用户名: 密码: 验证码:
新型壳聚糖水凝胶的制备及其凝胶机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的反向温敏性水凝胶,壳聚糖/β-磷酸甘油二钠盐(CS/β-GP)体系能在pH值中性及室温条件下保持溶液状态,但在温度升至体温(37℃)时发生凝胶化转变,而且这种水凝胶具有较小的生物毒性、良好的生物相容性、生物可降解性以及细胞粘附性,在生物医药领域,特别是用于作为注射型水凝胶进行局部缓释给药方面具有相当的应用前景。
     在本论文中,我们首先通过动态流变方法、核磁共振技术、荧光光谱、动态光散射以及原子力显微镜等多种表征手段对CS/GP体系的凝胶机理进行了研究。尿素和异丁醇被用于对凝胶化过程中CS和GP两组分间的相互作用进行考察。研究发现,由于尿素对分子间氢键的破坏作用,它的加入延缓了CS/GP体系凝胶化的进行;而异丁醇的加入则增强了CS分子间的疏水相互作用,从而促进CS/GP体系的溶胶-凝胶转变。我们的研究结果表明,分子间氢键相互作用和疏水相互作用都是CS/GP凝胶形成的重要驱动力,氢键的形成有利于疏水区域的聚集,而两者的协同作用导致CS/GP凝胶的形成。本工作在原子水平上对CS/GP体系的凝胶机理进行研究,为CS/GP体系凝胶性能的调控和优化提供了理论基础。
     在此基础上,我们研制出一种新型的CS/GP/乙二醇(EG)三元体系水凝胶。这种新型水凝胶在保留了CS/GP体系反向温敏特性的同时,还具有可低温成型(4℃)的优点,且形成的低温凝胶具有明显优于CS/GP凝胶的力学性能。论文采用小振幅振荡剪切流动(Small Amplitude Oscillatory Shear Flow, SAOS)和大振幅振荡剪切流动(Large Amplitude Oscillatory Shear Flow, LAOS)实验,结合31PNMR技术,以GP为探针,对CS/GP/EG体系的凝胶机理进行研究。结果表明小分子化合物GP和EG在这种低温(4℃)凝胶的形成过程中起着至关重要的作用,体系的凝胶动力学明显受到EG和GP含量的影响,两者的协同作用诱导凝胶的形成。在凝胶化初期,GP与CS的分子间氢键及GP本身的位阻效应保证了体系的稳定性,并且体系凝胶化进程随着GP含量的增加而减缓;但EG的加入会破坏了原本CS与GP之间的相互作用,最终导致新凝胶网络的形成。研究还发现,GP和EG本身并不参与该凝胶网络的构建,生成的新三维凝胶网络仅由CS分子链构成,与前面研究的CS/GP体系不同。同时31P NMR的研究还发现CS/GP/EG体系在37℃下的凝胶机理完全不同于低温时的情形(4℃),CS与GP分子间的相互作用仍然可能是其凝胶网络形成的主要驱动力。
     我们的研究还发现,采用聚乙烯醇(PEG)代替EG,制得的CS/GP/PEG三元体系低温(4℃)水凝胶,相比小分子EG,较长分子链的PEG能够进一步加速凝胶的形成,并且凝胶模量随着PEG分子量的增加而提高。研究还表明,PEG分子可能参与了凝胶三维网络的构建。
As a novel reverse thermosensitive hydrogel, chitosan/β-glycerolphosphate (CS/β-GP) system remains as solution state at room temperature with neutral pH and turns into a gel upon heating at physiological temperature (37℃). As a biocompatible and biodegradable biomaterial, CS/β-GP has wide potential applications for drug delivery, tissue engineering and cell encapsulation.
     In our work, time-evolved gelation behavior of chitosan-β-glycerophosphate (CS/β-GP) system was elucidated from rheological investigation, NMR analysis, fluorescence measurement, and morphology observation. Urea and isobutanol were selected to assess the interactions between the two components during the gelation process of CS/β-GP system. Urea was found to be detrimental to the gelation process by both disrupting hydrogen bonding. On the contrary, the addition of isobutanol accelerated the sol-gel transition by strengthening the hydrophobic interactions. These results reveal that both hydrogen bonding and hydrophobic interactions within chitosan or between CS and P-GP molecules are the main reasons for gel formation. The results also indicate that the formation of hydrogen bonds makes the hydrophobic sites more accessible first, and then the synergistic hydrogen bonding and hydrophobic interactions lead to the final formation of CS/β-GP gel network. This work explores the gelation mechanism of CS/β-GP system at atomic level, and shows the possible methods to tune the gelling ability of such a system as well as the mechanical properties of the resulted hydrogels, providing the opportunities to optimize the performance of this promising natural thermosensitive material for practical applications in future.
