用户名: 密码: 验证码:
未知环境UUV多元声测距与同步巡岸控制方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
UUV水下定位与控制是其进行未知环境探测的两个主要问题,本文主要针对其控制问题开展相关研究,而巡岸控制问题是面向环境轮廓构建任务的关键所在。UUV领域中通常采用多元测距声纳作为巡岸控制的信息采集手段,所获取数据的置信度较低。且UUV作业时“人不在环”,对环境的认知及理解要求更准确,尤其在未知环境中需要感知与巡岸控制同步进行,探测能力与控制要求之间存在一定矛盾。因此,需要结合测距声纳与UUV自身特性开展声纳数据的预处理、基于预处理数据的未知环境轮廓构建、局部环境特征约束下的巡岸路径平滑与决策、以及巡岸控制等问题研究,论文主要研究内容简述如下:
     一、针对多元测距声纳在复杂水下环境中获取数据的置信度较低,而无法满足UUV巡岸控制过程中对理想路径的实时需求问题,采用小波变换方法对声纳数据进行预处理。由于数据集合中异常数据相对于正常数据来说表现出高频特性,因此考虑利用小波变换对高频数据进行局部放大,以便于准确剔除异常数据。由于预处理数据用于构建环境轮廓线,而轮廓线作为UUV巡岸控制理想路径的参考信息,必须保证理想路径的连续性;因此对异常点出现时刻的小波系数进行估计,用于补充异常数据所表征的特征点。
     二、为了利用预处理后的数据集合作为数据源完成未知环境轮廓构建任务,需要将表征环境轮廓的数据聚集到某一数据类轮廓内,同时,将异常数据划归于轮廓线外。由于支持向量聚类算法能够在剔除异常点的同时完成数据类的聚合,且满足巡岸过程的实时性要求,符合轮廓线构建的前提条件并能够达到获取类轮廓的目的,由此引入该方法完成轮廓线构建过程。另外,为了对初次判定为异常数据的点进行确认,提出惰性算法改进支持向量聚类方法,结合数据的置信度和多普勒速度仪的信息,实现基于多元测距声纳数据的环境轮廓构建任务。
     三、根据UUV自身特性及控制器设计需求,构建UUV巡岸过程中的平滑理想路径,并结合环境的局部特征进行自主决策。一方面,为了满足UUV在水下环境中的惯性特点对理想路径平滑性的限制,利用Bézier曲线对支持向量聚类惰性算法所构建的、直线顺次相连的轮廓线进行平滑拟合。另一方面,面向未知环境的自主探测任务,UUV必须在构建轮廓线的同时完成巡岸跟踪,因此结合UUV自身状态进行局部环境约束下的自主决策方法研究。
     四、考虑到未知环境探测过程中的UUV巡岸控制问题,采用反馈线性化控制方法予以实现。依据UUV所面向的任务需求,将探测过程中的路径跟踪划分为两个阶段:对已知路径的精确路径跟踪和对未知路径的预测巡岸控制。反馈线性化方法在跟踪问题中的应用可划分为微分几何反馈线性化方法和稳定逆算法,恰好符合探测过程中两个跟踪过程的条件,因此,在两个跟踪阶段分别采用反馈线性化的两种方法予以实现。在精确跟踪过程中,利用滚动路径发生器导引以任意状态(包括航向和位置)布放的UUV平滑地驶入预设路径,并采用微分几何反馈线性化实现精确跟踪控制。在预测巡岸控制过程中,UUV将构建的环境轮廓作为跟踪的参考路径,利用稳定逆方法通过求解内动态的有界解得到稳定的逆输入,实现预测巡岸控制。为了进一步提高巡岸控制的实时性,利用有限时间窗内的理想路径作为算法的输入,并对时间窗参数进行优化,以保证探测任务与跟踪控制的同步性。
     为了验证文中所提出的轮廓构建方法及巡岸控制方法的有效性,设计仿真实验及基于海试实测数据的实验。通过设计算法验证流程,建立声纳模型及环境背景模型,提出评价标准,对算法的可行性进行分析。通过设计案例仿真及海试实测数据回演方法对所提出的算法予以验证及分析,说明轮廓构建与同步巡岸控制方法的可行性。
Two main issues for unknown environment detection using Underwater UnmannedVehicle (UUV) is orientation underwater and the control method. In this paper, aSimultaneous Detection and Patrolling (SDAP) control algorithm is proposed. Multi rangesonars are effective equipment for collecting information underwater, but the confidencecannot satisfy the control requirement, therefore, weak reliability for range sonar data isrevealed obviously. Unmanned characteristic during UUV implementing mission requirecognition and understanding ability more accuracy, especially synchronism betweenperception and patrolling exists mutual exclusion. Therefore, considering weak reliabilitysonar data and UUV characteristic, pretreatment for sonar data, contour reconstruction forunknown environment, path smoothness, decision under local environment and patrollingcontrol are studied as follows.
