用户名: 密码: 验证码:
APCVD法生长ZnO单晶和薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是宽禁带直接带隙、六方纤锌矿结构半导体材料,室温下禁带宽度为3.37eV,激子结合能达60meV,具有优良的光电性能、压电性能、磁学性能、化学稳定性和生物无毒性。ZnO基材料被认为是制备紫外探测器、传感器、声表面波器件、薄膜晶体管、短波长激光和发光二极管等器件的理想候选材料,这使得ZnO基器件成为近些年持续研究的热点之一。然而,缺乏高质量、低成本、适合商业应用的ZnO晶体和薄膜是制约其相关器件发展的一个关键因素。为解决此问题,本论文尝试了在自组装的结构简单、造价低廉的常压化学气相沉积(APCVD)系统中生长ZnO,并研究了不同生长条件对ZnO的结构和光学性能的影响,得到了较高质量的ZnO单晶体、微纳结构薄膜和连续薄膜。主要研究内容如下:
     1.用APCVD系统调控生长ZnO晶体。研究了不同生长温度(800-900℃)、不同衬底(石英、Si、Al2O3和Au、Pt、ZnO缓冲层)、不同HCl和NH3比值(0-∞)、不同H2O浓度(温度为60-90℃)、不同衬底位置(距中心5-35cm)对ZnO晶体生长的影响,初步得到了调控晶体生长的关键因素。
     2.用APCVD系统在Al2O3衬底上生长ZnO单晶体。通过优化实验条件既可得到具有规则六角外形、显露(0001)晶面的ZnO单晶体,也可得到高密度定向生长的六角ZnO晶体。光学图片、SEM、XRD、Raman光谱和PL光谱结果表明ZnO晶体具有严格的纤锌矿结构、极高的纯度和优良的光学特性。发现用APCVD系统在Al2O3衬底上生长ZnO晶体的横向生长速率大于纵向速率,并通过三次连续生长实验进行了证实,继而深入探讨了其横向外延机理。
     3.用APCVD系统在ZnO/Al2O3衬底上生长ZnO纳米结构薄膜。采用ZnO同质缓冲层可以最大限度减小晶格失配、提高晶体的成核密度和均匀性,分别得到了大面积的纳米墙状和纳米孔状ZnO薄膜。其中,纳米墙薄膜的各单片晶体之间具有互成120。夹角的排布规律,而纳米孔薄膜的小孔内径和整体分布极为均匀。研究了纳米墙、纳米孔ZnO薄膜的相关性能和生长机理。
     4.用APCVD在ZnO/Al2O3衬底上生长了ZnO连续薄膜,并对其表面进行了优化。初步研究了ZnO连续薄膜的晶体结构和生长机理。
Zinc oxide (ZnO) is one of the wide direct bandgap semiconductors with wurtzite structure, which has a band gap of3.37eV and free exciton binding eneygy of60meV at room temperature. With the excellent photoelectricity, piezoelectric, magnetic, chemical stability and biologic safe properties, ZnO is also one of the candidates for UV photoelectric detectors, sensors, surface acoustic wave devices, short-wave lasers and light emitting diodes, and so on. These make ZnO to be a research hot point in recent years. However, a main handicap of the development of ZnO-based devices is lacking of high quality, low cost and suitable commerce using ZnO crystal and film. To solve this problem, in this thesis, a home made, simplified and low-cost atmosphere pressure chemical vapor depositon (APCVD) syatem was utilized to grow ZnO crystals and films. The special adjusting effects of different factors on the morphology and the optical properties of ZnO was researched, and the high quality ZnO crystals and films were finally gained. The main researching points are listed as follows:
     1. Adjusting ZnO growth in the APCVD system. This thesis includs the different effects of growth temperatures (800-900℃), substrates (quatz, Si, Al2O3and Au, Pt, ZnO buffer layers), ratio of HCl and NH3(0-∞), concertations of H2O vapor (water temperature60-90℃) and the growth locations (5-35cm from center). The key effects of these factor on ZnO crystal growth are discovered.
     2. Growth ZnO single crystals on Al2O3substrates in the APCVD system. After adjusting the experimental parameters, hexagonal (0001)-facet ZnO single crystals and high density hexagonal ZnO crystals were respectively achieved. The optical images, X-ray diffusion patterns, Raman and PL spectra showed the wurtzite structure, high element purity and charming optical properties of the ZnO crystal. The lateral growth rate is faster than the vertical rate of ZnO crystals on Al2O3substrate, which was testified by a three-time continuous growth experiment. The mechanism of lateral epitaxy mode was also deeply discussed
     3. Growth ZnO nanostructured film on ZnO/Al2O3substrate in the APCVD system. The ZnO buffer layers were adopted to reduce the lattice mismatch and enhance the density and uniformity of ZnO nuclei, and large-area nanowall and nanoporous ZnO films were respectively gained. The nano sheets of nano-wall film presented120°assembly angles, and the inner-diameters and the distribution of the nano porous were uniform. The properties and growth mechanisms of the two films were also discussed.
     4. Growth ZnO continuous film on ZnO/Al2O3substrate in the APCVD system. The crystal structure and growth mechanism of ZnO continuous film were discussed.
引文
[1]Y. Ryu, T.-S. Lee, J. A. Lubguban, H. W. White, B.-J.Kim, Y.-S. Park, and C.-J. Youn, "Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes," Applied Physics Letters, vol.88, p.241108,2006.
    [2]Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, "Room temperature p-n ZnO blue-violet light-emitting diodes," Applied Physics Letters, vol.90, p.042113,2007.
    [3]W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, and C. L. Zhang, "Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique," Applied Physics Letters, vol.88, p.092101, 2006.
    [4]Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol.312, pp.242-6,2006.
    [5]Y. Yoshino, "Piezoelectric thin films and their applications for electronics," Journal of Applied Physics, vol.105, p.061623,2009.
