用户名: 密码: 验证码:
污泥烧制陶粒的技术路径与控制因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥是一种产生于污水处理过程的对人体和环境有很大危害的固体废弃物,随着我国城市化进程的加快,污泥产生量越来越大。其含水率高、体积大,力学性质差,给堆放和运输带来困难,且污泥中含有大量的有毒物质,如果不能妥善地处理处置,将会带来严重的环境问题。
     目前成熟的污泥处理方法有:卫生填埋、土地利用、干化和焚烧等,几种方法各有缺点,研究新的污泥处理技术很有必要。本文通过对污泥物理化学性质的分析,结合粘土陶粒烧制工艺,分析了污泥掺加不同比例粘土、粉煤灰烧制陶粒的可能性,研究了污泥在一定条件下烧制轻质陶粒的可行性,建立了一套生活污泥低温干燥后烧制陶粒并最终建材化应用的处置工艺。
     通过污泥、粘土、粉煤灰的无机成分对比,认为生活污泥具备烧制陶粒的物质基础,并根据SiO2-Al2O3-MgO的热力学平衡系统分析,认为生活污泥掺加一定比率的粘土和粉煤灰后在1100℃-1200℃之间均有可能出现低共熔点。
     在实验室条件下,模拟工业陶粒生产工艺,采用自行设计的柱状冲压造粒机制备污泥陶粒生料球,通过调节辅料配比尝试将坯料放入烧结炉内用不同温度烧制,待冷却后测试体积、烧失率、堆积密度和表观密度等物理性质分析其烧胀情况,通过比表面积、筒压强度、抗压强度和24h吸水率等性质分析陶粒的建材性能。确认掺加一定比例的粘土在1150℃-1120℃烧制的污泥陶粒均为合格的轻粗集料,具有良好的建材性能,物理性质随着粘土比例的增加而有所变化。其中粘土比例在10-20%,烧制温度为1175℃的陶粒其筒压强度均超过4MPa,比表面积在3m2/g左右,为优良的轻粗集料。而掺加粉煤灰的污泥陶粒在筒压强度等性质上无法达到国家标准,需要继续改进实验方法。
     根据实验结果结合二段式污泥干化工艺,设计了一套污泥脱水-陶粒烧制-砌块生产的污泥资源化工艺。利用陶粒烧制窑的烟气余热使污泥含水率降至30%后与辅料混合,送入回转窑烧制陶粒,最终制成轻集料砌块。该工艺可充分利用污泥的矿物组分和热值,并能利用烟气余热资源,减少大气热污染,保护环境作用显著。目前建成一条日处理生活污泥20吨,年产污泥陶粒18万m3的生产线,并已投入分段调试阶段,通过估算认为该工程具有良好的经济效益。
Sludge generated from wastewater treatment plants represent a potentially harmful solid waste threatens to human health and environment. The amount of sludge is continuously increasing with due to the growth of urbanization in China. Sludge is characterized with high moisture content, huge volume, poor mechanic properties is therefore difficult to be stored and transported. Moreover, combined with a substantial amount of toxic component contains; the sludge poses a threat as a secondary pollution if not handled properly.
     Nowadays, mature sludge-management method generally contains sanitary landfill, land utilization, drying and combustion. But flows inherently exists limited its application and therefore, it is necessary to deal with through innovative treatment methods. In this article, we assessed the potential of ceramsite produce in sludge mixing with different proportions of clay and coal ashbase while analyzing the fundamental nature of sludge, combine with clay ceramsite sintering process. This method revealed the opportunity of producing light ceramsite under some certain conditions. At last, we established a new municipal sludge treatment characterized with ceramsite sintering after low temperature drying and building material production.
     Comparing the inorganic components in sludge, clay and coal ash, we concluded that the sludge is qualified as a feed material to produce ceramsite. And we also found that a low eutectic point will likely occurs at 1100℃-1200℃for sludge and clay, as well as for sludge and coal ash mixtures according to thermodynamics balance system of SiO2-Al2O3-MgO.
     In our laboratorial test, we simulated commercial ceramsite produced from using a self-design columnar stamping granulator to produce sludge ceramsite blank. Some fundamental natures of material, such as volume, ignition loss, bulk density and apparent density were determined to assess the sintering and expanding property. And we also estimated the specific surface area, cylinder compres strength, compressive strength and 24h water absorption to evaluate the potential of ceramsite for building. All the ceramisre used were sintered with modifying ratios of feed mixture and sintering temperature, and all the properties were determined after cooling of ceramsite. The optimum temperature range for sludge ceramsite ranging 1150℃-1175℃, ceramsite produced among this temperature is eligible for building material qualification. The physical characteristics of ceramsite varied with mixture proportion and the ceramsite could be an excellent light aggregate if the mixtures are fired with clay content set at 10-20% of total mixture and temperature set at 1175℃, with cylinder compressive strength large than 4MPa and specific surface area reaching 2m2/g. However, properties of sludge ceramsite produced with coal ash failed to reach the national standard thus it is essential to change the experimental design.