     Based on the gelation mechanism of CS/GP hydrogel, a novel low temperature (4℃) hydrogel of CS/GP/ethylene glycol (EG) ternary systems was achieved, with much better mechanical properties than CS/GP hydrogel. The underlying gelation mechanism was investigated by means of Small Amplitude Oscillatory Shear Flow (SAOS) and Large Amplitude Oscillatory Shear Flow (LAOS) rheological method, as well as 31P NMR spectroscopy. We found that the gelation kinetic is strongly affected by the content of GP and EG. Although the system is stabilized from precipitation by hydrogen bond between CS and GP as well as steric hindrance of GP at the initial stage of gelation, the increase of GP content will retard the gelation of system. However, the addition of EG will weaken the interaction among CS and GP, resulting in the breakage of old weak network formed by CS and GP, as well as the formation of a new solid network. In spite of the key roles playing by GP and EG during the course of gelation, both of them do not participate in the construction of the 3D hydrogel network, that is, the network of hydrogel is formed by CS alone. Besides, the results from 31P NMR spectrum indicated that the gelation mechanism of CS/GP/EG at 37℃is different from that of 4℃, that is, CS and GP probably constitute the gel network together.
     In addition, when EG is substituted by polyethylene glycol (PEG), the gelation process will be accelerated, and the increase of the length of PEG molecular chains will improve the strength of CS/GP/PEG hydrogel. Moreover, PEG probably participates in the formation of 3D network of hydrogel with CS, and the elastic modulus of the formed hydrogel is much lower than that of CS/GP/EG system.
引文
1. Hoffman, A. S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2002,54,(1),3-12.
    2. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chemical Reviews 2001,101, (7),1869-1879.
    3. Atta, A. M.; Arndt, K. F., Synthesis of charged linear and crosslinked maleic diester polymers with electron-beam irradiation. Polymer International 2003,52, (3),389-398.
    4. 李武宏;李弘,化学法制备高分子水凝胶的研究.离子交换与吸附2003,19,(6),567-573.
    5. Kazanskii, K. S., New neutral and ionic poly(ethylene oxide) networks by radical polymerization. Macromolecular Symposia 2001,174,373-382.
    6. Caliceti, P.; Salmaso, S.; Lante, A.; Yoshida, M.; Katakai, R.; Martellini, F.; Mei, L. H. I.; Carenza, M., Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerization. Journal of Controlled Release 2001,75, (1-2), 173-181.
    7. Stringer, J. L.; Peppas, N. A., Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels. Journal of Controlled Release 1996,42, (2), 195-202.
    8. Nho, Y. C.; Park, K. R., Preparation and properties of PVA/PVP hydrogels containing chitosan by radiation. Journal of Applied Polymer Science 2002,85, (8),1787-1794.
    9. 史铁钧;陆馨,交联PVP的制备与应用研究进展.功能高分子学报 2001,1,(14),113-116.
    10. 闵思佳;陈芳芳;吴豪翔,环氧化合物与丝素蛋白化学交联凝胶的结构.高等校化学学报2005,26,(5),964-967.
    11. Coviello, T.; Grassi, M.; Rambone, C.; Santucci, E.; Carafa, M.; Murtas, E.; Riccieri, F. M.; Alhaique, F., Novel hydrogel system from scleroglucan:synthesis and characterization. Journal of Controlled Release 1999,60, (2-3),367-378.
    12. Kuijpers, A. J.; van Wachem, P. B.; van Luyn, M. J. A.; Engbers, G. H. M.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J., In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. Journal of Controlled Release 2000,67, (2-3),323-336.
    13. Sperinde, J. J.; Griffith, L. G., Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 1997,30, (18),5255-5264.
    14. Song, F.; Zhang, L. M., Enzyme-Catalyzed Formation and Structure Characteristics of A Protein-Based Hydrogel. Journal of Physical Chemistry B 2008,112, (44),13749-13755.
    15. Cohen, Y.; Ramon, O.; Kopelman, I. J.; Mizrahi, S., Characterization of Inhomogeneous Polyacrylamide Hydrogels. Journal of Polymer Science Part B-Polymer Physics 1992,30, (9),1055-1067.
    16. Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews 2002,54, (1),13-36.
    17. Inoue, T.; Chen, G. H.; Nakamae, K.; Hoffman, A. S., A hydrophobically-modified bioadhesive polyelectrolyte hydrogel for drug delivery. Journal of Controlled Release 1997,49, (2-3),167-176.
    18. Kim, H. J.; Lee, H. C.; Oh, J. S.; Shin, B. A.; Oh, C. S.; Park, R. D.; Yang, K. S.; Cho, C. S., Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application. Journal of Biomaterials Science-Polymer Edition 1999,10, (5),543-556.
    19. Santos, C.; Seabra, P.; Veleirinho, B.; Delgadillo, I.; da Silva, J. A. L., Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. European Polymer Journal 2006,42, (12),3277-3285.
    20. Emik, S.; Gurdag, G., Synthesis and swelling behavior of thermosensitive poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate) and poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate-co-glycidyl methacrylate) hydrogels. Journal of Applied Polymer Science 2006,100, (1), 428-438.
    21. Lee, S. B.; Ha, D. I.; Cho, S. K.; Kim, S. J.; Lee, Y. M., Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). Journal of Applied Polymer Science 2004,92, (4),2612-2620.
    22. Lai, Y. C.; Baccei, L. J., Novel Polyurethane Hydrogels for Biomedical Applications. Journal of Applied Polymer Science 1991,42, (12),3173-3179.