    [6]Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, X. Zhao, and P. Fang, "Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO," Langmuir, vol.26, pp.591-7, Jan 5 2010.
    [7]J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, "Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction," Applied Physics Letters, vol.97, p.082111, 2010.
    [8]N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, "ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method," Journal of Applied Physics, vol.108, p.043103,2010.
    [9]J. H. Choy, E. S. Jang, J. H. Won, J. J. Chung, D. J. Jang, and Y. W. Kim, "Soft solation route to directionally grown ZnO nanorod arrays on Si wafer; Room-temperature ultraviolet laser." Advanced Materials, vol.15, p.1911-1914,2003.
    [10]L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, "Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays," Applied Physics Letters, vol. 94, p.203106,2009.
    [11]Y. Lu, I. A. Dajani, and R. J. Knize, "ZnO nanorod arrays as p-n heterojunction ultraviolet photodetectors," Electronics Letters, vol.42, p.1309,2006.
    [12]Y. H. Kim, M. K. Han, J. I. Han, and S. K. Park, "Effect of metallic composition on electrical indium-gallium-zinc-oxide thin-film transistors," IEEE transactions on electron devices, vol.57, p.1009-1014,2010.
    [13]T. Jiang, X. F. Zhou, J. Zhang, Y. L. Shi, and T. X. Luo, "A zinc oxide modified porous silicon humidity sensor," Proceedings of the 2006 IEEE International Conference on Information Acquisition, p.1158-1162,2006.
    [14]D. Calestani, R. Mosca, M. Zanichelli, M. Villani, and A. Zappettini, "Aldehyde detection by ZnO tetrapod-based gas sensors," Journal of Materials Chemistry, vol.21, p.15532,2011.
    [15]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, "Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy," Applied Physics Letters, vol.81, p.1830,2002.
    [16]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, "Determination of defect pair orientation in ZnO," Solid State Communications, vol.109 p. 419-422,1999.
    [17]B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu, and D. Wang,"Rational synthesis of p-Type zinc oxide nanowire arrays using simple chemical vapor deposition," Nano Letters, vol.7, P.323-328,2007.
    [18]Y.-H. Ni, X.-W. Wei, X. Ma, and J.-M. Hong, "CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals," Journal of Crystal Growth, vol.283, pp.48-56, 2005.
    [19]C. Paorici and G. Attolini, "Vapour growth of bulk crystals by PVT and CVT," Progress in Crystal Growth and Characterization of Materials, vol.48-49, pp.2-41,2004.
    [20]D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, and T. Fukuda, "Solvothermal growth of ZnO," Progress in Crystal Growth and Characterization of Materials, vol.52, pp. 280-335,2006.
    [21]M. Ding, D. Zhao, B. Yao, B. Li, Z. Zhang, and D. Shen, "The p-type ZnO film realized by a hydrothermal treatment method," Applied Physics Letters, vol.98, p.062102,2011.
    [22]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol.98, p.041301,2005.
    [23]李春,”氧化锌及其纳米结构:基于第一原理的物理力学研究”南京航空航天大学,2007.
    [24]A. Janotti and C. G. Van de Walle, "Oxygen vacancies in ZnO," Applied Physics Letters, vol.87, p.122102,2005.
    [25]D. C. Look, "Quantitative analysis of surface donors in ZnO," Surface Science, vol.601, pp. 5315-5319,2007.
    [26]D. C. Look, "Unusual electrical properties of hydrothermally grown ZnO," Superlattices and Microstructures, vol.42, pp.284-289,2007.
    [27]D. C. Look, C. Coskun, B. Claflin, and G. C. Farlow, "Electrical and optical properties of defects and impurities in ZnO," Physica B: Condensed Matter, vol.340-342, pp.32-38,2003.
    [28]J. L. Lyons, A. Janotti, and C. G. Van de Walle, "Why nitrogen cannot lead to p-type conductivity in ZnO," Applied Physics Letters, vol.95, p.252105,2009.
    [29]Y. F. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, J. Y. Huang, and B. H. Zhao, "Low-resistivity Ni/Pt Ohmic contacts to p-type N-doped ZnO," Solid-State Electronics, vol.54, pp.732-735,2010.
    [30]S. Dhara and P. K. Giri, "Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film," Thin Solid Films, vol.520, pp.5000-5006,2012.
    [31]J. C. Fan and Z. Xie, "As-doped p-type ZnO films grown on SiO2/Si by radio frequency magnetron sputtering," Applied Surface Science, vol.254, pp.6358-6361,2008.
    [32]Y. R. Ryu, S. Zhu,l, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, "Synthesis of p-type ZnO films," Journal of Crystal Growth, vol.216, pp.330-334,2000.
    [33]G. Hu and H. Gong, "Unexpected influence of substrate temperature on the properties of P-doped ZnO," Acta Materialia, vol.56, pp.5066-5070,2008.
    [34]C. H. Ahn, Y. Y. Kim, S. W. Kang, and H. K. Cho, "Phosphorus-doped ZnO films grown nitrogen ambience by magnetron sputtering on sapphire substrates," Physica B: Condensed Matter, vol.401-402, pp.370-373,2007.
    [35]C. W. Zou, H. J. Wang, M. L. Yi, M. Li, C. S. Liu, L. P. Guo, D. J. Fu, and T. W. Kang, "Defects related room temperature ferromagnetism in p-type (Mn, Li) co-doped ZnO films deposited by reactive magnetron sputtering," Applied Surface Science, vol.256, pp.2453-2457,2010.
    [36]X. Zhang, X. M. Li, T. L. Chen, C. Y. Zhang, and W. D. Yu, "p-type conduction in wide-gap Zn1-xMgxO films grown by ultrasonic spray pyrolysis," Applied Physics Letters, vol.87, p. 092101,2005.
    [37]H. Zeng, S. Yang, X. Xu, and W. Cai, "Dramatic excitation dependence of strong and stable blue luminescence of ZnO hollow nanoparticles," Applied Physics Letters, vol.95, p.191904,2009.
