用户名: 密码: 验证码:
放射性核素在固—液界面吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射性废物的安全处理和妥善处置是制约我国核能战略顺利实施的关键因素之一。开展放射性核素在固-液界面宏观吸附热力学、动力学行为,以及化学种态与微观结构变化规律等相关研究,是评价放射性核素在环境介质中物理化学行的基础。另外,放射性核素在固-液界面吸附行为研究可为高放废物地质处置库的性能评价和安全评价提供基础数据。本论文主要探讨放射性核素在凹凸棒石、石灰性土壤表面的相互作用机制;考察pH值、离子强度、腐殖酸、温度等因素对放射性核素在固-液界面上吸附种态、微观结构和机理等影响,构建放射性核素在固-液界面吸附模型和机理。
     (1)利用连续电位滴定对凹凸棒石和高温活化凹凸棒石进行表面酸碱性质进行研究,计算凹凸棒石表面反应本征常数和表面位点密度。低pH值下凹凸棒石表面主要以离子交换位(=XNa/K)、可变电荷位点=SWOH,=SSOH和=SSOH2为主而高pH值下,=SWO-和=SSO-两种种态占主导。高温活化凹凸棒石表面在低pH范围内主要以=SSOH和=SWOH种态存在为主;而在高pH则可变电荷位点的去质子化位(=SSO-和=SWO-)占主导。
     (2)考察了pH和离子强度对放射性核素在固-液界面吸附的影响。发现Th(Ⅳ)、Eu(Ⅲ)和U(Ⅵ)在固体材料(凹凸棒石、磁性凹凸棒石复合材料、土壤)上吸附受pH和离子强度显著,表明Th(Ⅳ)、Eu(Ⅲ)、U(Ⅵ)在固-液界面上吸附机理比较复杂,涉及表面配位、离子交换、静电作用和表面沉淀等多种吸附机理;而Cs(Ⅰ)在石灰性土壤上的吸附却几乎不受pH影响,受离子强度影响却较为强烈,影响次序为K+>Na+>Li+及Mg2+>Ca2+≈Na+。
     (3)Th(Ⅳ)在凹凸棒石表面吸附主要以离子交换作用和内层配合作用为主;而在高温活化凹凸棒石表面上则主要形成内层配合物。两种单齿配合物=X2UO20和=SWOUO2(OH)0可描述U(Ⅵ)在凹凸棒石表面吸附行为,但=X2UO20,=SSOUO2+=SWOUO2CO3-及=SWOUO2(CO3)23-的组合亦可解释U(Ⅵ)在凹凸棒石上的吸附边界,说明U(Ⅵ)在固-液界面吸附机理非常复杂。相比U(Ⅵ)在凹凸棒石表面吸附,U(Ⅵ)在ATP/IOM复合材料上吸附种态发生明显的改变,其中无离子交换作用的贡献,主要形成内层配合物(=SSOUO2+和=SWOUO2(CO3)23-)。Eu(Ⅲ)在凹凸棒石表面上吸附种态主要为离子交换作用(=X3Eu0)、外层配合物(=SWOHEu3+)和内层配合物(=SOEu(OH)20)。
     (4)腐殖酸可改变放射性核素在液相和固体表面的种态,从而影响或改变放射性核素在固-液界面上微观结构和吸附机理。低pH下,腐殖酸可促进放射性核素在固-液界面吸附;而高pH范围内,腐殖酸可能会表现出明显的抑制作用。HA的存在改变了Th(Ⅳ)在凹凸棒石表面吸附种态(=SSO-CO-HA-Th和=SSOTh)。当pH<4.0时,腐殖酸对Eu(Ⅲ)在凹凸棒石表面吸附有一定促进作用;而pH4.0-6.0范围内,腐殖酸却抑制Eu(Ⅲ)吸附;当pH高于7.0时,吸附率出现明显增大,但没有达到相同条件下二元体系的吸附水平。另外,腐殖酸的存在可促进Th(Ⅳ)和U(Ⅵ)在高温活化凹凸棒石和DCS表面上的解吸作用。
     (5)利用EXAFS研究了不同pH值下HA-Eu(Ⅲ)的配位作用,发现中心原子Eu周围O原子构成的配位环境(第一配位壳层)明显随pH变化而发生改变,当pH值从1.76增大至9.50,R(Eu-O)从2.415A减小至2.360A,且配位数从9.94迅速减小至8.56。表明在低pH值下(pH<2.40),Eu原子的第一配位壳层O原子来源于水合氛围,而此时HA实际上没有参与Eu(Ⅲ)的配位作用:但随pH值升高HA逐渐参与配位作用,逐渐取代H2O的位置,导致R和N值的减小(6)EuLⅢ边EXAFS吸收谱证明HA介入次序不同可导致Eu(Ⅲ)在凹凸棒石表面微观结构的改变和吸附机理的变化。对于batch 1 (ATP+HA-Eu(Ⅲ)),原子间距R(Eu-O)大约为2.411A(N=11.91):bacth 2 (Eu(Ⅲ)+HA--ATP)勺原子间距R(Eu-O)约为2.399A(N=11.66);而batch 3的R(Eu-O)约为2.321A(N=8.866)。其中值得注意的是batch 3 (ATP+Eu(Ⅲ)--HA)的结构参数非常与二元体系(Eu(Ⅲ)+ATP)非常相似(R(Eu-O)=2.314A.N=8.24):而batch 1和batch 2的结构参数相似。说明Eu(Ⅲ)在凹凸棒石表面上的吸附种态、空间构型和微观机理等随HA介入次序不同而发生根本性的变化。
     (7)pH>6.0时,吸附体系中CO2存在与否对U(Ⅵ)的吸附有显著影响,红外和静态实验数据均表明土壤中碳酸盐组分对U(Ⅵ)吸附起到至关重要的作用。
The safety and reasonable treatment of radio-waste is a key factor for the Chinese nuclear power program. The speciation in environmental medium (include aqueous and solid speciation) could strongly affect radiounclides' dissolvability, biotoxicity, sorption and diffusion and so on. The studies on physiochemical behaviors of radionuclides on solid-water interface are of importance for the performance and safety assessment of high-level radioactive repository. In this work, the sorption of radionuclides on attapulgite (ATP) and calcareous soil (CS) was investigated under various physiochemical conditions (such as pH, ion strengthen, humic substances, temperature etc.) to discuss the sorption mechanism and speciation of radionuclides on solid-water interface combined advanced spectroscopies (EDS, XPS and EXAFS).