    23. Uenoyama, S.; Hoffman, A. S., Synthesis and Characterization of Acrylamide-N-Isopropyl Acrylamide Copolymer Grafts on Silicone-Rubber Substrates. Radiation Physics and Chemistry 1988,32, (4),605-608.
    24. Chen, J.; Nho, Y. C.; Kwon, O. H.; Hoffman, A. S., Grafting copolymerization of acrylamides onto preirradiated PP films. Radiation Physics and Chemistry 1999,55, (1), 87-92.
    25. Jeong, B.; Bae, Y. H.; Kim, S. W., Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999,32, (21),7064-7069.
    26. 刘颖;吴大鸣;陈卫红;丁玉梅;许红,化学交联超高分子量聚乙烯的结晶行为与力 学性能分析.塑料2004,33,(1),1-4.
    27. F. Yokoyama; Masada, I., Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polymer. Science 1986,264, 595-601.
    28. Shirahama, H.; Ichimaru, A.; Tsutsumi, C.; Nakayama, Y.; Yasuda, H., Characteristics of the biodegradability and physical properties of stereocomplexes between poly(D-lactide) and poly(D-lactide) copolymers. Journal of Polymer Science Part a-Polymer Chemistry 2005,43, (2),438-454.
    29. Fujiwara, T.; Mukose, T.; Yamaoka, T.; Yamane, H.; Sakurai, S.; Kimura, Y., Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromolecular Bioscience 2001,1,(5),204-208.
    30. Cai, J.; Zhang, L., Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 2006,7, (1),183-189.
    31. 饶志高;周明元;张建清,水凝胶的制备及其在医学上的应用.中国医疗器械信息2007,13,(11),17-20.
    32. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2001,53, (3),321-339.
    33. 邓丽娟;李桂玲;李眉,注射用原位凝胶的研究进展.中国抗生素杂志2009,34,513-540.
    34. Jeong, B.; Lee, K. M.; Gutowska, A.; An, Y. H. H., Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 2002,3, (4),865-868.
    35. Franz, G., Polysaccharides in Pharmacy. Advances in Polymer Science 1986,76,1-30.
    36. Yu, L.; Ding, J. D., Injectable hydrogels as unique biomedical materials. Chemical Society Reviews 2008,37, (8),1473-1481.
    37. Joo, M. K.; Park, M. H.; Choi, B. G.; Jeong, B., Reverse thermogelling biodegradable polymer aqueous solutions. Journal of Materials Chemistry 2009,19, (33),5891-5905.
    38. Ruel-Gariepy, E.; Leroux, J. C., In situ-forming hydrogels-review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004,58, (2),409-426.
    39. 冉勇;王静;曹德英,温敏型凝胶用聚合物及在药剂学中的应用.中国新药杂志2009,18,318-339.
    40. Hoffman, A. S.; Chen, G. H.; Wu, X. D.; Ding, Z. L., Graft copolymers of peo-ppo-peo triblock polyethers on bioadhesive polymer backbones:Synthesis and properties. Abstracts of Papers of the American Chemical Society 1997,213,23-POLY.
    41. Wei, G.; Xu, H.; Ding, P. T.; Li, S. M.; Zheng, J. M., Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. Journal of Controlled Release 2002,83, (1),65-74.
    42. Bae, S. J.; Suh, J. M.; Sohn, Y. S.; Bae, Y. H.; Kim, S. W.; Jeong, B., Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 2005,38,(12),5260-5265.
    43. Crowther, H. M.; Vincent, B., Swelling behavior of poly N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid and Polymer Science 1998,276, (1),46-51.
    44. Cao, Y. X.; Zhang, C.; Shen, W. B.; Cheng, Z. H.; Yu, L. L.; Ping, Q. N., Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. Journal of Controlled Release 2007,120, (3),186-194.
    45. Zhang, J.; Peppas, N. A., Synthesis and characterization of pH-and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 2000,33, (1),102-107.
    46. Wang, M. Z.; Fang, Y.; Hu, D. D., Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. Reactive & Functional Polymers 2001, 48, (1-3),215-221.
    47. 石艳丽;李珍;张高奇;马敬红;梁伯润,CMC/PNIPAAm半互穿网络水凝胶的溶胀动力学研究。功能高分子学报 2005,18,(1),111-116.
    48. Gil, E. S.; Frankowski, D. J.; Spontak, R. J.; Hudson, S. M., Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 2005, 6, (6),3079-3087.
    49. Ilmain, F.; Tanaka, T.; Kokufuta, E., Volume Transition in a Gel Driven by Hydrogen-Bonding. Nature 1991,349, (6308),400-401.
    50. Markland, P.; Zhang, Y. H.; Amidon, G. L.; Yang, V. C., A pH-and ionic strength-responsive polypeptide hydrogel:Synthesis, characterization, and preliminary protein release studies. Journal of Biomedical Materials Research 1999,47, (4),595-602.
    51. 尚婧;陈新;邵正中,电场敏感的智能性水凝胶.化学进展 2007,19,(9),1393-1399.
