用户名: 密码: 验证码:
多糖的化学改性及其水凝胶的敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然多糖一般可分类为中性、酸性和碱性多糖,是大多数生物医用材料的主要原材料。酸性多糖透明质酸(HA)和碱性多糖壳聚糖(CS)以及中性多糖可德胶在药物控制释放领域,尤其是作为抗癌药物载体的研究越来越广泛。HA分子上面有癌细胞结合位点,具有癌症靶向性;CS为天然多糖中唯一的碱性多糖,可开发pH敏感性,作为药物载体在一定程度上也可以实现对癌细胞的pH靶向性;可德胶经过改性后,本身就可以作为一种抗癌药物,并可以作为药物载体。
     本文从将多糖制备成水凝胶的新方法入手,通过分子设计,在多糖分子上引入敏感官能团,将多糖分子制备成具备环境敏感性的药物载体材料,研究多糖的敏感单元对不同环境变化的响应性来实现药物的可控释放,以期完成最终的水凝胶的智能载药。除了作为药物载体外,多糖通过一系列的分子设计,本身也可用作药物进行相应的治疗。
     首先,以酸性HA为研究对象,用3-叠氮基-1-丙胺(3-azidopropan-1-amine,AA)和炔丙胺(2-propynylamine, PA)对HA进行改性,获得侧链带有炔基和叠氮基的HA,通过FTIR和1H NMR对改性后的HA结构进行表征,进而在硫酸亚铜和抗坏血钠催化的条件下,采用Click化学方法制备能够原位可注射用的HA水凝胶,通过表征确定水凝胶的溶胀率和交联程度成反比,并进一步用扫描电镜观察凝胶的形貌。
     利用生物素(Biotin)和中性亲和素(Neutravidin)特异可逆的结合来制备HA微凝胶。首先通过己二酸二酰肼(ADH)改性HA获得带有氨基的HA分子,再利用N-羟基琥珀酰亚胺改性的Biotin,将Biotin接枝在HA分子上,利用Biotin和Avidin的结合来制备HA水凝胶。反应过程利用FTIR和1HNMR进行表征。在凝胶形成的过程中,可将DOX装载于HA微凝胶中,包封率和载药量可达到52.6%和3.8%。利用HA能够被肿瘤细胞表面高度表达HA受体CD44与HA介导自动性受体(RHAMM)所结合的特性,使得到的微凝胶抗肿瘤药物载体具备对肿瘤特异的靶向性。Biotin和Neutravidin可逆的结合,可以在过量Biotin存在的情况下触发HA微凝胶将装载于其中的抗癌药物定点释放出来。实验结果表明,在药物释放的过程中加入Biotin,可以加速药物的释放行为。
     对于碱性多糖——壳聚糖(CS),由于其为阳离子型聚电解质,可以和阴离子或聚阴离子化合物反应形成网络结构的水凝胶。本文利用β-甘油磷酸钠(β-GP)制备具有温敏效应壳聚糖水凝胶,讨论溶液pH、β-GP的用量、壳聚糖的分子量以及温度对水凝胶性能的影响,发现在低温(4℃)状态,pH<5时,CS很难成凝胶。而当pH>5时,温度直接影响了CS成凝胶的能力,低温情况下依旧不能成凝胶。将抗癌药物盐酸阿霉素担载在温敏性CS凝胶中,并研究了药物的体外释放行为。
     为了更好的实现壳聚糖凝胶温敏性,本文在CS分子接枝水溶性聚乙二醇单甲醚(mPEG),然后将温敏性的高分子聚N-异丙基丙烯酰胺(PNIPAM)接枝在共聚物CS-g-mPEG上,获得具有温度敏感壳聚糖水凝胶的原材料——CS-g-PNIPAM。首先,将CS-g-mPEG制备成原子转移自由基聚合(ATPR)用引发剂,采用ATRP法,引发N-异丙基丙烯酰胺(NIPAM)聚合,得到共聚物CS-g-PNIPAM,即温敏性壳聚糖。共聚物的结构和性能用FTIR、1H NMR和示差扫描量热(DSC)及热重分析(TG)来表征。结果表明,CS-g-mPEG热分解温度分布在166-500℃,摩尔接枝度为14.6%,分子量可达242500。CS的水溶性明显得到改善;共聚物CS-g-PNIPAM的聚合过程一级动力学显示出聚合过程具有良好的可控性,CS-g-PNIPAM的水溶性与CS-g-mPEG相似,最低临界共溶温度(LCST)值在32℃左右,在LCST以上,PNIPAM段可发生相转变进而获得可载药的微凝胶。
     另外一种中性多糖——可德胶,也可以将其与PNIPAM接枝共聚来增加其水溶性,并引入温度敏感性。本文首先将可德胶进行羟基活化、溴化取代、叠氮反应来制备末端带有叠氮基团的可德胶(Curdlan-N3)。其次将α-2氯代异丙酸炔丙酯做为引发剂,N,N-二甲基甲酰胺(DMF)为溶剂,氯化亚铜/三-(N,N-二甲氨基乙基)胺(Me6TREN)为催化剂,采用ATRP法合成了末端带炔基的聚N-异丙基丙烯酰胺(PNIPAM-≡)。最后采用Click化学方法,以DMF和水为溶剂,五甲基二乙烯基三胺(PMDETA)和CuBr为催化剂,制备了接枝共聚物Curdlan-g-PNIPAM,其结构清楚且分子量分布较窄(PDI<1.35)。共聚物Curdlan-g-PNIPAM的结构和性能用FTIR、紫外光谱、1H NMR、GPC来表征。Curdlan-g-PNIPAM具备温敏性,其最低临界溶解温度(LSCT),大约在33℃左右。
Natural polysaccharides are classified as neutral, acidic and alkaline generally, which are the raw materials of most biomedical materials. Acidic polysaccharide hyaluronic acid (HA), alkaline polysaccharide chitosan (CS) and neutral polysaccharide curdlan are widely researched in the field of drug control and delivery, especially as carrier of anticancer drug. HA has ability of cancer targeting because HA molecular has the binding sites of cancer cells. While CS is the only alkaline polysaccharide in natural polysaccharides and pH sensitivity can be developed. When CS used as anticancer drug carrier, it will be perform pH targeting to a certain degree. Curdlan after modification can serve as a kind of anticancer drugs, and can be used as drug carrier.