     1. To solve the problem that low confidence of multi range sonar data collected inunderwater complex environment cannot satisfy path requirement of patrolling control,wavelet transform is introduced to pretreatment sonar data. Compared to normal data in theset, singular data is regards as high frequency. Local amplify ability of wavelet transform leadto its introduction for data pretreatment. Owing to environment contour constructed usingpretreatment data is treated to be the reference information for patrolling path; its successionmust be guaranteed. To complement data denoted by singular point, the estimation value atcorresponding time is calculated.
     2. To achieve contour through clustering data with same property on the basis ofpretreatment data and eliminating the singular data out of data bound. Considering supportvector algorithm can implement the function above and satisfy real time requirement forapplication to be reference for patrolling control, it is introduced to realize reconstructionprocess. In addition, to ensure the property of singular data detected at first time, inertiaalgorithm is proposed to improve SVC method. Combined data confidence and DopplerVelocity Lopper (DVL) information, unknown environment contour based on weak reliabilitymulti range sonar data can be reconstructed.
     3. According to the characteristic of UUV and the requirement for controller design,smoothness desired path for patrolling control is constructed and automatic decision withlocal environment characteristic is present. On the one side, different orders’ Bézier curves areintroduced to fit contour assembled by lines using SVC, to satisfy inertia character for vehicle underwater. On the other side, towards exploration automatically, contour reconstruction andpatrolling must evolve simultaneously, therefore, it is intuitive that automatic decision methodbase on vehicle state and local environment is studied.
     4. Feedback linearize algorithm is utilized to design controllers for unknownenvironment detection. According to mission requirements, it is separated to two stages:precise following with known path and patrolling control. Two different algorithms offeedback linearize, differential geometry feedback linearize and stable inversion, are justcorresponding to two control stage requirements. In this paper, on one side, a rolling pathgenerator is present to guide vehicle to follow preset path with arbitrarily initial state,including orientation and position, and differential geometry feedback linearize method isapplied to control vehicle following precisely. On the other side, stable inversion method withcontour as desired path is introduced to obtain stable input of vehicle in patrolling process.Considering patrolling in real time, it is proposed that desired path in finite time window isregards as input items of the algorithm, and the parameter is optimized to guarantee thesynchronism between detection mission and following control.
     To verify the effectiveness of contour reconstruction method and patrolling controlalgorithm, simulation and experiment using sea trial data are designed. Validation flows areclarified in detail. Sonar model and the background environment models are established.Evaluate criterions and analysis method for reconstruction and patrolling control algorithmsare present respectively to complete the analysis. The feasibilities of reconstruction methodand patrolling control algorithm are verified through simulation and experiment using realdata from sea trial.