     (1) Sorption site densities and intrinsic acidity constants of sorbents were studied here using continuous potential titration and surface complexation model. The results indicated that sorption sites of intrinsic ATP involved in sorption process were main ion exchange site (=XNa/K), strong site (=SSOH) and weak site (=SWOH), while only strong site (=SSOH) and weak site (=SWOH) were predominant for activated ATP.
     (2) Influences of pH and ionic strength on radionuclides sorption onto solid-water interface were discussed in detail. Th(IV), Eu(III) and U(VI) sorption on solid-water interface were strongly dependent on pH and ionic strength indicating that the sorption mechanisms were actually complex, which may be attributed to the synergistic effects of ion exchange, surface complexation and surface precipitation. Cs(I) sorption on CS was influenced significantly by ionic strength, however, hardly independent of pH; and the foreign cations competed with Cs(I) in the following order: K+>Mg2+>Ca2+≈Na+>Li+
     (3) Ion exchange reaction and inner-sphere complexes dominated Th(IV) sorption on ATP, but only inner-sphere complexes could be found for Th(VI) sorption on activated ATP. The sorption edges of U(Ⅵ) on ATP could be described well by monodentate complexes (=X2UO20 and=SWOUO2(OH)0) or the combination of four sorption speciation (=X2UO20,=SSOUO2+,=SWOUO2CO3-and=SWOUO2(CO3)23-). Compared with ATP, both sorption mechanism and speciation of U(VI) changed obviously, the prevalent speciation were both=SSOUO2+ and=SWOUO2(CO3)23- on ATP/IOM composites in the observed pH range. The sorption of Eu(III) might be expressed as =X3Eu0=SWOHEu3+(outer-sphere complexes) and=SOEu-OOC-/HA in the ternary Eu/HA/ATP system.
     (4) Humic substances could influence radionuclides speciation in both aqueous and solid phases, and affect sorption process and mechanism of radionuclides at soli/water interface. The sorption of Th(IV) on activated ATP was obviously enhanced in ternary system (HA/ATP/Th(Ⅳ)); and both=SSOH-HA-Th and=SSOTh were the predominant speciation. In the presence of FA and HA. Eu(Ⅲ) sorption was enhanced at pH<4.0. decreased at pH range of 4.0-6.0. and then raised again above pH~7.0. It was very interesting to note that the humic acid could enhance the desorption of U(Ⅵ) from ATP and decarbonated calcareous soil surface.
     (5) Eu LⅢedge EXAFS analysis demonstrated that the interatomic distance R (Eu-O) (first coordination shell) in binary HA-Eu(Ⅲ) system decreased from 2.415 to 2.360 (?) with increasing pH from 1.76 to 9.50. and the coordination number (N) also reduced from 9.94 to 8.56. It can be attributed to the contribution of the hydration sphere Eu-OH2 and the carboxylate groups Eu-O(HA). The measured distances of 2.415 (?) (N=9.94) at pH 1.76 and 2.395 (?) (N=9.97) at pH 2.85 are attributed to the hydration inner-sphere Eu-OH_2, which suggests that HA does not participated in forming complexes with Eu3+. As pH increasing, the coordination positions of H2O were replaced by HA molecule resulting in the decreasing of N and R.
     (6) The influence of humic acid addition sequence on radionuclides sorption mechanism is always controversy. The mean R(Eu-O) were 2.411 (?) (N=11.91) for batch 1 (ATP+HA—Eu(Ⅲ)),2.399 (?) (N=11.66) for batch 2(Eu(III)+HA-ATP).2.321 (?) (N=8.866) for batch 3 (Eu(III)+ATP-HA), and 2.314 (?) (N=8.24) for binary system(Eu(III)+ATP) at pH 4.50. The mean R(Eu-O) and N decreased slightly from batch 1 to batch 3. N and d (Eu-O) of batch 1 and 2 were very close to each other, whereas those of d (Eu-O) and N of batch 3 and binary Eu/attapulgite system were similar because Eu(Ⅲ) was adsorbed on attapulgite firstly in batch 3, which suggested that the configuration of Eu(Ⅲ) were different in various addition sequences of HA.
     (7) Above pH~6.0, the CO2 and carbonates component of calcareous soil had obvious influence and attribution on U(Ⅵ) sorption speciation and mechanism.
引文
1. Greggs S.J. Sing K.S.W. Adsorption, surface area and porosity.2 nd ed. London:Academic Press,1982.
    2. Gibbs J.W., Collected Works. New York:Longmas Green,1931.
    3. Brunauer S. The physical adsorption of gases and vapors. London:Oxford Univ. Press,1945.
    4. Langmuir I:The constitution and fundament properties of solids and liquids. Part 1. Solid.J Am Chem Soc 1916,38(11):2221-2295.
    5. Langmuir 1:The adsorption of gases on plane surfaces of glass, mica and platinum. J Am ChemSoc 1918,40(9):1361-1403.
    6.王建龙,陈灿:生物吸附法去除重金属离子的研究进展.环境科学学报2010,30(4):673-701.
    7.杨敏,豆小敏,张昱:固液界面吸附机制与模型—“环境水质学前沿专栏”序言.环境科学学报2006,26:1581-1585.
    8. Schinder, P.W.; in "Adsorption of inorganic at solid-liquid interface", (Ed. by M. A. Anderson, A. J. Rubin), Ann Arsor Sci., Ann Arbor, Michigan,1981, Charp. Ⅰ.
    9. Stumm, W., Chemistry of the solid-water interface:Processes at the mineral-water interface in natural systems/Werner Stumm:with contributions by Laura Sigg (charpter 11), and Barbara Sulzberger (charpter 10).1992, Wiley-Interscience, New York, P43.