     This article prepared the polysaccharide hydrogels with new methods. Sensitive elements were introduced on polysaccharide molecules to prepare drug carrier with environmental sensitivity through the molecular design. Sensitive units on polysaccharides responded to different changes in the environment are researched to complete the final smart drug-loading hydrogels. Besides as drug carrier, polysaccharide through a series of molecule design can also be used as drugs on the corresponding treatment. First, acidic polysaccharide HA was used as research object.3-azidopropan-l-amine (AA) and2-propynylamine (PA) were selected to modify HA to get side chain of HA with azide or alkyne groups. FTTR and H NMR was used to characterize modified HA to confirm the reaction. Then in situ injection HA hydrogels were prepared using click chemistry with cuprous sulfate and sodium ascorbate as catalyst. Swelling ratio and crosslinking content of the hydrogels was inversely proportional. Forthemore, morphologies was observed by SEM.
     In this study, HA micro-hydrogel was prepared by biotin-neutravidin system (BAS) specific reversible bonding. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC-HCl) named as HA-biotin. The results of synthesis procedure were characterized by1H-NMR and FTIR, ADH and biotin have been demonstrated to graft on HA molecule. When HA-biotin solution mixed with doxorubicin hydrochloride (DOX-HCl) was blended with neutravidin,the micro-hydrogels would be formed with DOX loading. The drug loading content and drug loading efficiency were3.8%and52.6%, respectively. HA has ability of cancer cell selectivity because two kinds of HA receptors:CD44and RHAMM are over-expressed in cancer cells. So HA is an attractive material used as anticancer drug carrier to perform cancer targeting. If excess biotin was added into the microgel, it would be disjointed and DOX will release quickly.
     For alkaline polysaccharide, chitosan (CS) is cationic polyelectrolyte and can react with anion or polyanionic compounds to form the hydrogel with network structure. In the thesis, β-glycerophosphate (β-GP) was used to prepare chitosan hydrogels with thermosensitivity. The solution pH, dosage of (3-GP, chitosan molecular weight and temperature were discussed to find environment influence to CS hydrogels. The results indicated that CS was difficult to form hydrogel when the temperature was below4℃and solution pH<5. While when solution pH>5, temperature influenced the ability of CS hydrogels forming and CS can't form hydrogel under low temperature. Anticancer drug doxorubicin hydrochloride was loaded in thermosensitive CS hydrogel to investigate drug release behavior.
     In order to perform better thermosensitivity and water-solubility of CS hydrogels, Methoxypolyethylene glycol (mPEG) was grafted on CS firstly, and then poly(N-isopropylacrylamide)(PNIPAM) was introduced on CS-g-mPEG molecular to obtain CS-g-PNIPAM that was an idea thermosensitive raw material to get thermosensitive CS hydrogels. CS-g-mPEG was used to prepare atom transfer radical polymerization (ATRP) initiator to initiate NIPAM polymerizating to get copolymer CS-g-mPEG. Structure and properties of copolymer CS-g-mPEG were characterized by FTIR,'H NMR, DSC and TG analysis. The results indicated that the thermal decomposition temperature of CS-g-mPEG was between166-500℃. The percentage of CS-g-mPEG grafting degree was14.6%, and the molecular weight can reach to242500. The water-solubility of CS-g-mPEG was similar to CS-g-PNIPAM and both of the copolymers were better than CS. The kinetics of polymerization showed polymerization with better controllability. The LCST of CS-g-PNIPAM was at about32℃. Above the LCST, PNIPAM segment on copolymer will occur phase transition to form microhydrogel to use as drug carrier.
     Anthor neutral polysaccharide curdlan can also be grafted with PNIPAM to increase water-solubility and enhance thermosensitivity. In this thesis, curdlan were modified by hydroxyl activation, bromination and azide substitution to get curdlan-N3with an azido at the chain end. Then PNIPAM-≡were synthesized by ATRP using a-2chloro-isomethylacetic acid propargylester as initiator, dimethyl formamide as solvent and CuCl/tris (2-dimethyl/aminoethyl) amine as catalyst. At last,"click chemistry" was used to get copolymer Curdian-g-PNIPAM with dimethyl formamide and water as solvent and pentamethyl diethylenetriamine and CuBr as catalyst. The structure of copolymer was clear and molecular weight distribution was relatively low polydispersity (PDI<1.35). The structure and properties of copolymer Curdlan-g-PNIPAM were characterized by FT-IR, UV spectrum,1H NMR and GPC. Copolymer Curdlan-g-PNIPAM has the ability of thermosensitivity and the LCST were about33℃.
引文
[1]Wichterle O, Lim D. Hydrophilic gels for biological use. Nature[J].1960,185:117-118.
    [2]Kopecek J. Hydrogel biomaterials:a smart future. Biomaterials[J].2007,28:5185.