     Combined two-stage drying process and laboratorial results, we designed a sludge re-using process integrated with the sludge dewatering, ceramsite sintering and block manufacturing. According to our design, the moisture content of sludge was primarily reduced to 30% using flue waste heat from ceramsite production and then mix with auxiliary material. Secondly, the mixture is subject to rotary kiln and burned to produce ceramsite. And the ceramsite is further process into light aggregate block. This process is characterized with the full usage of mineral and heat value of sludge, reducing the influence of atmospheric thermal pollution and also a desirable utilizing of waste heat from flue. At present, the production line with a daily municipal sludge disposal capacity is of 20t and an annually ceramsite production is of 0.18 million m3 and it already began in trial operation. It is estimated that this project will be economically feasible and commercially applicable.
引文
曹彦圣.污泥的特性与烧制陶粒的可行性研究[硕士学位论文],浙江杭州,浙江大学200831-37
    查建明,张苗苗,王立久.生物陶粒在污水处理中作滤料的研究与应用[J].广东建材,2005.1.21-25
    池长江.生产垃圾陶粒和污泥陶粒的方法[P].中国:95101220,1995:11-10.
    丁亚兰.国内外废水处理工程工程设计实例[M].北京:化学工业出版社,2000.
    杜俊.型内循环污泥浓缩消化反应器(ICSID)特性及处理污泥性能研究[硕士学位论文].重庆,重庆大学,2007:22-23
    范锦忠.利用污泥生产节能型人造轻骨料:陶粒[J].新型建材,2004(3):25-28.
    范锦忠.利用粉煤灰生产超轻陶粒的可行性分析[J].粉煤灰,2010,3:36-40
    房凯,张忠苗等.工程废弃泥浆污染及其防治措施研究[J].岩土工程学报,2011,33(2):238-241.
    付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展[J].环境科学与技术,2004,27(5):11-14.
    冯春,杨光,杜俊,等.污水污泥堆肥重金属总量及形态变化[J].环境科学研究,2008,21(1):972102.
    钢铁研究总院.GB/T 19587-2004.气体吸附BET法测定固态物质比表面积.北京.中国建材工业出版社.2004.01
    公德华,魏朝晖污泥的资源化——制轻质陶粒的优化条件[J],环境科学与管理,2007,32(6):86-89
    龚洛书.我国轻集料生产和应用的现状与展望[J].房材与应用,1997,25(6):12-14,32.
    郭玉顺,丁建彤.粉煤灰陶粒烧胀规律与膨胀机理研究[J].粉煤灰,2003,15(3):15-18.
    杭世珺,陈吉宁等.污泥处理处置的认识误区与控制对策[J].2004年国际污泥无害化经验交流会论文汇编,2004:1-5.
    郝卓莉,刘亚敏.污泥中重金属的生物淋滤[J].石家庄职业技术学院学报.2009 21(2):17-23
    贺君,王启山,仁爱玲.污水厂污泥制轻质陶粒研究现状及应用前景[J].城市环境与城市生态,2003,16(6):13-14. 何品晶,顾国维,李笃中等.城市污泥处理与利用(第一版)[M].北京:科学出版社,2003.2-8,12-16,31-35.何志刚,王璟,巨玮.东莞市市政污泥集中处置工程总体设计[J].工业安全与环保.201036(8):14-15胡曙光,王发洲,丁庆军,等.轻集料的吸水率与预处理时间对混凝土工作性的影响[J]华中科技大学学报(城市科学版),2002,19(2):1-4.黄川,黄晶,王里奥等.采用配方均匀设计法利用脱水污泥制备陶粒的研究[J].环境工程学报,2010,4(4):919-925黄飞.城市排水管网系统的污水处理能力分析[J].化学工程与装备,2009,4:125-129.金宜英,杜欣,王志玉,等.采用污水厂污泥制陶粒的烧结工艺及配方研究[J].中国环境科学,2009,29(1):17-21金兆丰.污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003:124-136李国鼎,金琦等.