    [38]R. M. Sheetz, E. Richter, A. N. Andriotis, and M. Menon, "Defect-induced optical absorption in the visible range in ZnO nanowires," Physical Review B, vol.80,2009.
    [39]Y. Y. Tay, T. T. Tan, M. H. Liang, F. Boey, and S. Li, "Specific defects, surface band bending and characteristic green emissions of ZnO," Physical Chemistry Chemical Physics, vol.12, p.6008, 2010.
    [40]V. V. Ursaki, V. V. Zalamai, A. Burlacu, J. Fallert, C. Klingshirn, H. Kalt, G. A. Emelchenko, A. N. Redkin, A. N. Gruzintsev, E. V. Rusu, and I. M. Tiginyanu, "A comparative study of guided modes and random lasing in ZnO nanorod structures," Journal of Physics D: Applied Physics, vol.42, p.095106,2009.
    [41]H. Q. Yang, Y. Z. Song, L. Li, J. H. Ma, D. C. Chen, S. L. Mai, and H.Zhao, "Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3H2O Hydrothermal system," Crystal Growth and Design, vol.8, pp.1039-1043,2008.
    [42]D. Sentosa, B. Liu, L. M. Wong, Y. V. Lim, T. I. Wong, Y. L. Foo, H. D. Sun, and S. J. Wang, "Temperature dependent photoluminescence studies of ZnO thin film grown on (111) YSZ substrate," Journal of Crystal Growth, vol.319, pp.8-12,2011.
    [43]M. S. Wang, Y. J. Zhou, Y. P. Zhang, E. J. Kim, S. H. Hahn, and S. G. Seong, " Near-infrared photoluminescence from ZnO," Applied Physics letters, vol.100, p.101906,2012.
    [44]M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. Adeagbo, W. Hergert, and A. Ernst, "Defect-induced magnetic order in pure ZnO films," Physical Review B, vol.80,2009.
    [45]A. C. Mofor, A. El-Shaer, A. Bakin, A. Waag, H. Ahlers, U. Siegner, S. Sievers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, S. Sorokin, S. Ivanov, and J. Stoimenos, "Magnetic property investigations on Mn-doped ZnO Layers on sapphire," Applied Physics Letters, vol.87, p. 062501,2005.
    [46]J. V. Mantese, A. L. Micheli, N. W. Schubring, R. W. Hayes, G. Srinivasan, and S. P. Alpay, "Magnetization-graded ferromagnets: The magnetic analogs of semiconductor junction elements," Applied Physics Letters, vol.87, p.082503,2005.
    [47]M. Ivill, S. J. Pearton, Y. W. Heo, J. Kelly, A. F. Hebard, and D. P. Norton, "Magnetization dependence on carrier doping in epitaxial ZnO thin films co-doped with Mn and P," Journal of Applied Physics, vol.101, p.123909,2007.
    [48]H. Katayama-Yoshida and K. Sato, "Materials design for semiconductor spintronics by ab initio electronic-structure calculation," Physica B: Condensed Matter, vol.327, pp.337-343,2003.
    [49]X. C. Liu(刘学超),H. W. Zhang (张华伟),T. Zhang(张涛),B. Y. Chen(冻博源), Z. Z. Chen(陈之战),L. X. Song (宋力听),and E. W. Shi(施尔畏),"Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors," Chinese Physics B, vol.17, pp.1371-1376,2008.
    [50]H. Ahlers, U. Siegner, S. Sievers, and M. Albrecht, "Magnetic property investigations on Mn-doped ZnO Layers on sapphire," Applied Physics Letters, vol.87, p.062501,2005.
    [51]H. Y. Yang, S. F. Yu, S. P. Lau, T. S. Herng, and M. Tanemura, "Ultraviolet laser action in Ferromagnetic Zn1-xFexO nanoneedles," Nanoscale Research Letters, vol.5, pp.247-251,2010.
    [52]M. Bouloudenine, N. Viart, S. Colis, and A. Dinia"Zn1-xCoxO diluted magnetic semiconductors synthesized under hydrothermal conditions," Catalysis Today, vol.113, pp.240-244,2006.
    [53]X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, "Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition," Journal of Applied Physics, vol.107, p.033101,2010.
    [54]M. Choe, G. Jo, J. Maeng, W.-K. Hong, M. Jo, G. Wang, W. Park, B. H. Lee, H. Hwang, and T. Lee, "Electrical properties of ZnO nanowire field effect transistors with varying high-k A12O3 dielectric thickness," Journal of Applied Physics, vol.107, p.034504,2010.
    [55]F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J. M. Gibson, S. C. Y. Tsen, D. J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel, and P. Hemenger, "Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy," Applied Physics Letters, vol.70, p.467,1997.
    [56]F. Hamdani, M. Yeadon, D. J. Smith, H. Tang, W. Kim, A. Salvador, A. E. Botchkarev, J. M. Gibson, A. Y. Polyakov, M. Skowronski, and H. Morkoc □, "Microstructure and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy," Journal of Applied Physics, vol.83, p.983,1998.
    [57]X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc□, B. Nemeth, and J. Nause, "GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces," Applied Physics Letters, vol.84, p.2268,2004.
    [58]J.-Y. Wang, C.-Y. Lee, Y.-T. Chen, C.-T. Chen, Y.-L. Chen, C.-F. Lin, and Y.-F. Chen, "Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions," Applied Physics Letters, vol.95, p.131117,2009.
    [59]L. Li, Z. Yang, J. Y. Kong, and J. L. Liu, "Blue electroluminescence from ZnO based heteroj unction diodes with CdZnO active layers," Applied Physics Letters, vol.95, p.232117, 2009.
    [60]J-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, and S.-J. Park, "UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering," Advanced Materials, vol.18, pp.2720-2724,2006.