    10. Davis J.A., Kent D.B., Surface complexation modeling in aqueous geochemistry. In:Hochella M.F., White A.F., eds. Mineral-water interface geochemistry:Reviews in mineralogy, Vol 23, Washington, D.C.:Miner. Soc. Am.1990.177259.
    11. Sposito G:On Points of Zero Charge. Environ Sci Technol 1998,33:208-208.
    12. Wieland E, Stumm W:Dissolution kinetics of kaolinite in acidic aqueous solutions at 25℃. Geochim. Cosmochim. Acta 1992,56:3339-3355.
    13. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK:Removal of Eu(Ⅲ) from aqueous solution using ZSM-5 zeolite. Micropor. Mesopor. Mat.2009,123:1-9.
    14. Manning, B.A., Goldberg, S., Adsorption and stability of arsenic(Ⅲ) at the clay mineral-water interface. Environ. Sci. Technol.1997,31:2005-2011.
    15. Tessier, A., Fortin, T., Belzile, N., Devitre, R.R., Leppard, G.G., Trace metal-sediment interactions in two shield lakes. Geochim. Cosmochim. Acta 1996,60:387-404.
    16. Tessier, A., Fortin, T., Belzile, N., Devitre, R.R., Leppard, G.G., Trace metal-sediment interactions in two shield lakes. Geochim. Cosmochim. Acta 1996,60:387-404.
    17. Yates, D.E., Levine, S., Healy, T.W.,1974. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions I.70, 1807-1818.
    18. Yates, D.E., Levine, S., Healy, T.W.,1974. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions I.70, 1807-1818.
    19. Westall, J.C., Hohl, H.,1980. A comparison of electrostatic models for the oxide:solution interface. Adv. Colloid Interface Sci.12,265-294.
    20. Charmas R, Piasecki W, Rudzinski W:Four Layer Complexation Model for Ion Adsorption at Electrolyte/Oxide Interface:Theoretical Foundations. Langmuir 1995,11:3199-3210.
    21. Hiemstra T, Van Riemsdijk WH:A Surface Structural Approach to Ion Adsorption:The Charge Distribution (CD) Model.J. Colloid Interf. Sci.1996,179:488-508.
    22. Weerasooriya R, Aluthpatabendi D, Tobschall HJ:Charge distribution multi-site complexation (CD-MUSIC) modeling of Pb(Ⅱ) adsorption on gibbsite. Colloids Surf A 2001,189:131-144.
    23. 李鸭,韩恩山,檀柏彬,常亮:表面现象的研究及应用.河北工业大学学报2004.33:6-12.
    24. 王建,营爱玲,王晓琳:表界面现象及双电层模型.连云港化工高等专科学校学报2000,13:13-15.
    25. Davis, J.A., Leckie, J.O. Surface ionization and complexation at the oxide/water interface.3. Adsorption of anions. J. Colloid Interf. Sci.1980,74:32-43.
    26. 陶祖贻,杜金洲:氧化物/水界面上的表面络合模型.离子交换与吸附1994,10:112-118.
    27. 范桥辉 放射性核素在凹凸棒石上吸附研究.兰州大学硕士毕业论文2008.
    28. Sposito, G., The chemistry of soils. Oxford University Press, Oxford 1989.
    29. Kerr, H.W.,1928. The nature of base exchange and soil acidity. J. Am. Soc. Agron.20, 309-355.
    30. Vanselow, A.P., Equilibra of the base exchange reactions of bentonites, permutites, soil colloids and zeolites. Soil Sci.1932,33:95-133.
    31. Wang YQ, Fan QH, Li P, Zheng XB, Xu JZ, Jin YR, Wu WS:The sorption of Eu(Ⅲ) on calareous soil:effects of pH, ionic strenght, temperature, foreign ions and humic acid.J. Radioanal. Nucl. Ch.2011,287:231-237.
    32. Fan QH, Wu WS, Song XP, Xu JZ. Hu J, Niu ZW:Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite. Radiochim. Acta 2008,96: 159-165.
    33. Fan Q, Li Z, Zhao H, Jia Z, Xu J, Wu W:Adsorption of Pb(Ⅱ) on palygorskite from aqueous solution:Effects of pH. ionic strength and temperature. Appl. Clay Sci.2009,45:111-116.
    34. Tao ZY, Wang XK, Dai XX, Du JZ:Adsorption characteristics of 47 elements on a calcareous soil, a red earth and an alumina:a multitracer study. Appl. Radiat.Isot.2000,52:821-829.
    35. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G:Sorption of Eu(Ⅲ) on Attapulgite Studied by Batch, XPS, and EXAFS Techniques. Emviron. Sci. Technol.2009,43:5776-5782.
    36. Shahwan T, Akar D, Eroglu AE:Physicochemical characterization of the retardation of aqueous Cs" ions by natural kaolinite and clinoptilolite minerals. J. Colloid Interf. Sci.2005. 285:9-17.
    37. Tsai SC, Wang TH, Li MH, Wei YY, Teng SP:Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard..Mat.2009,161: 854-861.
    38. 吴景贵,席时权,姜岩:土壤腐殖酸的分析化学研究进展.分析化学1997,25:1221-1227.
    39. 朱海军,寥家莉,张东,康厚军,刘期凤,杨远友,刘宁:土壤腐殖酸的提取及其对U(Ⅵ)的吸附.原子能科学技术2007,41:683-688.
    40. Myneni SCB, Brown JT, Matinez GA, Mayer-llse W:Imaging of Humic substance macromolecular structures in water and soils. Science 1999,286:1335-1337.
    41. Hamadi NK, Chen XD, Farid MM, Lu MGQ:Adsorption kinetics for the removal of chromium(Ⅵ) from aqueous solution by adsorbents derived from used tyres and sawdust. Chew. Eng. J.2001,84:95-105.