引文
[1]张立川,刘明雍,徐德民,严卫生.无人水下航行器实时系统设计.船舶工程,2009,31(3):55-58页
    [2]兰志林,周家波.无人水下航行器发展.国防科技.2008,29(2):11-15页
    [3] T.W Kim, J Yuh. Development of a real-time control architecture for a semi-autonomous underwater vehicle for intervention missions. Control EngineeringPractice.2004,12(12):1521-1530P
    [4]王芳,万磊,李晔,苏玉民,徐玉如.欠驱动AUV的运动控制技术综述.中国造船.2010,51(2):227-241页
    [5] Kushal Mukherjee, Shalabh Gupta, Asok Ray and Shashi Phoha. Symbolic Analysisof Sonar Data for Underwater Target Detection. IEEE Journal of OceanicEngineering.2011,36(2):219-230P
    [6]冯正平.国外自治水下机器人发展现状综述.鱼雷技术.2005,12(1):5-9页
    [7]陈强,张林根.美国军用UUV现状及发展趋势分析.舰船科学技术.2010,32(7):129-134页
    [8]王建斌,王志敏. UUV发展、应用及关键技术.信息与电子工程.2007,5(6):476-480页
    [9]许韦韦,孟昭香.新兴的水下作战平台UUV.指挥控制与仿真.2000,28(3):16-19页
    [10] You Feng, Wang Rong-ben, Zhang Rong-hui. Based on digital image lane edgedetection and tracking under structure environment for autonomous vehicle.2007IEEE International Conference on Automation and Logistics, Jinan.2007:1310-1314P
    [11] Stephen McPhail. Autosub6000: A deep diving long range AUV. Journal of BionicEngineering.2009,6(1):55-62P
    [12] Hagen P.E., Storkersen N., Vestgard K., Kartvedt P. The HUGIN1000autonomousunderwater vehicle for military applications. Proceedings of OCEANS, San Diego,CA.2003,5(2):1141-1145P
    [13]宋保维,丁浩,黄桥高,吴文辉,朱崎峰.仿生扑翼UUV的研究进展及关键技术.火力与指挥控制.2011,36(4):1-4页
    [14]张洁,何波,姚科,王一童.基于前视声纳的AUV同时定位与地图构建.微计算机信息(测控自动化).2009,25(2-1):255-257页
    [15]孙作雷.大规模不规则环境中的移动机器人定位与地图构建.上海交通大学博士论文.2010:10-15页
    [16]何武,路巍,汪瑶,王斌.基于Player的室内服务机器人的地图构建和定位系统.仪表技术.2011,5:56-58页
    [17]刘少刚,郭云龙,贾鹤鸣.基于直线特征提取匹配搜救机器人的同步定位与地图构建.吉林大学学报(工学版).2012,41(6):1-11页
    [18] José E. Guivant, Favio R. Masson, Eduardo M. Nebot. Simultaneous localization andmap building using natural features and absolute information. Robotics andAutonomous Systems.2002,40(2-3):79-90P
    [19] Amitava Chatterjee, Fumitoshi Matsuno. A Geese PSO tuned fuzzy supervisor forEKF based solutions of simultaneous localization and mapping (SLAM) problems inmobile robots. Expert Systems with Applications.2010,37(8):5542-5548P
    [20] Peter Kimball, Stephen Rock. Sonar-based iceberg-relative navigation forautonomous underwater vehicles. Deep-Sea Research II.2011,58(11-12):1301-1310P
    [21] Donghwa Lee, Gonyop Kim, Donghoon Kim, Hyun Myung, Hyun-Taek Choi.Vision-based object detection and tracking for autonomous navigation of underwaterrobots. Ocean Engineering.2012,48:59-68P
    [22]甘永,万磊,陆雯雯,庞永杰.无舵翼水下机器人路径跟踪控制研究.海洋工程.2007,25(1):70-75页
    [23] O. Calvo, A. Rozenfeld, A. Souza, F. Valenciaga, P. F. Puleston and G. Acosta.Experimental results on smooth path tracking with application to pipe surveying oninexpensive AUV.2008IEEE/RSJ International Conference on Intelligent Robotsand Systems, Nice.2008:22-26P
    [24] P. Encarnasiio, A. Pascoal.3D path following for autonomous underwater vehicle.Proceedings of the39th IEEE Conference on Decision and Control, Sydney.2000:2977-2982P
    [25] L. Lapierre, D. Soetanto. Nonlinear path following control of an AUV. OceanEngineering.2007,34(11-12):1734-1744P
    [26] L. Lapierre, D. Soetanto, A. Pascoal. Nonlinear path following with applications tothe control of autonomous underwater vehicles. Proceedings of the42nd IEEEConference on Decision and Control, Maui, Hawaii.2003,12:1256-1261P
    [27]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究.华中科技大学博士学位论文.2010:4-23页
    [28] Mugdha S. Naik, Sahjendra N. Singh. State-dependent Riccati equation-based robustdive plane control of AUV with control constraints. Ocean Engineering.2007,34:1711–1723P