    [61]J. Dai, C. X. Xu, R. Ding, K. Zheng, Z. L. Shi, C. G. Lv, and Y. P. Cui, "Combined whispering gallery mode laser from hexagonal ZnO microcavities," Applied Physics Letters, vol.95, p. 191117,2009.
    [62]N. N. Jandow,F. K. Yam, S. M. Thahab, H. AbuHassan, K. Ibrahim, "Characteristics of ZnO MSM UV photodetector with Ni contact electrodes on poly propylene carbonate (PPC) plastic substrate," Current Applied Physics, vol.10. pp.1452-1455,2010.
    [63]T. H. Moon, M. C. Jeong, W. Lee. J. M. Myoung, "The fabrication and characterization of ZnO UV detector," Applied Surface Science, vol.240, pp.280-285,2005.
    [64]T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, "Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si," Applied Physics Letters, vol.94, p.113508,2009.
    [65]C. Yang, X. M. Li, Y. F. Gu, W. D. Yu, X. D. Gao, and Y. W. Zhang, "ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV," Applied Physics Letters, vol.93, p. 112114,2008.
    [66]J.-P. Jung, J.-B. Lee, J.-S. Kim, and J.-S. Park, "Fabrication and characterization of high frequency SAW device with IDT/ZnO/AlN/Si configuration:role of A1N buffer," Thin Solid Films, vol.447-448, pp.605-609,2004.
    [67]W.-C. Shih and R.-C. Huang, "Fabrication of high frequency ZnO thin film SAW devices on silicon substrate with a diamond-like carbon buffer layer using RF magnetron sputtering," Vacuum, vol.83, pp.675-678,2008.
    [68]J. T. Luo, F. Zeng, F. Pan, H. F. Li, J. B. Niu, R. Jia, and M. Liu, "Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters," Applied Surface Science, vol.256, pp.3081-3085,2010.
    [69]X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, "Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition," Journal of Applied Physics, vol.107, p.033101,2010.
    [70]P. Singh, V. N. Singh, K. Jain, and T. D. Senguttuvan, "Pulse-like highly selective gas sensors based on ZnO nanostructures synthesized by a chemical route: Effect of in doping and Pd loading," Sensors and Actuators B: Chemical, vol.166-167, pp.678-684,2012.
    [71]Y. Ni, S. Yang, J. Hong, P. Zhen, Y. Zhou, and D. Chu, "Microwave-assisted preparation, characterization and properties of columnar hexagonal-shaped ZnO microcrystals," Scripta Materialia, vol.59, pp.127-130,2008.
    [72]X. Wu, K. Li, and H. Wang, "Facile fabrication of porous ZnO microspheres by thermal treatment of ZnS microspheres," J Hazard Mater, vol.174, pp.573-80, Feb 15 2010.
    [73]Z. Pan, J. D. Budai, Z. R. Dai, W. Liu, M. P. Paranthaman, and S. Dai, "Zinc Oxide Microtowers by Vapor Phase Homoepitaxial Regrowth," Advanced Materials, vol.21, pp.890-896,2009.
    [74]J. K. Park, Y.-J. Kim, J. Yeom, J. H. Jeon, G.-C. Yi, J. H. Je, and S. K. Hahn, "The Topographic Effect of Zinc Oxide Nanoflowers on Osteoblast Growth and Osseointegration," Advanced Materials, vol.22, pp.4857-4861,2010.
    [75]L. Wang, L.-X. Chang, L.-Q. Wei, S.-Z. Xu, M.-H. Zeng, and S.-L. Pan, "The effect of 1-N-alkyl chain of ionic liquids [Cnmim]+Br-(n=2,4,6,8) on the aspect ratio of ZnO nanorods:syntheses, morphology, forming mechanism, photoluminescence and recyclable photocatalytic activity," Journal of Materials Chemistry, vol.21, p.15732,2011.
    [76]T. Krishnakumar, R. Jayaprakash, N. Pinna, N. Donato, A. Bonavita, G. Micali, and G. Neri, "CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route," Sensors and Actuators B: Chemical, vol.143, pp.198-204,2009.
    [77]E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J. C. Kim, K.-H. Lee, S.-W. Kang, J. Kim, J.-Y. Yun, and S.-H. Jeong, "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation," Sensors and Actuators B: Chemical, vol.141, pp.239-243,2009.
    [78]Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, and S. Huang, "Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels," Sensors and Actuators B: Chemical, vol.140, pp.549-556,2009.
    [79]S.-P. Chang, S.-J. Chang, C.-Y. Lu, M.-J. Li, C.-L. Hsu, Y.-Z. Chiou, T.-J. Hsueh, and I. C. Chen, "A ZnO nanowire-based humidity sensor," Superlattices and Microstructures, vol.47, pp. 772-778,2010.
    [80]D. C. Reynolds, "High-quality, melt-grown ZnO single crystals," Journal of Applied Physics, vol. 95, p.4802,2004.
    [81]V. Avrutin, G. Cantwell, J. Z. Zhang, J. J. Song, D. Silversmith, and H. Morkoc, "Bulk ZnO Current Status, Challenges, and prospects," Proceeding of the IEEE, vol.98, pp.1339-1350, 2010.
    [82]D. Klimm, S. Ganschow, D. Schulz, and R. Fornari, "The growth of ZnO crystals from the melt," Journal of Crystal Growth, vol.310, pp.3009-3013,2008.
    [83]霍汉德,左艳彬,卢福华,覃世杰,张海霞,张昌龙,周卫宁,杭寅,宋词,夏长泰,顾书林,“氧化锌晶体的水热法生长及其性能研究,”磨硬材料工程,vol.18,pp.60-62,2006.
    [84]A. Mycielski, L. Kowalczyk, A. Szadkowski, B. Chwalisz, A. Wysmolek, R. Stepniewski, J. M. Baranowski, M. Potemski, A. Witowski, R. Jakiela, A. Barcz, B. Witkowska, W. Kaliszek, A. Jedrzejczak, A. Suchocki, E. Lusakowska, and E. Kaminska, "The chemical vapour transport growth of ZnO single crystals," Journal of Alloys and Compounds, vol.371, pp.150-152,2004.