    42. Hu J, Chen C, Zhu X, Wang X:Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mat.2009,162:1542-1550.
    43. Ho YS, McKay DS:Sorption of dye from aqueous solution byu peat. Chem. Eng.J.1998,70: 115-124.
    44. Namasivayam C, Kadirvelu K:Uptake of mercury (Ⅱ) from wastewater by activated carbon from an unwanted agricultural solid by-product:coirpith. Carbon 1999,37:79-84.
    45. Tsai SC, Wang TH, Wei YY, Yeh WC, Jan YL, Teng SP:Kinetics of Cs adsorption/desorption on granite by a pseudo first order reaction model. J. Radioanal. Nucl. Ch.2008,275:555-562.
    46. Ho YS:Removal of Metal Ions from Sodium Arsenate Solution Using Tree Fern. Process Saf. Environ. Protect.2003,81:352-356.
    47. Fan QH, Zhang ML, Zhang YY, Ding KF, Yang ZQ, Wu Ws:Sorption of Eu(Ⅲ) and Am(Ⅲ) to attapulgite:Effect of pH, ionic strength and fulvic acid. Radiochim. Acta 2010,98:19-25.
    48. Niu ZW, Fan QH, Wang WH, Xu JZ, Chen L, Wu WS:Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl. Radiat. Isot.2009,67:1582-1590.
    49. Sips R:On the structure of a catalyst surface. J. Chem. Phy.1948,16:490-495.
    50. Brunauer S, Emmett PH, Teller H:Adsorption of gases in multimolecular layers.J. Am. Ceram.Soc.1983,60:309-319.
    51. Redlich O, Peterson DL:A useful adsorption isotherm. J. Phys. Chem.1959,63:1024.
    52. Radke CJ, Prausnitz JM:Thermodynamics of multi-solute adsorption from dilute liquid solutions. Aiche J.1972,18:761-768.
    53. 许君政,范桥辉,白洪彬,王冬林,李湛,张茂林,王祥科,吴王锁:离子强度、温度、pH和腐殖酸浓度对Th(Ⅳ)在凹凸棒石上吸附的影响.核化学与放射化学2009,31:179-185.
    54. Langmuir I:The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem.Soc.1918,40:1361-1403.
    55. Bellot JC, Condoret JS:Modelling of liquid chromatography equilibrium. Process Biochem. 1993,28:365-376.
    56. Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, Pan YH, Hu JH:Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. International J. Pharm.2008,349:274-282.
    57. Li W, Pan G, Zhang M, Zhao D, Yang Y, Chen H, He G:EXAFS studies on adsorption irreversibility of Zn(II) on TiO2:Temperature dependence. J. Colloid Interf. Sci.2008,319: 385-391.
    58. Li X, Pan G, Qin Y, Hu T, Wu Z, Xie Y:EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces:Ⅱ. Reversible adsorption of zinc on [delta]-MnO2. J. Colloid Interf. Sci.2004,271:35-40.
    59. Pan G, Qin Y, Li X, Hu T, Wu Z, Xie Y:EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces:I. Irreversible adsorption of zinc onto manganite (y-MnOOH). J. Colloid Interf. Sci.2004,271:28-34.
    60. Pan G, Liss PS:Metastable-equilibrium adsorption theory:Ⅰ. Theoretical. J. Colloid Interf. Sci. 1998,201:71-76.
    61. Pan G, Liss PS:Metastable-Equilibrium Adsorption Theory:Ⅱ. Experimental. J. Colloid Interf. Sci.1998,201:77-85.
    62. Zhang M, He G, Pan G:Combined DFT and IR evidence on metastable-equilibrium adsorption of arsenate on TiO2 surfaces. J. Colloid Interf. Sci.2009,338:284-286.
    63. Pan G, Liss PS, Krom MD:Particle concentration effect and adsorption reversibility. Colloids Surf. A 1999,151:127-133.
    64. Yang Y-h, Chen H, Pan G:Particle concentration effect in adsorption/desorption of Zn(Ⅱ) on anatase type nano TiO2. J. Environ. Sci.2007,19:1442-1445.
    65. Li W, Pan G:Comments on "Ion adsorption components in liquid/solid systems".J. Environ. Sci.2007,19:768-768.
    66. Qin Y, Pan G, Zhang M, Li X:Adsorption of zinc on manganese (γ-MnOOH):Particle concentration effect amd adsorption reversibility.J. Environ. Sci-China 2004,16:627-630.
    67. Strawn DG, Sparks DL:The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite. J. Colloid Interf. Sci.1999,216:257-269.
    68. Stumpf S, Stumpf T, Dardenne K, Foerstendorf H, Klenze R, Fanghanel T:Sorption of Am(Ⅲ) onto 6-line-ferrihydrite and its alteration productions:investigations by EXAFS. Environ. Sci. Technol.2006,40:3522-3528.
    69. Osthols E, Manceau A, Farges F, Charlet L:Adsorption of thorium on amorphous silica:An EXAFS study.J. Colloid Interf. Sci.1997,194:10-21.
    70. Takahashi Y, Kimura T, Kato Y, Minai Y:Speciation of europium(Ⅲ) sorbed on a montmorillonite surface in the presence of polycarboxylic acid by laser-induced fluorescence spectroscopy. Environ. Sci. Technol. 1999,33:4016-4021.
    71. Montavon G, Markai S, Andres Y, Grambow B:Complexation studies of Eu(Ⅲ) with alumina-bound polymaleic acid:Effect of organic polymer loading and metal ion concentration. Environ. Sci. Technol.2002.36:3303-3309.
    72. 王祥科,郑善良:荧光衰减光谱法研究Eu(Ⅲ)在氧化铝表面的化学形态.核化学与放射化学2005.27:108-112.
    73. Takahashi Y, Kimura T. Minai Y:Direct observation of Cm(Ⅲ)-fulvate species on fulvic acid-montmorillonite hybrid by laser-induced fluorescence spectroscopy. Geochim. Cosmochim. Acta 2002,66:1-12.
    74. Tan X, Wang X, Chen C, Sun A:Effect of soil humic and fulvic acids, pH and ionic strength on Th(Ⅳ) sorption to TiO2 nanoparticles. Appl. Radial. Isot.2007,65:375-381.