    [29]秦宇翔,李一平,徐红丽.基于人工势场和模糊规则的多水下机器人队形控制方法.计算机测量与控制.2012,20(8):2105-2107页
    [30] Yiwu Jiang. Neural network based feedback linearization control of an unmannedaerial vehicle. Master Dissertation of Ottawa-Carleton Institute for Mechanical andAerospace Engineering University.2005:23-69P
    [31]韩云涛,孙尧,莫宏伟.水下超高速航行体非线性鲁棒控制器设计.武汉理工大学学报(交通科学与工程版).2010,34(2):221-232页
    [32]阮晓钢,武卫霞,刘航.基于最大反馈线性化的两轮机器人平衡控制.控制工程.2011,18(2):161-166页
    [33] Qingze Zou. Preview-based Systems-inversion for output-tracking: theory andapplication. Doctor Dissertation for University of Washington.2003:59-86P
    [34] Qingze Zou, Santosh Devasia. Precision preview-based stable-inversion for nonlinearnonminimum-phase systems: The VTOL example. Automatica.2010,43(1):117-127P
    [35] Zhang Jianhong, Zhang Ping. Precise decoupling tracking of airspeed and altitude forUAV based on causal solution of stable inversion. Chinese Journal of Aeronautics.2009,22(3):307-315P
    [36]俞建成,张艾群,王晓辉,苏立娟.基于模糊神经网络水下机器人直接自适应控制.自动化学报.2007,33(8):840-846页
    [37] R. Amin, A. A. Khayyat, K. G. Osgouie. Neural networks modeling of autonomousunderwater vehicle.2010IEEE/ASME International Conference on Mechatronicsand Embedded Systems and Applications (MESA), Qingdao.2010:14-19P
    [38] I. Astrov and A. Pedai. Multirate depth control of an AUV by neural networkpredictive controller for enhanced situational awareness. ISCIII20115thInternational Symposium on Computational Intelligence and Intelligent Informatics,Floriana.2011:47-52P
    [39]吴玉香,王聪.基于确定学习的机器人任务空间自适应神经网络控制.自动化学报.2013,39(1):1-10页
    [40] Kristijan Mǎcek, Roland Philippsen, Roland Siegwart. Path following forautonomous vehicle navigation with inherent safety and dynamics margin. IntelligentVehicles Symposium.2008,6:108-113P
    [41]王志文,彭秀艳,王大巍. Serret-Frenet框架下欠驱动船的输出反馈路径跟踪鲁棒控制.船舶工程.2010,32(6):24-32页
    [42]张铭钧,高萍,徐建安.基于神经网络的自治水下机器人广义预测控制.机器人.2008,30(1):91-96页
    [43] So-Ryeok Oh, Jing Sun. Path following of under-actuated marine surface vesselsusing line-of-sight based model predictive control. Ocean Engineering.2010,37(2-3):289-295P
    [44] Carlos Silvestre, Rita Cunha, Nuno Paulino, and António Pascoal. Abottom-following preview controller for autonomous underwater vehicles. IEEETransactions on Control Systems Technology.2009,17(2):257-266P
    [45]毕凤阳.欠驱动自主水下航行器的非线性鲁棒控制策略研究.哈尔滨工业大学博士论文.2010,7:19-47页
    [46] Unser M., Van De Ville D. The pairing of a wavelet basis with a mildly redundantanalysis via subband regression. IEEE Transactions on Image Processing.2008,17(11):2040-2052P
    [47] Chaari O.,Meunier M. and Brouaye F. Wavelets: A new tool for the resonantgrounded power distribution systems relaying. IEEE Transactions on Power Delivery.1996,11(3):1301-1308P
    [48] Zbigniew R.S. and Arno P. J. M. Siebes. Wavelet transform based multifractalformalism in outlier detection and localisation for financial time series. Physica A.2002,309(3-4):388-402P
    [49] Hsung Tai-Chiu. Wavelet transform and its application to image processing. DoctorDissertation for Hong Kong Polytechnic University.1998:1-15P
    [50] Teng HaiWen, Wang Tao,Huo Da, Su MingYu, Huang Ying. Strain mode parameteridentification of damaged structure based on continuous wavelet analysis.2010International Conference on Mechanic Automation and Control Engineering (MACE),Wuhan.2010:934-937P
    [51]谭云亮,赵同彬,颜伟.顶板活动地震波突变特征的小波识别.岩石力学与工程学报.2003,22(11):1874-1877页
    [52] A.B. Németh, S.Z. Németh. A duality between the metric projection onto a convexcone and the metric projection onto its dual. Journal of Mathematical Analysis andApplications.2012,392(2):171-178P
