, Yu H. Sound performance of multilayered composites[J]. Materialsand manufacturing processes,2007,22(6):721-725.
    [190] Chen W H, Lee F C, Chiang D M. On the acoustic absorption of porous materials withdifferent surface shapes and perforated plates[J]. Journal of sound and vibration,2000,237(2):337-355.
    [191] Lee Y, Joo C. Sound absorption properties of recycled polyester fibrous assemblyabsorbers[J]. AUTEX Research Journal,2003,3(2):78-84.
    [192]孙少明,任露泉,徐成宇.长耳鸮皮肤和覆羽耦合吸声降噪特性研究[J].噪声与振动控制.2008,28(3):119-123.
    [193]孙少明.风机气动噪声控制耦合仿生研究,吉林:吉林大学博士论文[D],2008.
    [194]冯涛,李晓宏,陈耀斌等.传递函数法与驻波管法的等效性[C]//中国声学学会2005年青年学术会议[CYCA'05]论文集.2005.
    [195] Maa D Y. Theory of microslit absorbers. Acta Acustica,2000,25(6),481-485.
    [196] Kang J, Fuchs H V. Predicting the absorption of open weave textiles andmicro-perforated membranes backed by an air space[J]. Journal of sound and vibration,1999,220(5),905-920.
    [197] Dunnand I P, Davern W A. Calculation of acoustic impedance of multilayerabsorbers[J]. Applied acoustics,1986,19(5),321-334.
    [198] Davern W A. Perforated facings backed with porous materials as sound absorbers-anexperimental study[J]. Applied Acoustics,1977,10(2),85-112.
    [199] Bathe K J. Finite element procedures [M]. Klaus-Jurgen Bathe,2006.
    [200] Huang S, Aydin M, Lipo T A. Electromagnetic vibration and noise assessment forsurface mounted PM machines [C]//Power Engineering Society Summer Meeting,2001.IEEE,2001,3:1417-1426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700