    75. Guo ZJ, Wang SR, Shi KL, Wu WS:Experimental and modeling studies of Eu(Ⅲ) sorption on TiO2. Radiochim. Acta 2009,97:283-289.
    76. Guo ZJ, Su HY, Wu WS:Sorption and desorption of uranium(Ⅵ) on silica:experimental and modeling studies. Radiochim. Acta 2009,97:133-140.
    77. Guo ZJ, Li Y, Wu WS:Sorption of U(Ⅵ) on goethite:Effects of pH, ionic strength, phosphate, carbonate and fulvic acid. Appl.Radial, Isot.2009,67:996-1000.
    78. Guo ZJ, Yan C, Xu J, Wu WS:Sorption of U(Ⅵ) and phosphate on gamma-alumina:Binary and ternary sorption systems. Colloids Surf. A 2009,336(1-3):123-129.
    79. Guo ZJ, Yu XM, Guo FH, Tao ZY:Th(Ⅳ) adsorption on alumina:Effects of contact time, pH, ionic strength and phosphate. J. Colloid Interf. Sci.2005,288:14-20.
    80. Guo ZJ, Yan ZY, Tao ZY:Sorption of uranyl ions on TiO2:Effects of contact time, ionic strength, concentration and humic substance. J. Radioanal. Nucl. Ch.2004,261:157-162.
    81. Guo ZJ, Niu LJ, Tao ZY:Sorption of Th(IV) ions onto TiO2:Effects of contact time, ionic strength, thorium concentration and phosphate. J. Radioanal..Nucl. Ch.2005,266:333-338.
    82. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK:Adsorption of thorium(Ⅳ) on MX-80 bentonite:Effect of pH, ionic strength and temperature. Appl. Clay Sci.2008,41: 17-23.
    83. 王所伟,李家星,陈磊,王祥科,董云会:Th(Ⅳ)在高庙子膨润土上的吸附行为.核化学与放射化学2010,32:106-110.
    84. 章英杰,苏锡光,曾继述,范显华:Pu在Ca-膨润土上的吸附.核化学与放射化学2006,28:146-151.
    85. Walter M, Arnold T, Reich T, Bernhard G:Sorption of Uranium(Ⅵ) onto Ferric Oxides in Sulfate-Rich Acid Waters. Environ. Sci. Technol.2003,37:2898-2904.
    86. Bradbury MH, Baeyens B:Sorption of Eu on Na- and Ca-montmorillonites:experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 2002,66:2325-2334.
    87. Geckeis H, Rabung T, Manh TN, Kim JI, Beck HP:Humic colloid-borne natural polyvalent metal ions:Dissociation experiment. Environ. Sci. Technol.2002,36:2946-2952.
    88. Coppin F, Castet S, Berger G, Loubet M:Microscopic reversibility of Sm and Yb sorption onto smectite and kaolinite:Experimental evidence. Geochim. Cosmochim. Acta 2003,67: 2515-2527.
    89. Wang X, Xu D, Chen L, Tan X, Zhou X, Ren A, Chen C:Sorption and complexation of Eu(Ⅲ) on alumina:Effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. Appl. Radiai.Isol.2006,64:414-421.
    90. Wang XK, Chen CL, Du JZ, Tan XL, Xu D, Yu SM:Effect of pH and aging time on the kinetic dissociation of243 Am(Ⅲ) from humic acid-coated y-Al2O3:A chelating resin exchange strudy. Environ. Sci. Technol.2005,39:7084-7088.
    91. Bradly, W.F.,1940. The structure scheme of attapulgite. American Mineralogist 25,405-410.
    92. Wu W, Fan Q, Xu J, Niu Z, Lu S:Sorption-desorption of Th(IV) on attapulgite:Effects of pH, ionic strength and temperature. Appl. Radiat.Isot,2007,65:1108-1114.
    93. Haden WL, Schwint JIA:Attapulgite:Its properties and applications. Ind. Eng. Chem.1967, 59:58-69.
    94. Chisholm JE:Powder-diffraction patterns and structural models for palygorskite. Can. Mineral 1992,30:61-73.
    95. Alvarez-Ayuso E, Garia-Sanchez A:Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environ.I Pollut.2003,125:337-344.
    96. Chang Y, Lv X, Zha F, Wang Y, Lei Z:Sorption of p-nitrophenol by anion-cation modified palygorskite. J. Hazard. Mat.2009,168:826-831.
    97. Ye H, Chen F, Sheng Y, Sheng G, Fu J:Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep.Purif. Technol.2006,50:283-290.
    98. Wang S, Hu J, Li J, Dong Y:Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(Il) onto GMZ bentonite. J. Hazard. Mat. 2009,167:44-51.
    99. Wang W, Chen H, Wang A:Adsorption characteristics of Cd(Ⅱ) from aqueous solution onto activated palygorskite. Sep. Purif. Technol.2007,55:157-164.
    100. Shirvani M, Shariatmadari H, Kalbasi M, Nourbakhsh F, Najafi B:Sorption of cadmium on palygorskite, sepiolite and calcite:Equilibria and organic ligand affected kinetics. Colloids Surf. A 2006,287:182-190.
    101. Bradbury MH, Baeyens B:Modelling the sorption of Mn(Ⅱ), Co(Ⅱ), Ni(Ⅱ),Zn(Ⅱ), Cd(Ⅱ), Eu(Ⅲ), Am(Ⅲ), Sn(Ⅳ), Th(Ⅳ), Np(Ⅴ) and U(Ⅵ) on montmorillonite:Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides (vol 69, pg 875,2005). Geochim. Cosmochim. Acta 2005,69:5391-5392.
    102. Tan XL, Wang XK, Fang M, Chen CL:Sorption and desorption of Th(lV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf. A 2007,296:109-116.
    103. Guerra DL, Viana RR, Airoldi C:Adsorption of thorium cation on modified clays MTTZ derivative. J. Hazard. Mat.2009,168:1504-1511.
    104. Chen C, Wang X:Sorption of Th (Ⅳ) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl. Radial. Isot.2007,65:155-163.