    [3]Drury JL, Mooney DJ. Hydrogels for tissue engineering:scaffold design variables and applications[J]. Biomaterials,2003,24:4337-51.
    [4]Shapira K, Dikovsky D, Habib M, Gepstein L, Seliktar D. Hydrogels for cardiac tissue regeneration[J]. Bio-medical materials and engineering,2008,18:309-14.
    [5]Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery[J]. Advanced drug delivery reviews,2012,64:49-60
    [6]Hoffman AS. Hydrogels for biomedical applications. Advanced drug delivery reviews[J].
    2012,54(1):3-12[7]韩飞飞,吴绵斌,孔繁智.天然活性多糖药理作用研究进展[J].西北药学杂志,2006,21:91-2.
    [8]李欣,周四元,梅其炳,张邦乐.多糖类水凝胶在口服缓控释制剂中的应用[J].解放军药学学报,2004,19:449-52.
    [9]Hassani LN, Hendra F, Bouchemal K. Auto-associative amphiphilic polysaccharides as drug delivery systems[J]. Drug discovery today.2012.17(11),608-614
    [10]王涛,赵谋明.多糖的研究进展[J].现代食品科技,2007,23:103-6.
    [11]殷涌光,韩玉珠,丁宏伟.动物多糖的研究进展[J].食品科学,2006,27:256.
    [12]丛峰松,张洪斌,张维杰.可德胶及其在食品和医药领域上的应用[J].食品科学,2004,25:432-5.
    [13]高洁,汤烈贵,高分子化学[M].纤维素科学:科学出版社;1996.
    [14]蒋挺大.壳聚糖[M]:化学工业出版社;2007.
    [15]凌沛学,生物学.透明质酸:中国轻工业出版社;2000.
    [16]吴道澄,顾雪凡.透明质酸载体靶向治疗消化系肿瘤的研究进展[J].世界华人消化杂志,2012,20:3075-80.
    [17]尹大伟,周英,刘玉婷,苗东琳.水凝胶的最新研究进展[J].化工新型材料,2012,40:21-3.
    [18]Ramakrishna S, Mayer J, Wintermantel E, et al. Biomedical applications of polymer-composite materials:a review[J]. Composites Science and Technology,2001,61(9): 1189-1224.
    [19]李钒,张金龙,尹玉姬.生物医用高强度水凝胶的研究进展[J].化工进展,2012,31:2511-9.
    [20]翟茂林,哈鸿飞.水凝胶的合成,性质及应用[J].大学化学,2001,16:22-7.
    [21]刘炜涛,刘学文,朱沈,刘忻沂,韩国志.pH敏感水凝胶聚甲基丙烯酸的超声合成[J].化学学报,2012,70:272-6.
    [22]钟大根,刘宗华,左琴华,黄彧琛,薛巍.智能水凝胶在药物控释系统的应用及研 究进展[J].材料导报,2012,26:83-8.
    [23]金淑萍,柳明珠,陈世兰,卞凤玲,陈勇,王斌,et al.智能高分子及水凝胶的响应性及其应用[J].物理化学学报,2007,23:438-46.
    [24]徐文进,高崇凯,刘利.温度敏感型水凝胶[J].现代食品与药品杂志,2008,17:60-2.
    [25]Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications[J]. European journal of pharmaceutics and biopharmaceutics,2008,68:34-45.
    [26]Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels-review of temperature-sensitive systems[J]. European journal of pharmaceutics and biopharmaceutics, 2004,58:409-26.
    [27]Wu XS, Hoffman AS, Yager P. Synthesis and characterization of thermally reversible macroporous poly (N-isopropylacrylamide) hydrogels[J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,30:2121-9.
    [28]Patenaude M, Hoare T. Injectable, Degradable Thermoresponsive Poly (N-isopropylacrylamide) Hydrogels[J]. ACS Macro Letters,2012,1:409-13.
    [29]Plate NA, Lebedeva TL, Valuev LI. Lower Critical Solution Temperature in Aqueous Solutions of N-Alkyl-Substituted Polyacrylamides[J]. Polymer journal,1999,31:21-7.
    [30]Shim WS, Yoo JS, Bae YH, Lee DS. Novel injectable pH and temperature sensitive block copolymer hydrogel[J]. Biomacromolecules,2005,6:2930-4.
    [31]Jeong B, Gutowska A. Lessons from nature:stimuli-responsive polymers and their biomedical applications[J]. Trends in biotechnology,2002,20:305-11.
    [32]Philippova OE, Hourdet D, Audebert R, Khokhlov AR. pH-responsive gels of hydrophobically modified poly (acrylic acid)[J]. Macromolecules,1997,30:8278-85._[33]俞耀庭.生物医用材料:天津大学出版社:2000.
    [34]马晓梅,赵喜安,唐小真.智能型水凝胶[J].化学通报,2004,2:117-23.
    [35]毕曼,郝红,李涛,赵亚玲.智能水凝胶研究最新进展[J].离子交换与吸附,2008,24:188-92.
    [36]管晓玉,郝红,李海瑞,赵涛.葡萄糖敏感型水凝胶最新研究进展[J].高分子通报,2009,49-53.
    [37]肖慧,刘兆民.环境敏感性水凝胶的制备和应用[J].上海大学学报(自然科学版),2003.1.
    [38]房喻,胡道道,崔亚丽.智能型高分子水凝胶的应用研究现状[J].高技术通讯.2001,3:107-110
    [39]Eddington D T, Beebe D J. Flow control with hydrogels[J]. Advanced drug delivery reviews,2004,56(2):199-210.
    [40]Kim JJ, Park K. Smart hydrogels for bioseparation[J]. Bioseparation,1998,7:177-84.