    [85]Q. Fu, L. Hu, D. Yu, J. Sun, H. Zhang, B. Huo, and Z. Zhao, "ZnO thin films deposited by a CVT technique in closed ampoules," Materials Letters, vol.63, pp.316-318,2009.
    [86]W. Palosz, "Vapor transport of ZnO in closed ampoules," Journal of Crystal Growth, vol.286, pp.42-49,2006.
    [87]D. Pfisterer, D. M. Hofmann, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, "Intrinsic and extrinsic point-defects in vapor transport grown ZnO bulk crystals," Physica B:Condensed Matter, vol.376-377, pp.767-770,2006.
    [88]B. H. Juarez, P. D. Garcia, D. Golmayo, A. Blanco, and C. Lopez, "ZnO Inverse Opals by Chemical Vapor Deposition," Advanced Materials, vol.17, pp.2761-2765,2005.
    [89]T. Fujii, N. Yoshii, Y. Kumagai, and A. Koukitu, "Halide vapor phase epitaxy of ZnO studied by thermodynamic analysis and growth experiments," Journal of Crystal Growth, vol.314, pp. 108-112,2011.
    [90]K. Grasza and A. Mycielski, "Contactless CVT growth of ZnO crystals," physica status solidi (c), vol.2, pp.1115-1118,2005.
    [91]M. Mikami, S.-H. Hong, T. Sato, S. Abe, J. Wang, K. Masumoto, Y. Masa, and M. Isshiki, "Growth of ZnO by chemical vapor transport using and Zn as a transport agent," Journal of Crystal Growth, vol.304, pp.37-41,2007.
    [92]M. Mikami, T. Eto, J. Wang, Y. Masa, and M. Isshiki, "Growth of zinc oxide by chemical vapor transport," Journal of Crystal Growth, vol.276, pp.389-392,2005.
    [93]J.-M. Ntep, S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, "ZnO growth by chemical vapour transport," Journal of Crystal Growth, vol.207, pp. 30-34,1999.
    [94]J. S. Park, S. K. Hong, I. H. Im, J. S. Ha, H. J. Lee, S. H. Park, J. H. Chang, M. W. Cho, and T. Yao, "Growth of high-quality ZnO films on Al2O3 (0001) by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol.311, pp.2163-2166,2009.
    [95]A. Donato, F. Della Corte, M. Gioffre, N. Donato, A. Bonavita, G. Micali, and G. Neri, "RF sputtered ZnO-ITO films for high temperature CO sensors," Thin Solid Films, vol.517, pp. 6184-6187,2009.
    [96]B. H. Chu, L. C. Leu, C. Y. Chang, F. Lugo, D. Norton, T. Lele, B. Keselowsky, S. J. Pearton, and F. Ren, "Conformable coating of SiO2 on hydrothermally grown ZnO nanorods," Applied Physics Letters, vol.93, p.233111,2008.
    [97]K. Hirano, M. Fujita, M. Sasajima, T. Kosaka, and Y. Horikoshi, "ZnO epitaxial films grown by flux-modulated RF-MBE," Journal of Crystal Growth, vol.301-302, pp.370-372,2007.
    [98]B. Zhen, Z. Jingwen, Y. Xiaodong, W. Dong, Z. Xin'an, Z. Weifeng, and H. Xun, "Optical and structural properties of self-assembled ZnO QD chains by L-MBE," Journal of Crystal Growth, vol.303, pp.407-413,2007.
    [99]A. Marzouki, A. Lusson, F. Jomard, A. Sayari, P. Galtier, M. Oueslati, and V. Sallet, "SIMS and Raman characterizations of ZnO:N thin films grown by MOCVD," Journal of Crystal Growth, vol.312, pp.3063-3068,2010.
    [100]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, and S. B. Zhang, "ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition," Applied Physics Letters, vol.88, p.173506,2006.
    [101]D. R. Sahu, S.-Y. Lin, and J.-L. Huang, "ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode," Applied Surface Science, vol.252, pp.7509-7514, 2006.
    [102]C. Xu, J.-H. Lee, J.-C. Lee, B.-S. Kim, S. W. Hwang, and D. Whang, "Electrochemical growth of vertically aligned ZnO nanorod arrays on oxidized bi-layer graphene electrode," Cryst Eng Comm, vol.13, p.6036,2011.
    [103]J. Lian, Z. Ding, F.-1. Kwong, and D. H. L. Ng, "Template-free hydrothermal synthesis of hexagonal ZnO micro-cups and micro-rings assembled by nanoparticles," Cryst Eng Comm, vol. 13, p.4820,2011.
    [104]K. S. Leschkies, A. G. Jacobs, D. J. Norris, and E. S. Aydil, "Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency," Applied Physics Letters, vol.95, p.193103,2009.
    [105]B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, "A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties," Nanotechnology, vol.16, pp.2567-2574,2005.
    [106]D. J. Rogers, F. H. Teherani, V. E. Sandana, and M. Razeghi, "ZnO thin films and nanostructures for emerging optoelectronic applications," pp.76050K-76050K-11,2010.
    [1]D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, and T. Fukuda, "Solvothermal growth of ZnO," Progress in Crystal Growth and Characterization of Materials, vol.52, pp. 280-335,2006.
    [2]W. Palosz, "Vapor transport of ZnO in closed ampoules," Journal of Crystal Growth, vol.286, pp.42-49,2006.
    [3]D. C. Reynolds, "High-quality, melt-grown ZnO single crystals," Journal of Applied Physics, vol. 95, p.4802,2004.
    [4]Y. J. Chen, Y. Y. Shih, C. H. Ho, J. H. Du, and Y. P. Fu, "Effect of temperature on lateral growth of ZnO grains grown by MOCVD," Ceramics International, vol.36, pp.69-73,2010.