    105. Reiller P, Casanova F:Influence of addition order and contact time on thorium(Ⅳ) retention by hematite in the presence of humic acids. Environ. Sci. Technol.2005,39:1641-1648.
    106. Chen CL, Wang XK:Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto y-Al2O3. Appl. Geochem.2007,22:436-445.
    107. http://www.ihss.gatech.edu/soilhafa.html
    108. Moriguchi T, Tahara M, Yaguchi K:Adsorbability and pholocatalytic degradability of humic substances in water on Ti-modified silica. J. Colloid Interf. Sci.2006,297:678-686.
    109. Chu ZS, Liu WX, Tang HX, Qian TW, Li SS, Li ZT, Wu GB:Surface acid-base behaviors of chinese losess. J. Colloid Interf. Sci.2002,252:426-432.
    110. Du Q, Sun ZG, Forsling W, Tang HX:Acid-base properties of aqueous illite surface. J. Colloid Interf. Sci.1997.187:221-231.
    111. Liu WX, Sun ZG. Forsling W, Du Q. Tang HX:A comparative study of surface acid-base characteristics of natural illites from different origins. J Colloid Interf. Sci.1999.219:48-61.
    112. Tombacz E, Szekeres M:Surface charge heterogeneity of kaolinte in aqueous suspension in comparsion with montmorillonite. Appl. Clay Sci.2006.34:105-124.
    113. Bardy PV, Cygan RT, Nagy KL:Molecular controls on kaolinite surface charge. J. Colloid Interf. Sci.1996,183:356-334.
    114. Xu D, Chen C, Tan X, Hu J, Wang X:Sorption of Th(IV) on Na-rectorite:Effect of HA, ionic strength, foreign ions and temperature. Appl. Geochem.2007,22:2892-2906.
    115. Xu D, Wang XK, Chen CL, Zhou X, Tan XL:Infulence of soil humic acid and fulvic acid on sorption of thorium(IV) on MX-80 bentonite. Radiochim. Acta 2006,94:429-434.
    116. Strathmann TJ, Myneni SCB:Effect of soil fulvic acid on nickel(Ⅱ) sorption and bonding at the aqueous-boehmite (gamma-AIOOH) interface. Environ. Sci. Technol.2005,39: 4027-4034.
    117. Wang XK, Rabung T, Geckeis H, Panak PJ, Klenze R, Fanghanel T:Effect of humic acid on the sorption of Cm(Ⅲ) onto γ-Al2O3 studied by the time-resolved laser fluorescence spectroscopy. Radiochim. Acta 2004,92:691-695.
    118. Davis JA:Complexation of trace metals by adsorbed natural organic matter. Geochim. Cosmochim. Acta 1984,48:679-691.
    119. Yu SM, Chen CL, Chang PP, Wang TT, Lu SS, Wang XK:Adsorption of Th(IV) onto Al-pillared rectorite:Effect of pH, ionic strength, temperature, soil humic acid and fulvic acid. Appl. Clay Sci.2008,38:219-226.
    120. Murray HH:Traditional and new applications for kaolin, smectite, and palygorskite:a general overview. Appl. Clay Sci.2000,17:207-221.
    121. Arnold T, Zorn T, Zaker H, Bernhard G, Nitsche H:Sorption behavior of U(VI) on phyllite: experiments and modeling. J.Contam. Hydrol.2001,47:219-231.
    122. Sherman DM, Peacock CL, Hubbard CG:Surface complexation of U(VI) on goethite (α-FeOOH). Geochim. Cosmochim. Acta 2008,72:298-310.
    123. Tokunaga TK, Wan JM, Pena J, Sutton SR, Newville M:Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions. Environ. Sci. Technol.2004,38: 3056-3062.
    124. Giustetto R, Xamena FLI, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR:Maya blue:A computational and spectroscopic study. J. Phys. Chem. B 2005,109:19360-19368.
    125. Wazne M, Korfiatis GP, Meng X:Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol.2003,37:3619-3624.
    126. Bryant DE, Stewart DI, Kee TP, Barton CS:Development of a functional ized polymer-coated silica for the removal of uranium from groundwater. Environ. Sci. Technol.2003,37: 4011-4016.
    127. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer,D.A., Rand, M.H., 2003. Chemical thermodynamics Volume 5:update on the chemical thermoodynamics of Uranium, Neptunium, Americium and Technetium. Elsevier, pp 970.
    128. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ:Use of Spectroscopic Techniques for Uranium(VI)/Montmorillonite Interaction Modeling. Environ. Sci. Technol.2004, 38:1399-1407.
    129. Fan QH, Shao DD, Hu J, Wu WS, Wang XK:Comparison of Ni2+ sorption to bare and ACT-graft attapulgites:Effect of pH, temperature and foreign ions. Surf. Sci.2008,602: 778-785.
    130. Tertre E, Berger G. Simoni E, Castet S, Giffaut E, Loubet M, Catalette H:Europium retention onto clay minerals from 25 to 150℃:Experimental measurements, spectroscopic features and sorption modelling. Geochim. Cosmochim. Acta 2006,70:4563-4578.
    131. Bauer A, Rabung T, Claret F, Schafer T, Buckau G, Fanghanel T:Influence of temperature on sorption of europium onto smectite:The role of organic contaminants. Appl. Clay Sci.2005, 30:1-10.
    132. Katsoyiannis IA, Althoff HW, Bartel H, Jekel M:The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides. Wat. Res.2006,40:3646-3652.
    133. GIAMMAR DE, HERING JG:Time scales for sorption-desorption and surface precipitation of uranyl on goethite. Environ. Sci. Technol.2001,35:3332-3337.
    134. Sherman DM, Peacock CL, Hubbard CG:Surface complexation of U(Ⅵ) on goethite ([alpha]-FeOOH). Geochim. Cosmochim. Acta 2008,72:298-310.
    135. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N:Uranium(Ⅵ) adsorption to ferrihydrite:Application of a surface complexation model. Geochim. Cosmochim. Acta 1994, 58:5465-5478.