    [411 Liu T-Y, Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug[J]. Langmuir,2006,22:5974-8.
    [42]揭少卫,杨黎明,陈捷,单廷,钱锵.原位聚合法制备壳聚糖/聚丙烯酸水凝胶磁微 球及其性能表征[J].高校化学工程学报,2008,22:850-4.
    [43]季文俊,王溟失,卢玉华,汪慧亮,霎中伟.壳聚糖-聚丙烯酸配合物半互穿聚合物网络膜及其对pH和离子的刺激响应[J].高分子学报,1997,1:106-110
    [44]Shi W, Ji Y, Zhang X, Shu S, Wu Z. Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery[J]. Journal of pharmaceutical sciences, 2011,100:886-95.
    [45]Zhang Z, Gao X, Zhang A, Wu X, Chen L, He C, et al. Biodegradable pH- Dependent Thermo-Sensitive Hydrogels for Oral Insulin Delivery[J]. Macromolecular Chemistry and Physics.2012,213(7):713-719
    [46]Lo Y-L, Hsu C-Y, Lin H-R. pH-and thermo-sensitive pluronic/poly (acrylic acid) in situ hydrogels for sustained release of an anticancer drug[J]. Journal of drug targeting,2012, 1-13.
    [47]Fundueanu G, Constantin M, Asmarandei I, Harabagiu V, Ascenzi P, Simionescu BC. The thermosensitivity of pH/thermoresponsive microspheres activated by the electrostatic interaction of pH-sensitive units with a bioactive compound[J]. Journal of Biomedical Materials Research Part A,2012,1-9.
    [48]朱文,段世锋,丁建东.组织工程用水凝胶材料[J].功能高分子学报,2004,17:689-97.
    [49]Lee KY, Mooney DJ. Hydrogels for tissue engineering[J]. Chemical Reviews,2001, 101:1869-80.
    [50]Nguyen KT, West JL.[JPhotopolymerizable hydrogels for tissue engineering applications[J]. Biomaterials,2002,23:4307-14.
    [51]Nguyen MK, Lee DS. Injectable biodegradable hydrogels[J]. Macromolecular bioscience,2010,10:563-79.
    [52]Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications [J]. Materials,2010,3:1746-67.
    [53]Brandl F, Hammer N, Blunk T, Tessmar J, Goepferich A. Biodegradable hydrogels for time-controlled release of tethered peptides or proteins [J]. Biomacromolecules,2010, 11:496-504.
    [54]袁丛辉,余娜,林松柏,柯爱茹,全志龙.PVA-PAMPS-PAA三元互穿网络型水凝胶的合成及其性能研究[J].高分子学报,2009,3:009.
    [55]Jo YS, Rizzi SC, Ehrbar M, Weber FE, Hubbell JA, Lutolf MP.Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri- amino acid peptides[J]. Journal of Biomedical Materials Research Part A,2010,93:870-7.
    [56]Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA. Cell-Responsive Synthetic Hydrogeis[J]. Advanced Materials,2003,15:888-92.
    [57]Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA. Biologically engineered protein-graft-poly (ethylene glycoi) hydrogels:a cell adhesive and plasmin-degradable biosynthetic material for tissue repair[J]. Biomacromolecules,2002,3:710-23.
    [58]单军.生物活性高分子材料[J].化工新型材料,1995,23:5-7.
    [59]李贤真,李彦锋,朱晓夏,李柏年,刘刚.高分子水凝胶材料研究进展[J].功能材料,2003,34:382-5.
    [60]Tabata Y, Miyao M, Ozeki M, Ikada Y. Controlled release of vascular endothelial growth factor by use of collagen hydrogels[J]. Journal of Biomaterials Science, Polymer Edition,2000,11:915-30.
    [61]Dubruel P, Unger R, Van Vlierberghe S, Cnudde V, Jacobs PJ, Schacht E, et al. Porous gelatin hydrogels:2. In vitro cell interaction study[J]. Biomacromolecules,2007,8:338-44.
    [62]Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations[J]. Journal of controlled release,2007,119:5-24.
    [63]Chen J, Jo S, Park K. Polysaccharide hydrogels for protein drug delivery[J]. Carbohydrate polymers,1995,28:69-76.
    [64]O'SULLIVAN AC. Cellulose:the structure slowly unravels[J]. Cellulose,1997, 4:173-207.
    [65]Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials [J].2007,28:975-83.
    [66]Nevell TP, Zeronian SH. Cellulose chemistry and its application:E. Horwood; Halsted Press; John Wiley; 1985.
    [67]Rodriguez Ra, Alvarez-Lorenzo C, Concheiro A. Cationic cellulose hydrogels:kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems[J]. Journal of controlled release,2003,86:253-65.
    [68]Zhou J, Chang C, Zhang R, Zhang L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution[J]. Macromolecular bioscience,2007,7:804-9.
    [69]Westman L, Lindstrom T. Swelling and mechanical properties of cellulose hydrogels.Ⅰ. Preparation, characterization, and swelling behavior[J]. Journal of applied polymer science, 2003,26:2519-32.
    [70]任天瑞,沈斌,李永红,万俊杰.纤维素的均相化学反应[J].化学进展,2004,16:948-53.
    [71]Chang C, Zhang L. Cellulose-based hydrogels:Present status and application prospects. Carbohydrate polymers[J].2011,84:40-53.
    [72]Zhang L, Zhou J, Zhang L, Structure and properties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution. Carbohydrate polymers [J].2013, 94:386-93
    [73]Chang C, Duan B, Zhang L. Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer[J].2009,50:5467-73.