    [53] F. Dufour, T. Prieto-Rumeau. Approximation of Markov decision processes withgeneral state space. Journal of Mathematical Analysis and Applications.2012,388:1254–1267P
    [54] Juang B. H. and Rabiner L. R. The segmental k-means algorithm for estimating theparameters of hidden Markov models. IEEE Transactions on Acoustics, Speech,Signal Processing.1990,38(9):1639-1641P
    [55] Koo M. W, Lee C. H., Juang B. H. A new decoder based on a generalized confidencescore. Proceedings of the1998IEEE International Conference on Acoustics, Speechand Signal Processing, Seattle, WA.1998:1745-1748P
    [56] Jisuhiro Takatoshi, Satoshi Takahashi, Kiyoaki Aikawa. Rejection of out-of-vocabulary words using phoneme confidence likelihood. Proceedings of the1998IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle,WA.1998:1872-1875P
    [57] Stephane Jaffard. Pointwise regularity criteria. Comptes Rendus Mathematique.2004,339(11):757-762P
    [58]刘芳,毛志忠.基于小波隐马尔科夫模型的控制过程异常数据检测方法.控制与决策.2011,26(8):1187-1191页
    [59] Stephane Mallat. Geometrical grouplets. Applied and Computational HarmonicAnalysis.2009,26(2):161-180P
    [60] Jagroop Singh, Sukhwinder Singh, Dilbag Singh, Moin Uddin. Detection method andfilters for blocking effect reduction of highly compressed images. Signal Processing:Image Communication.2011,26(8-9):493-506P
    [61]张涛,周秀君,杨世明.二次小波变换的阈值去噪算法及其在地震信号处理中的应用.石油天然气学报.2010,32(3):224-227P
    [62] Karami A., Yazdi, M., Mercier G. Compression of hyper spectral images usingdiscrete wavelet transform and tucker decomposition. Selected Topics in AppliedEarth Observations and Remote Sensing.2012,5(2):444-450P
    [63]张祥,邓喀中,范洪冬,赵慧.基于目标分解的极化SAR图像SVM监督分类.计算机应用研究.2011,11(9):1-6页
    [64]田江,顾宏.孤立点检测的一类支持向量机方法研究.小型微型计算机系统.2008,29(11):2107-2110页
    [65] Jeroen H.M. Janssens, Ildiko Flesch, and Eric O. Postma. Outlier Detection withOne-Class Classifiers from ML and KDD. International Conference on MachineLearning and Applications, Florida.2009:147-153P
    [66] Mahrooghy M., Younan N.H., Anantharaj V.G., Aanstoos, J., Yarahmadian, S. On theuse of a cluster ensemble cloud classification technique in satellite precipitationestimation. IEEE Journal of Selected Topics in Applied Earth Observations andRemote Sensing.2012,5(5):1356-1363P
    [67] Wai-Ho Au, Keith C.C. Chan. Mining changes in association rules: a fuzzy approach.Fuzzy Sets and Systems.2005,149(1):87-104P
    [68]李明,杨艳屏,占惠融.基于局部聚类与图方法的半监督学习算法.自动化学报.2010,36(12):1654-1660页
    [69] S. Y. Yang, D. H. Yuan and G. M. Lai. Refining initial points for k-means clustering.Advances in Computer Science and Engineering.2007,1(1):61–72P
    [70] Yang J., Eativill-Castro V. and S. Chalup. Support vector clustering throughproximity graph modeling. Proceedings of9th International Conference on NeuralInformation Processing, Singapore.2002:898-903P
    [71] Bassem Besbes, Sonda Ammar, Yousri Kessentini, Alexandrina Rogozan andAbdelaziz Bensrhair. Evidential combination of SVM road obstacle classifiers invisible and far infrared images. IEEE Intelligent Vehicles Symposium (IV), Baden-Baden.2011:1074-1079P
    [72] Gerben Klaas Dirk de Vries, Maarten van Someren. Machine learning for vesseltrajectories using compression, alignments and domain knowledge. Chemometricsand Intelligent Laboratory Systems.2007,87(2):208-217P
    [73]宋美娇,唐常杰,乔少杰,苏辉.基于局部K2距离的靶场异常数据检测算法.四川大学学报(自然科学版).2008,45(6):1337-1340页
    [74] Yong Chang, Zheng Xu. A novel SVC supplementary controller based on wide areasignals. Electric Power Systems Research.2007,77(12):1569-1574P