    136. Kremleva A, Kruger S, Rosch N:Density functional model studies of uranyl adsorption on (001) surfaces of kaolinite. Langmuir 2008,24:9515-9524.
    137. Zhao Y, Chen Y, Li M, Zhou S, Xue A, Xing W:Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite. J. Hazard. Mat.2009,171:640-646.
    138. Miao S, Liu Z, Zhang Z, Han B, Miao Z, Ding K, An G:Ionic Liquid-Assisted Immobilization of Rh on Attapulgite and Its Application in Cyclohexene Hydrogenation. J. Phys. Chem. C 2007,111:2185-2190.
    139. Liu P, Wang T:Preparation of well-defined star polymer from hyperbranched macroinitiator based attapulgite by surface-initiated atom transfer radical polymerization technique, Ind. Eng. Chem. Res.2007,46:97-102.
    140. Zhang L, Lv F, Zhang W, Li R. Zhong H, Zhao Y, Zhang Y, Wang X:Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites. J. Hazard. Mat.2009.171: 294-300.
    141. Chen H, Zhao Y, Wang A:Removal of Cu(Ⅱ) from aqueous solution by adsorption onto acid-activated palygorskite.J. Hazard. Mat.2007,149:346-354.
    142. Chen H, Wang A:Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto poly(acrylamide)/attapulgite composite.J. Hazard. Mat.2009,165:223-231.
    143. Zhao GX, Zhang HX, Fan QH, Ren XM. Li JX, Chen YX, Wang XK:Sorption of copper(Ⅱ) onto super-adsorbent of bentonite-polyacrylamide composites.J. Hazard. Mat.2010,173: 661-668.
    144. Chen CL, Wang XK, Nagatsu M:Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ. Sci. Technol.2009,43: 362-2367.
    145. S. Franger, P. Berthet. O. Dragos. R. Baddour-Hadjean. P. Bonville. J. Berthon, Large influence of the synthesis conditions on the physicochemical properties of nanostructured Fe3O4. J.Nanopart. Res.2007.9:389-402.
    146. Graat P. Somers MAJ:Quantitative Analysis of Overlapping XPS Peaks by Spectrum Reconstruction:Determination of the Thickness and Composition of Thin Iron Oxide Films. Surf. Interf. Analysis 1998,26:773-782.
    147. Zhang J. Wang Q, Wang A:Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydrate Poly.2007,68(2):367-374.
    148. Hu J, Shao D, Chen C, Sheng G, Li J, Wang X, Nagatsu M:Plasma-Induced Grafting of Cyclodextrin onto Multiwall Carbon Nanotube/Iron Oxides for Adsorbent Application. J. Phys. Chem. B 2010,114:6799-6785.
    149. Pretorius PJ, Linder PW:The adsorption characteristics of [delta]-manganese dioxide:a collection of diffuse double layer constants for the adsorption of H+, Cu2+, Ni2+, Zn2+, Cd2+ and Pb2+. Appl. Geochem.2001,16:1067-1082.
    150. Tertre E, Castet S, Berger G, Loubet M, Giffaut E:Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60℃:Experimental and modeling study. Geochim. Cosmochim. Acta 2006,70:4579-4599.
    151. Pang C, Liu YH, Cao XH, Hua R, Wang CX, Li CQ:Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J. Radioanal. Nucl. Ch.2010,286: 185-193.
    152. Gao L, Yang ZQ, Shi KL, Wang XF, Guo ZJ, Wu WS:U(Ⅵ) sorption on kaolinite:effects of pH, U(VI) concentration and oxyanions. J. Radioanal. Nucl. Ch.2010,284:519-526.
    153. Chen C, Hu J, Shao D, Li J, Wang X:Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites forNi(Ⅱ) and Sr(Ⅱ). J. Hazard. Mat.2009,164:923-928.
    154. Tan XL, Fan QH, Wang XK, Grambow B:Eu(Ⅲ) sorption to TiO2 (Anatase and Rutile): Batch, XPS, and EXAFS studies. Environ. Sci. Technol.2009,43:3115-3121.
    155. Naveau A, Monteil-Rivera F, Dumonceau J, Boudesocque S:Sorption of europium on a goethite surface:influence of background electrolyte. J. Contam. Hydrol.2005,77:1-16.
    156. Bradbury MH, Baeyens B, Geckeis H, Rabung T:Sorption of Eu(Ⅲ)/Cm(Ⅲ) on Ca-montmorillonite and Na-illite. Part 2:Surface complexation modelling. Geochim. Cosmochim. Acta 2005,69:5403-5412.
    157. Rabung T, Geckeis H, Kim JI, Beck HP:Sorption of Eu(Ⅲ) on a natural hematite:Application of a surface complexation model. J. Colloid Interf. Sci.1998,208:153-161.
    158. van Schaik JWJ, Persson I, Kleja DB, Gustafsson JP:EXAFS study on the reactions between iron and fulvic acid in acid aqueous solutions. Environ. Sci. Technol.2008,42:2367-2373.
    159. Kosmulski M:Adsorption of trivalent cations on silica. J. Colloid Interf. Sci.1997,195: 395-403.
    160. Rabung T, Geckeis H, Kim JI, Beck HP:The influence of anionic ligands on the sorption behaviour of Eu(Ⅲ) on natural hematite. Radiochim. Acta 1998,82:243-248.
    161. Stumpf T, Bauer A, Coppin F, Kim J:Time-resolved laser fluorescence spectroscopy study of the sorption of Cm(Ⅲ) onto smectite and kaolinite. Environ. Sci. Technol.2001,35: 3691-3694.
    162. Fairhurst AJ, Warwick P:The infulence of humic acid on europium-mineral interactions. Colloids Surf. A 1998,145:229-234.
    163. Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F:Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim. Cosmochim. Acta 1999,63:815-836.
    164. Montavon G, Hennig C, Janvier P, Grambow B:Comparison of complexed species of Eu in alumina-bound and free polyacrylic acid:A spectroscopic study. J. Colloid Interf. Sci.2006, 300:482-490.