    [74]Harada T, Misaki A, Saito H. Curdlan:A bacterial gel-forming β-1,3-glucan[J]. Archives of Biochemistry and Biophysics,1968,124:292-8.
    [75]Chuah CT, Sarko A, Deslandes Y, Marchessault RH. Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates[J]. Macromolecules,1983,16:1375-82.
    [76]McIntosh M, Stone B, Stanisich V. Curdlan and other bacterial (1→3)-β-D-glucans[J]. Applied microbiology and biotechnology,2005,68:163-73.
    [77]Nishinari K, Zhang H. Recent advances in the understanding of heat set gelling polysaccharides[J]. Trends in Food Science & Technology,2004,15:305-12.
    [78]Nakao Y, Konno A, Taguchi T, TAWADA T, KASAI H, TODA J, et al. Curdlan: Properties and application to foods[J]. Journal of food science,1991,56:769-72.
    [79]金阳.可德胶(eurdlan)多糖分子构象及其衍生物的研究[上海交通大学博士论文].2006.
    [80]王兆梅,李琳,胡松青,冯宗财,郭祀远.两种硫酸酯化纤维素钠的结构和抗凝血活性研究[J].林产化学与工业,2003,23:23-27.
    [81]李玉华,王凤山,贺艳丽.多糖化学修饰方法研究概况[J].中国生化药物杂志,2007,28:62-65.
    [82]张琦,张洪斌,丛峰松,黄龙.β-(1—3)-D-葡聚糖可德胶化学改性的研究进展[J].高分子通报,2009。,5:20-29.
    [83]Koumoto K, Kimura T, Kobayashi H, Sakurai K, Shinkai S. Chemical modification of curdlan to induce an interaction with poly (C)[J]. Chemistry Letters,2001,30:908-909.
    [84]Kishida E, Sone Y, Misaki A. Effects of branch distribution and chemical modifications of antitumor(1→3)-β-D-glucans[J]. Carbohydrate polymers,1992,17:89-95.
    [85]Borjihan G, Zhong G, Baigude H, Nakashima H, Uryu T. Synthesis and anti-HIV activity of 6-amino-6-deoxy-(1→3)-β-D- curdlan sulfate[J]. Polymers for Advanced Technologies,2003,14:326-9.
    [86]Mizumoto K, Sugawara I, Ito W, Kodama T, Hayami M, Mori S. Sulfated homopolysaccharides with immunomodulating activities are more potent anti-HTLV-III agents than sulfated heteropolysaccharides[J]. The Japanese journal of experimental medicine,1988,58:145.
    [87]Yoshida T, Hatanaka K, Uryu T, Kaneko Y, Suzuki E, Miyano H, et al. Synthesis and structural analysis of curdlan sulfate with a potent inhibitory effect in vitro of AIDS virus infection[J]. Macromolecules,1990,23:3717-22.
    [88]Jagodzinski PP, Wiaderkiewicz R, Kurzawski G, Kloczewiak M, Nakashima H, Hyjek E, et al. Mechanism of the Inhibitory Effect of Curdlan Sulfate on HIV-1 Infection in Vitro[J]. Virology.1994;202:735-45.
    [89]Gao Y, Fukuda A, Katsuraya K, Kaneko Y, Mimura T, Nakashima H, et al. Synthesis of regioselective substituted curdlan sulfates with medium molecular weights and their specific anti-HIV-1 activities [J]. Macromolecules,1997,30:3224-8.
    [901 Hasegawa T, Fujisawa T, Numata M, Umeda M. Matsumoto T, Kimura T, et al. Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan[J], Chemical Communications,2004, 2150-1.
    [91]Na K, Park K-H, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives:characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2)[J]. Journal of controlled release,2000,69:225-36.
    [92]Kobayashi S, Tsujihata S, Hibi N, Tsukamoto Y. Preparation and rheological characterization of carboxymethyl konjac glucomannan[J]. Food Hydrocolloids,2002, 16:289-94.
    [93]Yoshida T, Hattori K, Sawada Y, Choi Y, Uryu T. Graft copolymerization of methyl methacrylate onto curdlan[J]. Journal of Polymer Science Part A:Polymer Chemistry,1996, 34:3053-60.
    [94]Demleitner S, Kraus J, Franz G. Synthesis and antitumour activity of sulfoalkyl derivatives of curdlan and lichenan[J]. Carbohydrate research,1992,226:247-52.
    [95]樊华,张其清.海藻酸钠在药剂应用中的研究进展[J].中国药房,2006,17:465-7.
    [96]Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials[J]. Biomaterials,1999,20:45-53.
    [97]Gombotz WR, Wee SF. Protein release from alginate matrices[J]. Advanced drug delivery reviews.2012,31(3):267-285
    [98]魏靖明,张志斌,冯华,林松,张琨.海藻酸钠作为药物载体材料的研究进展[J].化工新型材料,2007,35:20-2.
    [99]T(?)nnesen HH, Karlsen J. Alginate in drug delivery systems[J].Drug development and industrial pharmacy,2002,28:621-30.
    [100]Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate[J]. Journal of pharmaceutical sciences,1993,82:912-7.
    [101]Skjak-Braek G, Espevik T. Application of alginate gels in biotechnology and biomedicine[J]. Carbohydr Eur.,1996,14:19-25.
    [102]Cardin AD, Weintraub H. Molecular modeling of protein-glycosaminoglycan interactions[J]. Arteriosclerosis, Thrombosis, and Vascular Biology.1989;9:21-32.
    [103]Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin[J]. American Journal of Physiology-Heart and Circulatory Physiology,2004, 287:H203-H8.