    [5]D. N. Montenegro, S. Agouram, M. C. Martinez-Tomas, C. Llorens, C. Reig, and V. Munoz-Sanjose, "Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates," Physics Procedia, vol.8, pp.121-125,2010.
    [6]J. Zhu, R. Yao, C. Liu, I.-H. Lee, L. Zhu, J.-w. Ju, J. H. Baek, B. Lin, and Z. Fu, "Effect of total gas velocity on the growth of ZnO films by metal-organic chemical vapor deposition," Thin Solid Films, vol.514, pp.306-309,2006.
    [7]X. Xu, C. Xu, J. Dai, J. Pan, and J. Hu, "Evolutions of defects and blue-green emissions in ZnO microwhiskers fabricated by vapor-phase transport," Journal of Physics and Chemistry of Solids, vol.73, pp.858-862,2012.
    [8]M. R. Khanlary, V. Vahedi, and A. Reyhani, "Synthesis and Characterization of ZnO Nanowires by Thermal Oxidation of Zn Thin Films at Various Temperatures," Molecules, vol.17, pp. 5021-5029,2012.
    [9]D. Calestani, F. Pattini, F. Bissoli, E. Gilioli, M. Villani, and A. Zappettini, "Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques," Nanotechnology, vol.23, p.194008,2012.
    [10]J. P. Biethan, V. P. Sirkeli, L. Considine, D. D. Nedeoglo, D. Pavlidis, and H. L. Hartnagel, "Photoluminescence study of ZnO nanostructures grown on silicon by MOCVD," Materials Science and Engineering: B, vol.177, pp.594-599,2012.
    [11]Z. J. Chew, R. A. Brown, T. G. G. Maffeis, and L. Li, "Comparison of ZnO nanowires synthesized on various surfaces on a single substrate," Materials Letters, vol.72, pp.60-63, 2012.
    [12]S. W. Shin, G. L. Agawane, I. Y. Kim, Y. B. Kwon, I. O. Jung, M. G. Gang, A. V. Moholkar, J.-H. Moon, J. H. Kim, and J. Y. Lee, "Low temperature epitaxial growth and characterization of Ga-doped ZnO thin films on Al2O3(0001) substrates prepared with different buffer layers," Applied Surface Science, vol.258, pp.5073-5079,2012.
    [13]A. Hirsch, C. Wille, H. Bremers, U. Rossow, A. Hangleiter, F. Ludwig, and M. Schilling, "Imposed layer-by-layer growth of ZnO on GaN/sapphire substrates using pulsed laser interval deposition," Thin Solid Films, vol.519, pp.7683-7685,2011.
    [14]T. Ngo-Duc, K. Singh, M. Meyyappan, and M. M. Oye, "Vertical ZnO nanowire growth on metal substrates," Nanotechnology, vol.23, p.194015,2012.
    [15]C. H. Xu, K. Leung, J. Hu, and C. Surya, "Synthetics of ZnO nanowires on GaN micro-pyramids by gold catalyst," Materials Letters, vol.74, pp.100-103,2012.
    [16]M. Kim, M. J. Shin, H. Jeon, H. S. Ahn, S. N. Yi, S.-C. Choi, S.-G. Lee, Y. M. Yu, and N. Sawaki, "Crystal Orientation of GaN Nanostructures Grown on A12O3 and Si(111) with a Zr Buffer Layer," Japanese Journal of Applied Physics, vol.51, p.01AF04,2012.
    [17]A. Hongsingthong, I. Afdi Yunaz, S. Miyajima, and M. Konagai, "Preparation of ZnO thin films using MOCVD technique with D2O/H2O gas mixture for use as TCO in silicon-based thin film solar cells," Solar Energy Materials and Solar Cells, vol.95, pp.171-174,2011.
    [18]G. A. Alimenti, M. E. Gschaider, J. C. Bazan, and M. L. Ferreira, "Theoretical and experimental study of the interaction of O2 and H2O with metallic zinc--discussion of the initial step of oxide formation," J Colloid Interface Sci, vol.276, pp.24-38,2004.
    [19]M. Suchea, S. Christoulakis, M. Katharakis, G. Kiriakidis, N. Katsarakis, and E. Koudoumas, "Substrate temperature influence on the properties of nanostructured ZnO transparent ultrathin films grown by PLD," Applied Surface Science, vol.253, pp.8141-8145,2007.
    [20]A. Redondo-Cubero, M. Vinnichenko, M. Krause, A. Mucklich, E. Munoz, A. Kolitsch, and R. Gago, "Sublattice-specific ordering of ZnO layers during the heteroepitaxial growth at different temperatures," Journal of Applied Physics, vol.110, p.113516,2011.
    [21]H. W. Liang, Y. M. Lu, D. Z. Shen, J. F. Yan, B. H. Li, J. Y. Zhang, Y. C. Liu, and X. W. Fan, "Investigation of growth mode in ZnO thin films prepared at different temperature by plasma-molecular beam epitaxy," Journal of Crystal Growth, vol.278, pp.305-310,2005.
    [I]B. Mohamad Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, "Electrochemical Growth of (0001)-n-ZnO Film on (111)-p-Cu2O Film and the Characterization of the Heterojunction Diode," Journal of The Electrochemical Society, vol.158, p. D621,2011.
    [2]J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, "Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics," Applied Physics Letters, vol.95, p.101905,2009.
    [3]J. S. Park, J. H. Chang, T. Minegishi, H. J. Lee, S. H. Park, I. H. Im, T. Hanada, S. K. Hong, M. W. Cho, and T. Yao, "Growth of Polarity-Controlled ZnO Films on (0001) A12O3," Journal of Electronic Materials, vol.37, pp.736-742,2007.
    [4]S. Li, S. Zhou, H. Liu, Y. Hang, C. Xia, J. Xu, S. Gu, and R. Zhang, "Low-temperature hydrothermal growth of oriented [0001] ZnO film," Materials Letters, vol.61, pp.30-33,2007.