    52. Osada, Y.; Okuzaki, H.; Hori, H., A Polymer Gel with Electrically Driven Motility. Nature 1992,355, (6357),242-244.
    53. El-Tahlawy, K. F.; El-Rafie, S. M.; Aly, A. S., Preparation and application of chitosan/poly(methacrylic acid) graft copolymer. Carbohydrate Polymers 2006,66, (2), 176-183.
    54. Serra, L.; Domenech, J.; Peppas, N. A., Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006,27, (31),5440-5451.
    55. Van Tomme, S. R.; De Geest, B. G.; Braeckmans, K.; De Smedt, S. C.; Siepmann, F.; Siepmann, J.; van Nostrum, C. F.; Hennink, W. E., Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. Journal of Controlled Release 2005,110, (1),67-78.
    56. Rinaudo, M., Chitin and chitosarr: Properties and applications. Progress in Polymer Science 2006,31, (7),603-632.
    57. Dodane, V.; Khan, M. A.; Merwin, J. R., Effect of chitosan on epithelial permeability and structure. International Journal of Pharmaceutics 1999,182, (1),21-32.
    58. Bhattarai, N.; Gunn, J.; Zhang, M. Q., Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews 62, (1),83-99.
    59. 易国斌;崔英德;杨少华,化工学报2005,56,(9),1783-1789.
    60. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2004,57, (1), 19-34.
    61. Tang, Y. F.; Du, Y. M.; Hu, X. W.; Shi, X. W.; Kennedy, J. F., Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers 2007,67, (4),491-499.
    62. Dergunov, S. A.; Nam, I. K.; Mun, G. A.; Nurkeeva, Z. S.; Shaikhutdinov, E. M., Radiation synthesis and characterization of stimuli-sensitive chitosan-polyvinyl pyrrolidone hydrogels. Radiation Physics and Chemistry 2005,72, (5),619-623.
    63. Chen, L. Y.; Du, Y. M.; Huang, R. H., Novel pH, ion sensitive polyampholyte gels based on carboxymethyl chitosan and gelatin. Polymer International 2003,52, (1),56-61.
    64. Chang, K. L. B.; Lin, J., Swelling behavior and the release of protein from chitosan-pectin composite particles. Carbohydrate Polymers 2000,43, (2),163-169.
    65. Berger, J.; Reist, M.; Mayer, J. M., European Journal of Pharmaceutics and Biopharmaceutics 2004,57,35-52.
    66. 汤玉峰;杜予民,壳聚糖基可注射型温度敏感性水凝胶.化学进展2008,20,239-244.
    67. Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A., Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000,21, (21),2155-2161.
    68. Chang, Y. H.; Xiao, L.; Du, Y. M., Preparation and properties of a novel thermosensitive N-trimethyl chitosan hydrogel. Polymer Bulletin 2009,63, (4),531-545.
    69. Dang, J. M.; Sun, D. D. N.; Shin-Ya, Y.; Sieber, A. N.; Kostuik, J. P.; Leong, K. W., Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 2006,27, (3),406-418.
    70. Bhattarai, N.; Matsen, F. A.; Zhang, M., PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromolecular Bioscience 2005,5, (2),107-111.
    71. Park, K. M.; Lee, S. Y.; Joung, Y. K.; Na, J. S.; Lee, M. C.; Park, K. D., Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomaterialia 2009,5, (6),1956-1965.
    72. Li, L., Thermal gelation of methylcellulose in water: Scaling and thermoreversibility. Macromolecules 2002,35, (15),5990-5998.
    73. Chang, Y. H.; Xiao, L.; Tang, Q., Preparation and Characterization of a Novel Thermosensitive Hydrogel Based on Chitosan and Gelatin Blends. Journal of Applied Polymer Science 2009,113, (1),400-407.
    74. Dai, Y. N.; Li, P.; Zhang, J. P.; Wang, A. Q.; Wei, Q., A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharmaceutics & Drug Disposition 2008,29, (3),173-184.
    75. Guo, B. L.; Gao, Q. Y., Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydrate Research 2007,342, (16),2416-2422.
    76. Shang, J.; Shao, Z. Z.; Chen, X., Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 2008,9, (4),1208-1213.
    77. Sun, S.; Mak, A. F. T., The dynamical response of a hydrogel fiber to electrochemical stimulation. Journal of Polymer Science Part B-Polymer Physics 2001,39, (2),236-246.
    78. Ruel-Gariepy, E.; Shive, M.; Bichara, A.; Berrada, M.; Le Garrec, D.; Chenite, A.; Leroux, J. C., A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics 2004,57, (1),53-63.
    79. Kashyap, N.; Viswanad, B.; Sharma, G.; Bhardwaj, V.; Ramarao, P.; Kumar, M., Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials 2007,28,(11),2051-2060.
    80. Liu, K. H.; Liu, T. Y.; Chen, S. Y.; Liu, D. M., Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electro stimulation. Acta Biomaterialia 2008,4, (4),1038-1045.