    165. Hizal J, Apak R:Modeling of copper(Ⅱ) and lead(Ⅱ) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J. Colloid Interf. Sci.2006,295: 1-13.
    166. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Craig Ⅰ:Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg. Chem.2000, 39:595-501.
    167. Schlegel ML, Pointeau I, Coreau N, Reiller P:Mechanism of Europium Retention by Calcium Silicate Hydrates:An EXAFS Study. Environ. Sci. Technol.2004,38(16):4423-4431.
    168. Oztop B, Shahwan T:Modification of a montmorillonite-illite clay using alkaline hydrothermal treatment and its application for the removal of aqueous Cs+ ions. J. Colloid Interf. Sci.2006,295:303-309.
    169. Wu WS, Fan QH, Lu S, Niu S, Wang XK:Effect of Humic Acid on the Sorption and Kinetic Desorption of Radiocaesium Ions on/from Na-Rectorite Studied by the Batch Technique and a Chelating Resin. Adsorp. Sci. Technol.2006,24:601-610.
    170. Shahwan T, Suzer S, Erten HN:Sorption studies of Cs+ and Ba2+ cations on magnesite. Appl. Radial. Isot.1998,49:915-921.
    171. Oughton DH, Borretzen P, Salbu B, Tronstad E:Mobilisation of 137Cs and 90Sr from sediments: potential sources to arctic waters. Sci. Total Environ.1997,202:155-165.
    172. Marmier N, Delisee A, Fromage F:Surface Complexation Modeling of Yb(Ⅲ) and Cs(Ⅰ) Sorption on Silica.J. Colloid Inlerf. Sci.1999,212:228-233.
    173. Zachara JM, Smith SC, Liu C, McKinley JP, Serne RJ, Gassman PL:Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim. Cosmochim. Acta 2002,66:193-211.
    174. Wang X, Dong W. Li Z, Du J, Tao Z:Sorption and desorption of radiocesium on red earth and its solid components:relative contribution and hysteresis. Appl. Radiat,Isot.2000,52: 813-819.
    175. Marmier N, Fromage F:Sorption of Cs(Ⅰ) on Magnetite in the Presence of Silicates. J. Colloid Interf. Sci.2000,223:83-88.
    176. http://www.ihss.gatech.edu/soilhafa.html
    177. Oonk S, Slomp CP, Huisman DJ, Vriend SP:Geochemical and mineralogical investigation of domestic archaeological soil features at the Tiel-Passewaaij site, The Netherlands. J. Geochem. Explor.2009,101:155-165.
    178. Lujaniene G, Motiejunas S, Sapolaite J:Sorption of Cs, Pu and Am on clay minerals.J. Radioanaul. Nucl. Ch.2009,274:345-353.
    179. Hurel C, Mannier N, Bourg ACM. Fromage F:Sorption of Cs and Rb on purified andcrude MX-80 bentonite in various electrolytes. J. Radioanal. Nucl. Ch.2009,279:113-119.
    180. Esmadi F, Simm J:Sorption of cobalt(II) by amorphous ferric hydroxide. Colloids Surf. A 1995,104:265-270.
    181. Liu C, Zachara JM, Smith SC. McKinley JP, Ainsworth CC:Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta 2003,67:2893-2912.
    182. Otey CR, Povinelli ML, Fan SH:Capturing light pulses into a pair of coupled photonic crystal cavities. Appl. Phys. Letters 2009,94,231109.
    183. Tan XL, Chang PP, Fan QH, Zhou X, Yu SM, W.S.Wu, X.K.Wang:Sorption of Pb(Ⅱ) on Na-rectorite:Effects of pH, Ionic strength, temperature, soil humic acid and fulvic scid. Colloids Surf. A 2008,328:8-14.
    184. Guillaumont R, Fanghanel T, Fuger J, Genthe I, Neck V, Palmer A, Rand MH (2003) Chemical thermodynamics, Volume 5:Update on the chemical thermodynamics of uranium, neptunium, americium and technetium. Elsevier, Amsterdam, p 970
    185. Xie S, Zhang C, Zhou X, Yang J, Zhang X, Wang J:Removal of uranium(Ⅵ) from aqueous solution by adsorption of hematite. J. Environ. Radioact.2009,100:162-166.
    186. Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J. Zachara JM:Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment. Environ. Sci. Technol.2005,39:7949-7955.
    187. Hiemstra T, Riemsdijk WHV, Rossberg A, Ulrich K-U:A surface structural model for ferrihydrite Ⅱ:Adsorption of uranyl and carbonate. Geochim. Cosmochim. Acta 2009,73: 4437-4451.
    188. Xu D, Shao DD, CHEN CL, Ren AP, Wang XK:Effect of pH and fulvic acid on soprtion and complexation of cobalt onto bare and FA bound MX-80 bentonite Radiochim. Acta 2006,94: 97-102.
    189. Wang X, Chen Y, Wu Y:Diffusion of Eu(Ⅲ) in compacted bentonite--effect of pH, solution concentration and humic acid. Appl. Radiat. Isot.2004,60(6):963-969.
    190. Wang X, Liu X:Effect of pH and concentration on the diffusion of radiostrontium in compacted bentonite-a capillary experimental study. Appl. Radial,Isot.2004,61:1413-1418.
    191. Wang X, Liu X:Sorption and desorption of radioselenium on calcareous soil and its solid components studied by batch and column experiments. Appl. Radial,Isot.2005,62:1-9.
    192. Qian LJ, Zhao JN, Hu PZ, Geng YX, Wu WS:Effect of pH, fulvic acid and temperature on sorption ofTh(Ⅳ) on zirconium oxophosphate. J. Radioanal. Nucl. Ch.2010,283:653-660.
    193. Zheng ZP, Tokunaga TK, Wan JM:Influence of calcium carbonate on U(Ⅵ) sorption to soils. Environ. Sci. Technol.2003,37:5603-5608.
    194. Olguin MT, Solache-Rios M, Acosta D, Bosch P, Bulbulian S:UO22+ sorption on bentonite. J. Radioanal. Nucl. Ch.1997,218:65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700