    [5]W. Z. Liu, H. Y. Xu, J. G. Ma, C. Y. Liu, Y. X. Liu, and Y. C. Liu, "Effect of oxygen-related surface adsorption on the efficiency and stability of ZnO nanorod array ultraviolet light-emitting diodes," Applied Physics Letters, vol.100, p.203101,2012.
    [6]K. Mahmood and S. B. Park, "Growth and conductivity enhancement of N-doped ZnO nanorod arrays," Journal of Crystal Growth, vol.347, pp.104-112,2012.
    [7]Y. Wang, X. Chen, L. Wang, S. Yang, and Z. Feng, "Properties of ZnO thin film on A12O3 substrate prepared by pulsed laser deposition under different substrate temperature," Physics Procedia, vol.18, pp.85-90,2011.
    [8]D. Fan, R. Zhang, Y. Zhu, and H. Peng, "Size dependence of surface optical mode and electron-phonon coupling in ZnO nanocombs," Physica B: Condensed Matter,2012.
    [9]C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, J.-J. Wu, W.-F. Su, C.-S. Lin, and Y.-F. Chen, "Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod," Applied Physics Letters, vol.92, p.223102,2008.
    [10]K. McGuire, Z. W. Pan, Z. L. Wang, D. Milkie, J. Menendez, and A. M. Rao, "Raman Studies of Semiconducting Oxide Nanobelts," Journal of Nanoscience and Nanotechnology, vol.2, pp. 499-502,2002.
    [11]C. J. Raj, R. K. Joshi, and K. B. R. Varma, "Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures," Crystal Research and Technology, vol.46, pp. 1181-1188,2011.
    [12]P. V. B. Lakshmi and K. Ramachandran, "On the Optical, Thermal, and Vibrational Properties of Nano-ZnO:Mn, A Diluted Magnetic Semiconductor," International Journal of Thermophysics, vol.28, pp.1353-1370,2007.
    [13]J.S. Yu, J.D. Song, Y. T. Lee, "Selective area growth of InPand GaAs by chemical beam epitaxy using a novel temperature control:effects of growth conditions and pattern directions," Journal of Crystal Growth, vol.235, pp.40-48,2002.
    [14]M. Akabori, T. Murakami, and S. Yamada, "Selective area molecular beam epitaxy of InAs on GaAs (110) masked substrates for direct fabrication of planar nanowire field-effect transistors," Journal of Crystal Growth, vol.345, pp.22-26,2012.
    [15]T. Shioda, M. Sugiyama, Y. Shimogaki, and Y. Nakano, "Selective area metal-organic vapor-phase epitaxy of InN, GaN and InGaN covering whole composition range," Journal of Crystal Growth, vol.311, pp.2809-2812,2009.
    [16]D. H. Cho, M. Hachiro, Y. Abe, K. Pak, "Maskless selective epitaxy of InxGa1-xAs using low-energy In0.15Ga0.85-FIB and As4 molecular beam,"Journal of Crystal Growth, vol.201/202 pp.610-613,1999.
    [17]Y.Khlebnikov, I. Khlebnikov, M.Parker, and T. S. Sudarshan, "Local epitaxy and lateral epitaxial overgrowth of SiC," Journal of Crystal Growth, vol.233,pp.112-120,2001.
    [18]T. Shioda, M. Sugiyama, Y. Shimogaki, and Y. Nakano, "Vapor phase diffusion and surface diffusion combined model for InGaAsP selective area metal-organic vapor phase epitaxy," Journal of Crystal Growth, vol.298, pp.37-40,2007.
    [19]V. Lebedev, V. Cimalla, F. M. Morales, J. G. Lozano, D. Gonzalez, C. Mauder, and O. Ambacher, "Effect of island coalescence on structural and electrical properties of InN thin films," Journal of Crystal Growth, vol.300, pp.50-56,2007.
    [20]D. Kashchiev, "Toward a better description of the nucleation rate of crystals and crystalline monolayers," The Journal of Chemical Physics, vol.129, p.164701,2008.
    [21]A. G. Vega-Poot, G. Rodriguez-Gattorno, O. E. Soberanis-Dominguez, R. T. Patino-Diaz, M. Espinosa-Pesqueira, and G. Oskam, "The nucleation kinetics of ZnO nanoparticles from ZnCl2in ethanol solutions," Nanoscale, vol.2, p.2710,2010.
    [22]L. d Abbadie, T. T. Tan, C. C. Yang, and S. Li, "Nucleation and growth mechanisms of ZnO heterostructures controlled by temperature and pressure of CVD," Materials Science and Engineering: B, vol.167, pp.31-35,2010.
    [23]G Jacopin, L. Rigutti, L. Bugallo Ade, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, "High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires," Nanoscale Res Lett, vol.6, p.501,2011.
    [1]J. E. Jang, S. N. Cha, T. P. Butler, J. I. Sohn, J. W. Kim, Y. W. Jin, G. A. J. Amaratunga, J. E. Jung, and J. M. Kim, "A Characterization Study of a Nanowire-Network Transistor with Various Channel Layers," Advanced Materials, vol.21, pp.4139-4142,2009.
    [2]Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu, "Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method," Applied Surface Science, vol.256, pp.1698-1702,2010.
    [3]Y. Shi, Z. Yang, H. Cao, and Z. Liu, "Controlled c-oriented ZnO nanorod arrays and m-plane ZnO thin film growth on Si substrate by a hydrothermal method," Journal of Crystal Growth, vol. 312, pp.568-572,2010.
    [4]L. Feng, A. Liu, M. Liu, Y. Ma, J. Wei, and B. Man, "Fabrication and characterization of tetrapod-like ZnO nanostructures prepared by catalyst-free thermal evaporation," Materials Characterization, vol.61, pp.128-133,2010.