    81. 孙汉文;余家会;张春富;谢雷东;侯铮迟;徐冬梅;姚思德,聚N-异丙基丙烯酰胺包覆Fe304磁导向纳米粒子的制备和表征.辐射研究与辐谢工艺学报 2004,22,(5), 293-296.
    82. 徐立新;王秀芬;张立群,海藻酸钠与N-异丙基丙烯酰胺接枝共聚及其温度、pH、敏感特性研究.功能高分子学报2005,18,(2),204-209.
    83. 曹艳霞;张灿;平其能,温度敏感型材料聚(N-异丙基丙烯酰胺)壳聚糖的制备与表征.高分子材料科学与工程2005,21,(6),236-239.
    84. Han, C. D.; Kim, J. K., On the Use of Time-Temperature Superposition in Multicomponent Multiphase Polymer Systems. Polymer 1993,34, (12),2533-2539.
    85. Nakamura, K.; Tanaka, Y.; Sakurai, M., Dynamic mechanical properties of aqueous gellan solutions in the sol-gel transition region. Carbohydrate Polymers 1996,30, (2-3),101-108.
    86. Scheler, U., NMR on polyelectrolytes. Current Opinion in Colloid & Interface Science 2009,14, (3),212-215.
    87. Reibarkh, M.; Malia, T. J.; Wagner, G., NMR distinction of single-and multiple-mode binding of small-molecule protein ligands. Journal of the American Chemical Society 2006, 128, (7),2160-2161.
    88. Nivaggioli, T.; Tsao, B.; Alexandridis, P.; Hatton, T. A., Microviscosity in Pluronic and Tetronic Poly(Ethylene Oxide) Poly(Propylene Oxide) Block-Copolymer Micelles. Langmuir 1995,11, (1),119-126.
    89.曾蓉;冯志程;Smith, R.;邵正中;陈新;杨宇红,变温核磁共振对壳聚糖/磷酸甘油盐温敏性水凝胶的初步研究.化学学报2007,65,(21),2459-2465.
    90. Winnik, F. M., Quenching of Fluorescence from Pyrene-Labeled Poly(N-Isopropylacrylamide) Solutions Heated above Their Lower Critical Solution Temperature. Macromolecules 1990,23, (6),1647-1649.
    91. Schild, H. G.; Tirrell, D. A., Interaction of Poly(N-Isopropylacrylamide) with Sodium Normal-Alkyl Sulfates in Aqueous-Solution. Langmuir 1991,7, (4),665-671.
    92. Ringsdorf, H.; Venzmer, J.; Winnik, F. M., Fluorescence Studies of Hydrophobically Modified Poly(N-Isopropylacrylamides). Macromolecules 1991,24, (7),1678-1686.
    93. Hammes, G. G.; Swann, J. C., Influence of Denaturing Agents on Solvent Structure. Biochemistry 1967,6, (6),1591-1596.
    94. Kim, S.; Sarathchandra, D.; Mainwaring, D. E., Effect of urea on molecular and colloidal aggregation of proanthocyanidin polymers from Pinus radiata. Journal of Applied Polymer Science 1996,59, (13),1979-1986.
    95. Kjoniksen, A. L.; Hiorth, M.; Roots, J.; Nystrom, B., Shear-induced association and gelation of aqueous solutions of pectin. Journal of Physical Chemistry B 2003,107, (26), 6324-6328.
    96. Philippova, O. E.; Volkov, E. V.; Sitnikova, N. L.; Khokhlov, A. R.; Desbrieres, J.; Rinaudo, M., Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2001,2, (2),483-490.
    1. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2001,53, (3),321-339.
    2. Cho, M. H.; Kim, K. S.; Ahn, H. H.; Kim, M. S.; Kim, S. H.; Khang, G.; Lee, B.; Lee, H. B., Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Engineering Part A 2008,14, (6),1099-1108.
    3. Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A., Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000,21, (21),2155-2161.
    4. Yu, L.; Ding, J. D., Injectable hydrogels as unique biomedical materials. Chemical Society Reviews 2008,37, (8),1473-1481.
    5. Joo, M. K.; Park, M. H.; Choi, B. G.; Jeong, B., Reverse thermogelling biodegradable polymer aqueous solutions. Journal of Materials Chemistry 2009,19, (33),5891-5905.
    6. Li, Z. S.; Ramay, H. R.; Hauch, K. D.; Xiao, D. M.; Zhang, M. Q., Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005,26, (18),3919-3928.
    7. Valentini, R. F.; Vargo, T. G.; Gardella, J. A.; Aebischer, P., Electrically Charged Polymeric Substrates Enhance Nerve-Fiber Outgrowth Invitro. Biomaterials 1992,13, (3),183-190.
    8. Muzzarelli, R. A. A., Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cellular and Molecular Life Sciences 1997,53,(2),131-140.
    9. Suh, J. K. F.; Matthew, H. W. T., Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000,21, (24), 2589-2598.
    10. Dergunov, S. A.; Nam, I. K.; Mun, G. A.; Nurkeeva, Z. S.; Shaikhutdinov, E. M., Radiation synthesis and characterization of stimuli-sensitive chitosan-polyvinyl pyrrolidone hydrogels. Radiation Physics and Chemistry 2005,72, (5),619-623.