    [104]Ildan F, Tuna M, Gocer A, Ozel S, Bagdatoglu H, Polat S, et al. The effect of collagen, interleukin-1 and glycosaminoglycan on the neovascularization of the central nervous system[J]. Clinical Neurology and Neurosurgery,1997,99:130-130.
    [105]沈渤江,凌沛学,张天民.透明质酸研究概况[J].中国生化药物杂志,1985,2:006.
    [106]Laurent TC. Structure of hyaluronic acid[J]. Chemistry and molecular biology of the intercellular matrix,1970,2:703-32.
    [107]Meyer K. The biological significance of hyaluronic acid and hyaluronidase[J]. Physiological reviews,1947,27:335-59.
    [108]Segura T, Anderson BC, Chung PH, Webber RE, Shall KR, Shea LD. Crosslinked hyaluronic acid hydrogels:a strategy to functionalize and pattern[J]. Biomaterials,2005, 26:359-71.
    [109]Hou S, Xu Q, Tian W, Cui F, Cai Q, Ma J, et al. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin[J]. Journal of neuroscience methods,2005,148:60-70.
    [110]Baier Leach J, Bivens KA, Patrick Jr CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels:natural, biodegradable tissue engineering scaffolds[J]. Biotechnology and bioengineering,2003,82:578-89.
    [111]Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled chemical modification of hyaluronic acid:synthesis, applications, and biodegradation of hydrazide derivatives [J]. Journal of controlled release,1998,53:93-103.
    [112]Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications[J]. Advanced Materials,2011,23:H41-H56.
    [113]Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels:from a natural polysaccharide to complex networks[J]. Soft Matter,2012, 8:3280-94.
    [114]Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid:a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology letters,2007, 29:17-25.
    [115]Ikeya H, Kitagawa H. Hyaluronic acid and its salt for treating skin diseases:U.S. Patent 5,728,391 [P].1998-3-17.
    [116]Tomihata K, Ikada Y. Crosslinking of hyaluronic acid with water-soluble carbodiimide[J]. Journal of Biomedical Materials Research,1998,37:243-51.
    [117]Burns J W, Cox S, Walts A E. Water insoluble derivatives of hyaluronic acid:U.S. Patent 5,017,229[P].1991-5-21.
    [118]Goa KL, Benfield P. Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing[J]. Drugs,1994,47:536.
    [119]Liu Y, Wang R, Zarembinski T I, et al. The Application of Hyaluronic Acid Hydrogels to Retinal Progenitor Cell Transplantation[J]. Tissue Engineering Part A,2012,19(1-2): 135-142.
    [120]Teh BM, Shen Y, Friedland PL, Atlas MD, Marano RJ. A review on the use of hyaluronic acid in tympanic membrane wound healing[J].Expert opinion on biological therapy,2012,12:23-36.
    [121]Lee DG, Nurunnabi M, Hwang J, Chung ES, Rahmatullah M, Huh KM, et al. Synthesis and Characterization of Hyaluronic Acid for Biomedical Application[J], Advanced Materials Research,2012,581:185-8.
    [122]Jeon O, Song SJ, Lee K-J, Park MH, Lee S-H, Hahn SK, et al. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities[J], Carbohydrate polymers,2007,70:251-7.
    [123]Hossainy SFA, Michal E, Glauser T, Kwok C, Pacetti SD. Hyaluronic Acid Based Copolymers[P]. US Patent 20,130,023,507; 2013.
    [124]Tan H, Li H, Rubin JP, Marra KG. Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy[J]. Journal of tissue engineering and regenerative medicine,2011,5:790-7.
    [125]Ouasti S, Donno R, Cellesi F, Sherratt MJ, Terenghi G, Tirelli N. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels[J]. Biomaterials, 2011,32:6456-70.
    [126]Novoa-Carballal R, Pergushov DV, Miiller AH. Interpolyelectrolyte complexes based on hyaluronic acid-block-poly (ethylene glycol) and poly-l-lysine[J]. Soft Matter.2013,9: 4297-4303
    [127]Jin R, Moreira Teixeira L, Krouwels A, Dijkstra P, Van Blitterswijk C, Karperien M, et al. Synthesis and characterization of hyaluronic acid-poly (ethylene glycol) hydrogels via Michael addition:An injectable biomaterial for cartilage repair[J]. Acta biomaterialia,2010, 6:1968-77.
    [128]Jin R, Dijkstra PJ, Feijen J. Rapid gelation of injectable hydrogels based on hyaluronic acid and poly (ethylene glycol) via Michael-type addition[J]. Journal of controlled release: official journal of the Controlled Release Society,2010,148:e41.
    [129]Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films:new biomaterials for drug delivery[J]. Journal of controlled release,2000,69:169-84.
    [130]Kadi S, Cui D, Bayma E, Boudou T, Nicolas C, Glinel K, et al. Alkylamino hydrazide derivatives of hyaluronic acid:synthesis, characterization in semidilute aqueous solutions, and assembly into thin multilayer films[J]. Biomacromolecules,2009,10:2875-84.
    [131]Ekici S, Ilgin P, Butun S, Sahiner N. Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices[J]. Carbohydrate polymers,2011,84:1306-13.
    [132]金艳,凌沛学,张天民.透明质酸衍生物研究进展[J].中国生化药物杂志,2009,29:427-9.
    [133]徐新,陆明秋,叶玟希,董华平,施丹萍.己二酸二酰肼交联透明质酸薄膜的制备及性能研究[J].广东化工,2012,39:47-8.
    [134]Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels[J]. Journal of Biomedical Materials Research,1999,47:152-69.