    [75] Chang-Dong Wang, Jian-Huang Lai, Dong Huang. Incremental Support VectorClustering. IEEE11th International Conference on Data Mining Workshops,Vancouver, BC.2011:839-846P
    [76]凌萍.基于支持向量技术的聚类分类研究.吉林大学博士学位论文.2010:12-43页
    [77] Shaoning Pang, Tao Ban, Youki Kadobayashi, Nikola Kasabov. Personalized modetransductive spanning SVM classification tree. Information Sciences.2011,181(11):2071-2085P
    [78]赵锴,黄应清,蒋晓瑜,汪熙.一种提高分类器识别效率的特征选择方法.计算机工程与应用.2012,48(S2):75-79页
    [79] Junfeng Y., Hanhui Z., Hongming Z., et al. Study on Bézier curve applications ofpelvis trajectory of virtual human walking. Proceedings of the2008InternationalConference on Cyberworlds, Hangzhou.2008:635-639P
    [80] Doo-Yeoun Cho, Kyu-Yeul Lee, Tae-Wan Kim. Interpolating G1Bézier surfaces overirregular curve networks for ship hull design. Computer-Aided Design.2006,38(6):641-660P
    [81] Horst Nowacki. Five decades of computer-aided ship design. Computer-AidedDesign.2010,42(11):956-969P
    [82] Chun Liu, Yikun Zhang, Bin Shi. Geometric and kinematic modeling of detachmentfolds with growth strata based on Bézier curves. Journal of Structural Geology.2009,31:260-269P
    [83]黄玺英,赵定海.基于Bézier曲线的队形保持算法研究.计算机仿真.2010,27(1):6-8页
    [84]张天瑜. QDPSO滚动优化的LS2SVM预测控制研究.武汉理工大学学报.2010,32(3):115-119页
    [85] A. Alessandri, M. Baglietto, G. Battistelli. Robust receding-horizon state estimationfor uncertain discrete-time linear systems. Systems&Control Letters.2005,54(7):627-643P
    [86] James B. Rawlings, Bhavik R. Bakshi. Particle filtering and moving horizonestimation. Computers and Chemical Engineering.2006,30(10-12):1529-1541P
    [87] Ji-wung Choi, Renwick E. Curry and Gabriel Hugh Elkaim. Curvature-continuoustrajectory generation with corridor constraint for autonomous ground vehicles.49thIEEE Conference on Decision and Control, Atlanta, GA.2010:7166-7171P
    [88]李殿璞.非线性控制系统.西北工业大学出版社,2009:12-56页
    [89]李殿璞.船舶运动与建模.哈尔滨工程大学出版社,2008:20-45页
    [90] Lionel Lapierre and Bruno Jouvencel. Robust Nonlinear path-following control of anAUV. IEEE Journal of Oceanic Engineering.2008,33(2):89-102P
    [91] A. Pedro Aguiar and Jo o P. Hespanha. Trajectory-tracking and path-following ofunderactuated autonomous vehicles with parametric modeling uncertainty. IEEETransactions on Automatic Control.2007,52(8):1362-1379P
    [92] Xiaocheng Shi, Jiang Chen, Zheping Yan, Tao Li. Design of AUV height controlbased on adaptive Neuro-fuzzy inference system. Proceedings of the InternationalConference on Information and Automation, Harbin.2010:1646-1651P
    [93] Poorya Haghi, Mahyar Naraghi, and Seyyed Ali Sadough Vanini. Adaptive positionand attitude tracking of an AUV in the presence of ocean current disturbances.16thIEEE International Conference on Control Applications, Part of IEEE Multi-Conference on Systems and Control, Singapore.2007:741-746P
    [94] K. D. Do, J. Pan. Robust path-following of underactuated ships: Theory and experi-ments on a model ship. Ocean Engineering.2006,33(10):1354-1372P
    [95]张绍杰.一类非线性系统的若干控制问题研究.南京航空航天大学博士学位论文.2008:2-13页
    [96] Su-Long Nyeo, Rafat R. Ansari. Sparse Bayesian learning for the Laplace transforminversion in dynamic light scattering. Journal of Computational and AppliedMathematics.2011,235(8):2861-2872P
    [97] Chi-Tai Lee, Ching-Chih Tsai. Nonlinear adaptive aggressive control using recurrentneural networks for a small scale helicopter. Mechatronics.2010,20(4):474-484P
    [98] K. D. Do, J. PAN. State-and output-feedback robust path-following controllers forunderactuated ships using Serret-Frenet frame. Ocean Engineering.2004,31(5-6):587-613P