    [5]D. Wang, J. Zhang, Y. n. Hu, G. Li, Z. Bi, X. a. Zhang, X. Bian, and X. Hou, "Fabrication and optical properties of spear-like ZnO nanostructures by chemical vapor deposition," Materials Letters, vol.63, pp.2157-2159,2009.
    [6]M. Lucas, Z. L. Wang, and E. Riedo, "Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force microscopy and polarized Raman spectroscopy," Physical Review B, vol.81,2010.
    [7]Q. Zhang, J. Qi, Y. Yang, Y. Huang, X. Li, and Y. Zhang, "Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure," Applied Physics Letters, vol.96, p.253112, 2010.
    [8]J.-Y. Zhang, Q.-F. Zhang, T.-S. Deng, and J.-L. Wu, "Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction," Applied Physics Letters, vol.95, p.211107,2009.
    [9]Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z. L. Wang, "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators," Journal of Materials Chemistry, vol.19, p. 9260,2009.
    [10]K. Yuan, X. Yin, J. Li, J. Wu, Y. Wang, and F. Huang, "Preparation and DSC application of the size-tuned ZnO nanoarrays," Journal of Alloys and Compounds, vol.489, pp.694-699,2010.
    [11]V. Chivukula, D. Ciplys, M. Shur, and P. Dutta, "ZnO nanoparticle surface acoustic wave UV sensor," Applied Physics Letters, vol.96, p.233512,2010.
    [12]C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, "Three-Step Growth of Well-Aligned ZnO Nanotube Arrays by Self-Catalyzed Metalorganic Chemical Vapor Deposition Method," Crystal Growth & Design, vol.9, pp.4555-4561,2009.
    [13]H. Kim, J.-H. Park, M. Suh, J. Real Ahn, and S. Ju, "Horizontally aligned ZnO nanowire transistors using patterned graphene thin films," Applied Physics Letters, vol.100, p.063112, 2012.
    [14]B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Goering, and B. Baretzky, "Grain boundary layers in nanocrystalline ferromagnetic zinc oxide," JETP Letters, vol.92, pp.396-400,2010.
    [15]H. S. Kang, S. S. Pang, J. W. Kim, G. H. Kim, J. H. Kim, S. Y. Lee, Y. Li, H. Wang, and Q. X. Jia, "The role of a ZnO buffer layer in the growth of ZnO thin film on A12O3 substrate," Superlattices and Microstructures, vol.40, pp.501-506,2006.
    [16]V. Khranovskyy, R. Minikayev, S. Trushkin, G. Lashkarev, V. Lazorenko, U. Grossner, W. Paszkowicz, A. Suchocki, B. G. Svensson, and R. Yakimova, "Improvement of ZnO thin film properties by application of ZnO buffer layers," Journal of Crystal Growth, vol.308, pp.93-98, 2007.
    [17]J. Zhao, L. Hu, W. Wang, W. Liu, and A. Gong, "Effects of growth atmosphere and homo-buffer layer on properties of ZnO films prepared on Si(111) by PLD," Vacuum, vol.82, pp.664-667, 2008.
    [18]Y. Liu, Q. Y. Hou, H. P. Xu, L. M. Li, and Y. Zhang, "First-principles study of the effect of heavy Ni doping on the electronic structure and absorption spectrum of wurtzite ZnO," Physica B: Condensed Matter, vol.407, pp.2359-2364,2012.
    [19]I. M. Joni, A. Purwanto, F. Iskandar, M. Hazata, and K. Okuyama, "Intense UV-light absorption of ZnO nanoparticles prepared using a pulse combustion-spray pyrolysis method," Chemical Engineering Journal, vol.155, pp.433-441,2009.
    [20]L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "A highly efficient light-trapping structure for thin-film silicon solar cells," Solar Energy, vol.84, pp.110-115, 2010.
    [21]C.-J. Chang and E.-H. Kuo, "Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods," Colloids and Surfaces A:Physicochemical and Engineering Aspects, vol.363, pp.22-29,2010.
    [22]U. Ilyas, R. S. Rawat, G. Roshan, T. L. Tan, P. Lee, S. V. Springham, S. Zhang, L. Fengji, R. Chen, and H. D. Sun, "Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency," Applied Surface Science, vol.258, pp.890-897,2011.
    [23]J. J. Vajo and G. L. Olson, "Hydrogen storage in destabilized chemical systems," Scripta Materialia, vol.56, pp.829-834,2007.
    [24]K. McGuire, Z. W. Pan, Z. L. Wang, D. Milkie, J. Menendez, and A. M. Rao, "Raman Studies of Semiconducting Oxide Nanobelts," Journal of Nanoscience and Nanotechnology, vol.2, pp. 499-502,2002.
    [25]Y. Wang, X. Chen, L. Wang, S. Yang, and Z. Feng, "Properties of ZnO thin film on A12O3 substrate prepared by pulsed laser deposition under different substrate temperature," Physics Procedia, vol.18, pp.85-90,2011.
    [1]P. Atanasova, R. T. Weitz, P. Gerstel, V. Srot, P. Kopold, P. A. van Aken, M. Burghard, and J. Bill, "DNA-templated synthesis of ZnO thin layers and nanowires," Nanotechnology, vol.20, p. 365302,2009.
    [2]K. V. Gurav, P. R. Deshmukh, and C. D. Lokhande, "LPG sensing properties of Pd-sensitized vertically aligned ZnO nanorods," Sensors and Actuators B: Chemical, vol.151, pp.365-369, 2011.
    [3]S. Cho, J.-W. Jang, S.-H. Lee, J. S. Lee, and K.-H. Lee, "A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces," Crystal Growth & Design, vol.11, pp. 5615-5620,2011.
    [4]M. Topsakal, S. Cahangirov, E. Bekaroglu, and S. Ciraci, "First-principles study of zinc oxide honeycomb structures," Physical Review B, vol.80,2009.
    [5]H. Wang, C. Xie, and D. Zeng, "Controlled growth of ZnO by adding H2O," Journal of Crystal Growth, vol.277, pp.372-377,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700