    11. Felt, O.; Carrel, A.; Baehni, P.; Buri, P.; Gurny, R., Chitosan as tear substitute: A wetting agent endowed with antimicrobial efficacy. Journal of Ocular Pharmacology and Therapeutics 2000,16, (3),261-270.
    12. Lavertu, M.; Methot, S.; Tran-Khanh, N.; Buschmann, M. D., High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 2006,27, (27),4815-4824.
    13. Yi, H. M.; Wu, L. Q.; Bentley, W. E.; Ghodssi, R.; Rubloff, G. W.; Culver, J. N.; Payne, G. F., Biofabrication with chitosan. Biomacromolecules 2005,6, (6),2881-2894.
    14. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science 2006,31, (7),603-632.
    15. Cho, J. Y.; Heuzey, M. C.; Begin, A.; Carreau, P. J., Physical gelation of chitosan in the presence of beta-glycerophosphate: The effect of temperature. Biomacromolecules 2005,6, (6),3267-3275.
    16. Cho, J.; Heuzey, M. C.; Begin, A.; Carreau, P. J., Effect of urea on solution behavior and heat-induced gelation of chitosan-beta-glycerophosphate. Carbohydrate Polymers 2006, 63,(4),507-518.
    17. Crompton, K. E.; Prankerd, R. J.; Paganin, D. M.; Scott, T. F.; Home, M. K.; Finkelstein, D. I.; Gross, K. A.; Forsythe, J. S., Morphology and gelation of thermosensitive chitosan hydrogels. Biophysical Chemistry 2005,117, (1),47-53.
    18. Crompton, K. E.; Forsythe, J. S.; Home, M. K.; Finkelstein, D. I.; Knott, R. B., Molecular level and microstructural characterisation of thermally sensitive chitosan hydrogels. Soft Matter 2009,5, (23),4704-4711.
    19. Ruel-Gariepy, E.; Chenite, A.; Chaput, C.; Guirguis, S.; Leroux, J. C., Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. International Journal of Pharmaceutics 2000,203, (1-2),89-98.
    20. Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N., Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers 2001,46, (1),39-47.
    21. Berrada, M.; Serreqi, A.; Dabbarh, F.; Owusu, A.; Gupta, A.; Lehnert, S., A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 2005,26, (14), 2115-2120.
    22. Ahmadi, R.; de Bruijn, J. D., Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. Journal of Biomedical Materials Research Part A 2008,86A, (3),824-832.
    23. 王立妍;彭伟;穆玉,壳聚糖温敏凝胶对人牙龈成纤维细胞的毒性研究.军医进修学院学报 2009,30,(5),715-717.
    24. Filion, D.; Lavertu, M.; Buschmann, M. D., Ionization and solubility of chitosan solutions related to thermosensitive chitosan/glycerol-phosphate systems. Biomacromolecules 2007, 8, (10),3224-3234.
    25. Scheler, U., NMR on polyelectrolytes. Current Opinion in Colloid & Interface Science 2009,14, (3),212-215.
    26. Reibarkh, M.; Malia, T. J.; Wagner, G., NMR distinction of single-and multiple-mode binding of small-molecule protein ligands. Journal of the American Chemical Society 2006, 128, (7),2160-2161.
    27. Ilmain, F.; Tanaka, T.; Kokufuta, E., Volume Transition in a Gel Driven by Hydrogen-Bonding. Nature 1991,349, (6308),400-401.
    28. Lavertu, M.; Filion, D.; Buschmann, M. D., Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation. Biomacromolecules 2008,9, (2),640-650.
    29. 曾蓉;冯志程;Smith, R.;邵正中;陈新;杨宇红,变温核磁共振对壳聚糖/磷酸甘油盐温敏性水凝胶的初步研究.化学学报2007,65,(21),2459-2465.
    30. Hammes, G. G.; Swann, J. C., Influence of Denaturing Agents on Solvent Structure. Biochemistry 1967,6, (6),1591-&.
    31. Kim, S.; Sarathchandra, D.; Mainwaring, D. E., Effect of urea on molecular and colloidal aggregation of proanthocyanidin polymers from Pinus radiata. Journal of Applied Polymer Science 1996,59, (13),1979-1986.
    32. Kjoniksen, A. L.; Hiorth, M.; Roots, J.; Nystrom, B., Shear-induced association and gelation of aqueous solutions of pectin. Journal of Physical Chemistry B 2003,107, (26), 6324-6328.
    33. Philippova, O. E.; Volkov, E. V.; Sitnikova, N. L.; Khokhlov, A. R.; Desbrieres, J.; Rinaudo, M., Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2001,2, (2),483-490.
    34. 徐鸿升;李忠明;杨鸣波,多组分聚合物的动态流变特性.高分子材料科学与工程2004,20,(6),41-45.
    35. 吴刚,材料结构表征与应用.化学工业出版社:北京,2001;p 78.
    36. Yang, Y. H.; Shao, Z. Z.; Chen, X.; Zhou, P., Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules 2004,5, (3),773-779.