    [135]于学丽,王传栋,李保陆,曹成波.透明质酸的改性及其应用[J].生物医学工程研究,2006,24:61-6.
    [136]Peng H-H, Chen Y-M, Lee C-I, Lee M-W. Synthesis of a disulfide cross-linked polygalacturonic acid hydrogel for biomedical applications[J]. Journal of Materials Science: Materials in Medicine,2013,1-8.
    [137]Gaston J, Thibeault SL. Hyaluronic acid hydrogels for vocal fold wound healing[J]. Biomatter,2013,3:13-2.
    [138]Borzacchiello A, Ambrosio L. Network formation of low molecular weight hyaluronic acid derivatives[J]. Journal of Biomaterials Science, Polymer Edition,2001,12:307-16.
    [139]张伟,闫翠娥.透明质酸及其衍生物药物载体[J].化学进展,2006,18:1684-90.
    [140]De Laco PA, Stefanetti M, Pressato D, Piana S, Dona M, Pavesio A, et al. A novel hyaluronan-based gel in laparoscopic adhesion prevention:preclinical evaluation in an animal model[J]. Fertility and sterility,1998,69:318-23.
    [141]Belluco C, Meggiolaro F, Pressato D, Pavesio A, Bigon E, Dona M, et al. Prevention of postsurgical adhesions with an autocrosslinked hyaluronan derivative gel[J]. Journal of Surgical Research,2001,100:217-21.
    [142]Bellini D, Paparella A, O'regan M, et al. Autocross-linked hyaluronic acid and related pharmaceutical compositions for the treatment of arthropathies:U.S. Patent 6,251,876[P]. 2001-6-26.
    [143]Segura T, Chung PH, Shea LD. DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach[J]. Biomaterials,2005,26:1575-84.
    [144]Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y. A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications [J]. Journal of Biomaterials Science, Polymer Edition,2004,15:25-40.
    [145]Liu H, Yin Y, Yao K. Construction of Chitosan-Gelatin-Hyaluronic Acid Artificial Skin In Vitro[J]. Journal of biomaterials applications,2007,21:413-30.
    [146]Palumbo FS, Pitarresi G, Mandracchia D, Tripodo G, Giammona G. New graft copolymers of hyaluronic acid and polylactic acid:Synthesis and characterization[J]. Carbohydrate polymers,2006,66:379-85.
    [147]Michl P, Gress T M. Improving drug delivery to pancreatic cancer:breaching the stromal fortress by targeting hyaluronic acid[J]. Gut,2012,61(10):1377-1379. [148] Xu K, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-a2a for liver cancer therapy[J]. Journal of controlled release,2013,166:203-10.
    [149]Park W, Bae B-c, Kim Y-H, Na K. Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight[J]. European Journal of Pharmaceutical Sciences,2010,40:367-75.
    [150]Cho H J, Yoon I S, Yoon H Y, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin[J]. Biomaterials,2012,33(4):1190-1200.
    [151]Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin[J]. Nanomedicine: nanotechnology, biology, and medicine,2007,3:246-57.
    [152]Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer[J]. Expert Opinion on Drug Delivery,2010,7:681-703.
    [153]Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties[J].Acta biomaterialia.2012,8:3027-3034.
    [154]Nimmo C M, Owen S C, Shoichet M S. Diels- Alder Click Cross-Linked Hyaluronic Acid Hydrogels for Tissue Engineering[J]. Biomacromolecules,2011,12(3):824-830.
    [155]Honig JF, Brink U, Korabiowska M. Severe granulomatous allergic tissue reaction after hyaluronic acid injection in the treatment of facial lines and its surgical correction[J]. Journal of Craniofacial Surgery,2003,14:197-200.
    [156]Omlor G, Nerlich A, Lorenz H, Bruckner T, Richter W, Pfeiffer M, et al. Injection of a polymerized hyaluronic acid/collagen hydrogel matrix in an in vivo porcine disc degeneration model[J]. European Spine Journal,2012,1-9.
    [157]郑连英,朱江峰.壳聚糖的抗菌性能研究[J].材料科学与工程,2000,18:22-4.
    [158]Dodane V, Vilivalam VD. Pharmaceutical applications of chitosan[J]. Pharmaceutical Science & Technology Today,1998,1:246-53.
    [159]李治,刘晓非.壳聚糖降解研究进展[J].化工进展,2000,19:20-3.
    [160]林志勇,卢凤琦.壳聚糖膜生物降介与组织反应的实验研究[J].口腔材料器械杂志,1997,6:178-80.
    [161]马建标,王红军.壳聚糖膜的制备及其对人,大鼠皮肤成纤维细胞的相容性[J].天津工业大学学报,2001,20:1-5.
    [162]Minoura N, Koyano T, Koshizaki N, Umehara H, Nagura M, Kobayashi K-i. Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogels[J]. Materials Science and Engineering:C,1998,6:275-80.
    [163]赵玉清,刘宝全.壳聚糖—Ag(Ⅰ)的配位与抑菌性研究[J].北华大学学报:自然科学版,2000,1:384-6.
    [164]Xie Y, Liu X, Chen Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity[J]. Carbohydrate polymers,2007,69:142-7.
    [165]Qin C, Xiao Q, Li H, Fang M, Liu Y, Chen X, et al. Calorimetric studies of the action of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride on the growth of microorganisms. International journal of biological macromolecules[J].2004,34:121-6.
    [166]Vongchan P, Sajomsang W, Subyen D, Kongtawelert P. Anticoagulant activity of a sulfated chitosan[J]. Carbohydrate research,2002,337:1239-42.