    [99]程相勤.基于滑模理论的欠驱动UUV空间曲线路径跟踪控制.哈尔滨工程大学博士学位论文.2010:8-25页
    [100]贺也平,徐克虎,沈春林.非最小相位系统输出跟踪的最优预测控制方法.南京航空航天大学学报.2000,32(3):263-269页
    [101] Jean-Jacques E. Slontine, Weiping Li.程代展译.应用非线性控制.机械工业出版社,2006:23-67页
    [102] Santosh Devasia. Nonlinear minimum-time control with pre-and post-actuation.Automatica.2011,47(7):1379-1387P
    [103]马岭,崔维成.基于模糊混合控制的自治水下机器人路径跟踪控制.控制理论与应用.2006,23(3):341-346P
    [104] P. Jantapremjit and P. A. Wilson. Guidance-control based path following for homingand docking using an autonomous underwater vehicle. Oceans2008-MTS/IEEEKobe Techno-Ocean, Kobe.2008:1-6P
    [105] J. A. Reeds, L. A. Shepp. Optimal paths for a car that goes both forwards andbackwards. Pacific Journal of Mathematics.1990,145(2):367-393P
    [106] N. Sarkar, X. Yun, and U. Kumar. Control of mechanical systems with rollingconstraints: application to dynamic control of mobile robots. International Journal ofRobotics Research.1994,13(1):55-69P
    [107] Ch.K. Volos, I.M. Kyprianidis, I.N. Stouboulos. A chaotic path planning generator forautonomous mobile robots. Robotics and Autonomous Systems.2012,60(4):651-656P
    [108]张显库,贾欣乐.船舶运动控制.国防工业出版社,2006:34-56页
    [109]金鸿章,姚绪良.船舶控制原理.哈尔滨工程大学出版社,2006:12-48页
    [110]施淑伟,严卫生,高剑,李闻白.常值海流作用下的AUV水平面路径跟踪控制.兵工学报.2010,31(3):377-379页
    [111] L.R. Hunt, E Sally Ward, Raimund J Ober. Approximation of trajectories ofnon-linear systems by iterates of systems with linear state dynamics. Systems&Control Letters.2004,51(5):377-381P
    [112] Viswanath Ramakrishna, L.R. Hunt, G. Meyer. Parameter variations, relative degree,and stable inversion. Automatica.2001,37(6):871-880P
    [113] Song Li. Numercial methods for stable inversion of nonlinear systems. DoctorDissertation for Georgia Institute of Technology.2002:5-24P
    [114] Ajay Verma. Determination and Stable tracking of feasible aircraft trajectories usingadaptive inverse dynamics. Doctor Dissertation for Texas and M University.2000:14-42P
    [115] Cristiana Bertolin. Biextensions of Picard stacks and their homological interpretation.Advances in Mathematics.2013,233(1):1-39P
    [116] Ljubomir iri, Arif Rafiq, Nenad Caki. On Picard iterations for strongly accretiveand strongly pseudo-contractive Lipschitz mappings. Nonlinear Analysis: Theory,Methods&Applications.2009,70(12),15:4332-4337P
    [117]王建刚,董新民,薛建平.基于稳定逆的飞机纵向自动着陆控制律设计.飞行力学.2011,29(2):33-40P
    [118] Xinhua Wang, Jinkun Liu, KaiYuan Cai. Tracking control for a velocity-sensorlessVTOL aircraft with delayed outputs. Automatica.2009,45(12):2876-2882P
    [119] Wilson J. Rugh, Jeff S. Shamma. Research on gain scheduling. Automatica.2000,36(10):1401-1425P
    [120] Takuya Sogo. Inversion of sampled-data system approximates the continuous-timecounterpart in a noncausal framework. Automatica.2008,44(3):823-829P
    [121] Wutiphol Sintunavarat, Poom Kumam. Common fixed point theorem for hybridgeneralized multi-valued contraction mappings. Applied Mathematics Letters.2012,25(1):52-57P
    [122] Qingze Zou. Optimal preview-based stable-inversion for output tracking of non-minimum-phase linear systems. Automatica.2009,45(1):230-237P
    [123] Hassan K. Khalil. A note on the robustness of high-gain-observer-based controllers tounmodeled actuator and sensor dynamics. Automatica.2005,41(10):1821-1824P
    [124] K.C.C. Chan, A.K.C. Wong. Statistical technique for extracting classificatory know-ledge from databases. Knowledge Discovery in Databases.1991:107-124P
    [125]董红斌,贺志.协同演化算法及其在数据挖掘中的应用.中国水利水电出版社,2008:86-89P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700