    37. Mu, L.; Feng, S. S.,J Control Release 2002,80,129-144.
    38. Bermne, B. J.; Percora, R., Dynamic Light Scattering. John Wiley & Sons: New Youk, 1976.
    39. 韩哲文,高分子科学教程.华东理工大学出版社出版:上海,2001;p288-318.
    40. Trappe, V.; Weitz, D. A., Scaling of the viscoelasticity of weakly attractive particles. Physical Review Letters 2000,85, (2),449-452.
    41. Sollich, P.; Lequeux, F.; Hebraud, P.; Cates, M. E., Rheology of soft glassy materials. Physical Review Letters 1997,78, (10),2020-2023.
    42. Hobbie, E. K.; Fry, D. J., Rheology of concentrated carbon nanotube suspensions. Journal of Chemical Physics 2007,126, (12).
    43. Nisbet, D. R.; Crompton, K. E.; Hamilton, S. D.; Shirakawa, S.; Prankerd, R. J.; Finkelstein, D. I.; Home, M. K.; Forsythe, J. S., Morphology and gelation of thermosensitive xyloglucan hydrogels. Biophysical Chemistry 2006,121,(1),14-20.
    44. Friebolin, H., Basic One-and Two-Dimensional NMR Spectroscopy.4 ed.; WILEY-VCH: Weinheim,2005.
    45. Yu, L.; Zhang, H.; Ding, J. D., A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angewandte Chemie-International Edition 2006, 45, (14),2232-2235.
    46. Risso, P. H.; Borraccetti, D. M.; Araujo, C.; Hidalgo, M. E.; Gatti, C. A., Effect of temperature and pH on the aggregation and the surface hydrophobicity of bovine kappa-casein. Colloid and Polymer Science 2008,286, (12),1369-1378.
    47. Mateus, P.; Delgado, R.; Brandao, P.; Felix, V., Polyaza Cryptand Receptor Selective for Dihydrogen Phosphate. Journal of Organic Chemistry 2009,74, (22),8638-8646.
    48. Kral, V.; Furuta, H.; Shreder, K.; Lynch, V.; Sessler, J. L., Protonated sapphyrins. Highly effective phosphate receptors. Journal of the American Chemical Society 1996,118, (7), 1595-1607.
    49. Cozzone, P. J.; Jardetzky, O., P-31 Fourier-Transform Nuclear Magnetic-Resonance Study of Mononucleotides and Dinucleotides.1. Chemical-Shifts. Biochemistry 1976,15, (22), 4853-4859.
    50. Cao, Z. B.; Chen, X.; Yao, J. R.; Huang, L.; Shao, Z. Z., The preparation of regenerated silk fibroin microspheres. Soft Matter 2007,3, (7),910-915.
    1. Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A., Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000,21, (21),2155-2161.
    2. Ahmadi, R.; de Bruijn, J. D., Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. Journal of Biomedical Materials Research Part A 2008,86A, (3),824-832.
    3. Molinaro, G.; Leroux, J. C.; Damas, J.; Adam, A., Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 2002,23, (13),2717-2722.
    4. Ruel-Gariepy, E.; Chenite, A.; Chaput, C.; Guirguis, S.; Leroux, J. C., Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. International Journal of Pharmaceutics 2000,203, (1-2),89-98.
    5. Richardson, S. M.; Hughes, N.; Hunt, J. A.; Freemont, A. J.; Hoyland, J. A., Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 2008,29, (1),85-93.
    6. Berrada, M.; Serreqi, A.; Dabbarh, F., Biomaterials 2005,26,2115-2120.
    7. 王立妍;彭伟;穆玉,壳聚糖温敏凝胶对人牙龈成纤维细胞的毒性研究.军医进修学院学报2009,30,(5),715-717.
    8. Moura, M. J.; Figueiredo, M. M.; Gil, M. H., Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 2007,8, (12),3823-3829.
    9. Lin, H. H.; Cheng, Y. L., In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 2001,34, (11),3710-3715.
    10. Hoemann, C. D.; Chenite, A.; Sun, J.; Hurtig, M.; Serreqi, A.; Lu, Z.; Rossomacha, E.; Buschmann, M. D., Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. Journal of Biomedical Materials Research Part A 2007,83 A, (2),521-529.
    11. 汤玉峰;杜予民,壳聚糖基可注射型温度敏感性水凝胶.化学进展 2008,20,239-244.
    12. Jin, J.; Song, M.; Hourston, D. J., Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 2004,5, (1),162-168.
    13. Wu, J.; Su, Z. G.; Ma, G. H., A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. International Journal of Pharmaceutics 2006,315, (1-2),1-11.
    14. Zan, J.; Chen, H. H.; Jiang, G. Q.; Lin, Y.; Ding, F. X., Preparation and properties of crosslinked chitosan thermosensitive hydrogel for injectable drug delivery systems. Journal of Applied Polymer Science 2006,101, (3),1892-1898.
    15. Castelletto, V.; Hamley, I. W., SANS and rheology study of aqueous solutions and gels containing highly swollen diblock copolymer micelles. Langmuir 2003,19, (8), 3229-3235.