    [167]Sajomsang W, Tantayanon S, Tangpasuthadol V, Daly WH. Synthesis of methylated chitosan containing aromatic moieties:Chemoselectivity and effect on molecular weight[J]. Carbohydrate polymers,2008,72:740-50.
    [168]陈春涛,程卫国.天然防腐剂壳聚糖的研究与应用[J].郑州轻工业学院学报,1998,13:1-4.
    [169]Qin C, Du Y, Xiao L, Li Z, Gao X. Enzymic preparation of water-soluble chitosan and their antitumor activity[J]. International journal of biological macromolecules,2002, 31:111-7.
    [170]Qin C, Li H, Xiao Q, Liu Y Zhu J, Du Y. Water-solubility of chitosan and its antimicrobial activity[J]. Carbohydrate polymers,2006,63:367-74.
    [171]Thacharodi D, Panduranga Rao K. Collagen-chitosan composite membranes controlled transdermal delivery of nifedipine and propranolol hydrochloride[J]. International journal of pharmaceutics,1996,134:239-41.
    [172]Risbud MV, Hardikar AA, Bhat SV, Bhonde RR. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery[J]. Journal of controlled release,2000,68:23-30.
    [173]曹农,王爱勤.壳聚糖衍生物的抗凝血活性[J].中国生化药物杂志,1998,19:148-9.
    [174]Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering[J]. Biomaterials,1999,20:1133-42.
    [175]张彤,徐莲英,陶建生,唐青华,周昕,王曙东.壳聚糖用于部分单味中药浸提液澄清效果的研究[J].中草药,1999,30:744-7.
    [176]张昭萍,戚晓红,王瑞云,吴翠贞.壳聚糖合并中药对脂肪肝治疗作用的实验研究[J].南京中医药大学学报(自然科学版),2001,17:107-9.
    [177]葛为公,周长坚.复方壳聚糖降脂颗粒剂的研究[J].广西医科大学学报,1999,16:303-4.
    [178]Wei Y, Hudson S, Mayer J, Kaplan D. The crosslinking of chitosan fibers[J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,30:2187-93.
    [179]Adekogbe I, Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering[J]. Biomaterials,2005,26:7241-50.
    [180]夏彩芬,邢东阳,陈炳稔.交联壳聚糖吸附氯乙酸和三氯乙酸的热力学研究[J].离子交换与吸附,2004,20:125-30.
    [181]黄金明,金鑫荣.天然高分子壳聚糖作为吸附剂的吸附特性研究[J].高等学校化学学报,1992,13:535-6.
    [182]张磊,丁琪,夏扬,张天柱,顾宁.掺杂Fe3O4磁性纳米粒子壳聚糖凝胶的制备及其性质研究[J].东南大学学报(医学版),2012,31:567-571
    [183]沈锋,吕晓龙.壳聚糖—聚醚共混超滤膜的制备与性能[J].天津大学学报:自然科学与工程技术版,2000,33:404-6.
    [184]Guesdon J-L, Ternynck T, Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques [J]. Journal of Histochemistry & Cytochemistry,1979, 27:1131-9.
    [185]Hsu S-M, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques:a comparison between ABC and unlabeled antibody (PAP) procedures [J]. Journal of Histochemistry & Cytochemistry,1981,29:577-80.
    [186]Bayer E A, Wilchek M. Avidin-Biotin Technology[M]. Humana Press,1992.
    [187]Livnah O, Bayer EA, Wilchek M, Sussman JL. Three-dimensional structures of avidin and the avidin-biotin complex[J]. Proceedings of the National Academy of Sciences,1993, 90:5076-80.
    [188]Vermette P, Gengenbach T, Divisekera U, et al.. Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers[J]. Journal of colloid and interface science,2003,259:13-26.
    [189]Moore D, Hodgins D, Firth M, McBey B, Shewen P. Incorporation of antigens from Mannheimia haemolytica culture supernatant, and recombinant bovine C3d into ISCOM matrix using neutravidin-biotin interaction[J]. Biotechnology and applied biochemistry, 2011,58:198-202.
    [190]Kolb HC, Finn M, Sharpless KB. Click chemistry:diverse chemical function from a few good reactions [J]. Angewandte Chemie International Edition,2001,40:2004-21.
    [191]Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery[J]. Drug discovery today,2003,8:1128-37.
    [192]Moses JE, Moorhouse AD. The growing applications of click chemistry[J]. Chem Soc Rev.,2007,36:1249-62.
    [193]Malkoch M, Thibault RJ, Drockenmuller E, Messerschmidt M, Voit B, Russell TP, et al. Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry[J]. Journal of the American Chemical Society,2005, 127:14942-9.
    [194]Altintas O, Yankul B, Hizal G, Tunca U. A3-type star polymers via click chemistry[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:6458-65.
    [195]Johnson JA, Lewis DR, Diaz DD, Finn M, Koberstein JT, Turro NJ. Synthesis of degradable model networks via ATRP and click chemistry [J]. Journal of the American Chemical Society,2006,128:6564-5.
    [196]Sun X-L, Stabler CL, Cazalis CS, Chaikof EL. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions[J]. Bioconjugate chemistry,2006,17:52-7.
    [197]Choh S-Y, Cross D, Wang C. Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation[J]. Biomacromolecules,2011,12:1126-36.
    [198]Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R. Novel hydrogels via click chemistry:synthesis and potential biomedical applications [J]. Biomacromolecules, 2007,8:1844-50.
    [199]Hu X, Li D, Zhou F, Gao C. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry[J]. Acta biomaterialia,2011,7:1618-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700