    16. Sollich, P.; Lequeux, F.; Hebraud, P.; Cates, M. E., Rheology of soft glassy materials. Physical Review Letters 1997,78, (10),2020-2023.
    17. Trappe, V.; Weitz, D. A., Scaling of the viscoelasticity of weakly attractive particles. Physical Review Letters 2000,85, (2),449-452.
    18. Montembault, A.; Viton, C.; Domard, A., Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 2005,26, (14),1633-1643.
    19. Doi, M., Molecular Rheology of Concentrated Polymer Systems.1. Journal of Polymer Science Part B-Polymer Physics 1980,18, (5),1005-1020.
    20. Muthukumar, M., Screening Effect on Viscoelasticity near the Gel Point. Macromolecules 1989,22, (12),4656-4658.
    21. Nisbet, D. R.; Crompton, K. E.; Hamilton, S. D.; Shirakawa, S.; Prankerd, R. J.; Finkelstein, D. I.; Home, M. K.; Forsythe, J. S., Morphology and gelation of thermosensitive xyloglucan hydrogels. Biophysical Chemistry 2006,121,(1),14-20.
    22. Huang, L.; Takahashi, R.; Kobayashi, S.; Kawase, T.; Nishinari, K., Gelation behavior of native and acetylated konjac glucomannan. Biomacromolecules 2002,3, (6),1296-1303.
    23. Chambon, F.; Winter, H. H., Linear Viscoelasticity at the Gel Point of a Cross-Linking Pdms with Imbalanced Stoichiometry. Journal of Rheology 1987,31, (8),683-697.
    24. Winter, H. H.; Mours, M., Rheology of polymers near liquid-solid transitions. In Neutron Spin Echo Spectroscopy Viscoelasticity Rheology,1997; Vol.134, pp 165-234.
    25. Zhao, Y.; Cao, Y.; Yang, Y. L.; Wu, C., Rheological study of the sol-gel transition of hybrid gels. Macromolecules 2003,36, (3),855-859.
    26. Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N., Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers 2001,46, (1),39-47.
    27. Yu, L.; Zhang, H.; Ding, J. D., A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angewandte Chemie-International Edition 2006, 45, (14),2232-2235.
    28. Mateus, P.; Delgado, R.; Brandao, P.; Felix, V., Polyaza Cryptand Receptor Selective for Dihydrogen Phosphate. Journal of Organic Chemistry 2009,74, (22),8638-8646.
    29. Krai, V.; Furuta, H.; Shreder, K.; Lynch, V.; Sessler, J. L., Protonated sapphyrins. Highly effective phosphate receptors. Journal of the American Chemical Society 1996,118, (7), 1595-1607.
    30. Cozzone, P. J.; Jardetzky, O., P-31 Fourier-Transform Nuclear Magnetic-Resonance Study of Mononucleotides and Dinucleotides.1. Chemical-Shifts. Biochemistry 1976,15, (22), 4853-4859.
    31. Friebolin, H., Basic One-and Two-Dimensional NMR Spectroscopy.4 ed.; WILEY-VCH: Weinheim,2005.
    32. 曾蓉;冯志程;Smith, R.;邵正中;陈新;杨宇红,变温核磁共振对壳聚糖/磷酸甘油盐温敏性水凝胶的初步研究.化学学报2007,65,(21),2459-2465.
    33. Philippova, O. E.; Volkov, E. V.; Sitnikova, N. L.; Khokhlov, A. R.; Desbrieres, J.; Rinaudo, M., Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2001,2, (2),483-490.
    34. Kim, B. J.; Im, S. S.; Oh, S. G., Investigation on the solubilization locus of aniline-HC1 salt in SDS micelles with H-1 NMR spectroscopy. Langmuir 2001,17, (2),565-566.
    35. Mahoney, M. J.; Anseth, K. S., Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 2006,27, (10),2265-2274.
    36. 许元泽,高分子结构流变学.四川,1988;p63.
    37. 徐鸿升;李忠明;杨鸣波,多组分聚合物的动态流变特性.高分子材料科学与工程2004,20,(6),41-45.
    38. Hyun, K.; Kim, S. H.; Ahn, K. H.; Lee, S. J., Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics 2002,107, (1-3), 51-65.
    39. Hyun, K.; Nam, J. G.; Wilhelm, M.; Ahn, K. H.; Lee, S. J., Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheologica Acta 2006,45, (3),239-249.
    40. Mason, T. G.; Weitz, D. A., Linear Viscoelasticity of Colloidal Hard-Sphere Suspensions near the Glass-Transition. Physical Review Letters 1995,75, (14),2770-2773.
    41. Roland, C. M., Dynamic Mechanical-Behavior of Filled Rubber at Small Strains. Journal of Rheology 1990,34, (1),25-34.
    42. Yziquel, F.; Carreau, P. J.; Tanguy, P. A., Non-linear viscoelastic behavior of fumed silica suspensions. Rheologica Acta 1999,38, (1),14-25.
    43. Tirtaatmadja, V.; Tam, K. C.; Jenkins, R. D., Superposition of oscillations on steady shear flow as a technique for investigating the structure of associative polymers. Macromolecules 1997,30, (5),1426-1433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700