固体废物处理与资源化[M].北京:清华大学出版社,1990.李磊,朱伟,林城.硫杆菌对固化污泥中重金属浸出的影响[J].环境科学,2006.27(10):2105-2109李季,吴为中.城市污水处理厂污泥堆肥及土地修复利用[A].首届北京生态建设国际论坛文集[C],2005李寿德.陶粒与固体废弃物资源化利用[J].砖瓦,2006(10):108-111李振卿,单明阳.用含重金属的污泥烧制轻骨料并应用于透水混凝土路面砖[J].建筑砌块与砌块建筑,2007,1:36-40刘莲香.污水处理厂污泥于陶粒生产中的综合利用[J].陶瓷研究与职业教育,2003,(1):35-40季冰,肖许沐,黎忠.疏浚淤泥的固化处理技术与资源化利用[J].安全与环境工程,2010,17(2):54-56.建设部城市建设研究院,上海市城市排水管理处,天津市排水管理处,中国市政工程西南设计院,西安市市政工程局,长沙市排水管理处.CJ 3025-93.城市污水处理厂污水污泥排放标准[S].金儒霖,刘永龄.污泥处置[M].北京:中国建筑工业出版社,1982:1,229-231,263-264.农牧渔业部环境保护科研监测所,北京农业大学.GB 4284-1984.农用污泥中污染物控制标准[S].马学文.城市污泥干燥特性及工艺研究[博士学位论文],浙江杭州,浙江大学2008 44-46
    马学文.我国城市污泥的区域特征及干燥特性研究[博士后报告]浙江杭州,浙江大学20082010:32-36
    马学文,翁焕新.温度与颗粒大小对污泥干燥特性的影响[J].浙江大学学报(工学版),2009,43(9):17-23
    煤炭科学研究总院GB/T212-2008煤工业分析方法北京中国标准出版社,2008.01
    孟范平,赵顺顺,张聪,等.青岛市城市污水处理厂污泥成分分析及利用方式初步研究[J].中国海洋大学学报,2007,37(6):1007-1012
    沈倩雯.利用城市给水厂污泥制砖技术研究[硕士学位论文].湖南长沙,长沙理工大学,2011:11-13
    施惠生.利用水泥窑处理污水厂污泥的应用研究[J].水泥,2002,(7):8-10
    陶俊杰.城市污水处理厂剩余污泥农用技术的研究[硕士学位论文].陕西西安,西安建筑科技大学,2006:17-18
    田宁宁,王凯军等.污水处理厂污泥处置及利用途径研究[J].工程与技术,2000,2:18-20.
    天津市硅酸盐制品厂,辽宁工业建筑设计院.粉煤灰陶粒[M].北京:中国建筑工业出版社,1975:25-30
    王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社,2001.
    汪靓,朱南文,张善发,等.污泥建材利用现状及前景探讨[J].给水排水,2005,31(3):40-44
    王静,卢宗文.国内外污泥研究现状及进展[J].市政技术,2006,24(3):140-142.
    王圃,龙腾锐等.城市给水厂污泥处理与能耗[J].城市建筑大学学报,2005,27(4):77-80.
    王洪臣.污泥处理处置设施的规划建设与管理.中国城镇污泥处理处置技术与应用高级研讨会[C].2010.秦皇岛
    王兴润,金宜英,聂永丰,等.污泥制陶粒技术可行性分析与烧结机理研究[J].环境工程学报,2007,1(4):109-114
    王兴润,金宜英,聂永丰,等.污泥制陶粒技术可行性分析与烧结机理研究[J].环境科学研究,2008,21(6):80-84
    王兴润,金宜英,王志玉,等.应用TGA-FTIR研究不同来源污泥的燃烧和热解特性[J].燃料化学学报,2007,35(1):27-31.
    王晓刚,赵铁军.轻集料混凝土的新进展[J].建筑技术开发,2003,30(10):37-39.
    韦朝海,陈传好.污泥处理、处置与利用的研究现状分析下[J].城市环境与城市生态,1998,11(4):10-13.
    魏国侠.污泥处理和资源化技术[A].2004全国能源与热工学术年会论文集(2)[C].2004
    翁焕新,马学文,苏闽华,等.利用烟气余热干化城市污泥工艺的应用[J].中国给水排水,2008,24(4):58-61
    翁焕新,苏闽华.2005.利用垃圾发电厂烟气余热干化污泥与污泥发电一体化的方法[P].中国,发明专利,专利号:
    翁焕新,苏闽华.2005.利用热电厂烟气余热的污泥干化系统[P].中国,发明专利,专利号:ZL200510049554.1.2007-02-14
    翁焕新.污泥无害化、减量化、资源化处理新技术[M].北京:科学出版社.2009.65-73
    翁焕新,苏闽华,曹彦圣等.用污泥烧制陶粒的方法.中国发明专利200910097726.02009-4-16
    翁焕新,马学文,苏闽华,等.二段式污泥低温干化的原理与水汽热量平衡[J].环境科学学报,2010,30(6):1164-1169.
    许国仁,邹金龙,孙丽欣.污泥作为添加剂制备轻质陶粒的试验研究[J].哈尔滨工业大学学报,2007,39(4):557-560
    严捍东.生活污泥改性烧制超轻陶粒的研究[J].环境污染与防治,2005(1):72-75.
    尹军,谭学军,任南琪.污水污泥处理与处置[J].中国给水排水.2003(8):15-22
    杨媛媛,胡黎明等.疏浚污泥资源化处理试验研究[J].岩土力学,2009,30(5):1323-1327.
    徐秋炎.粘土煤球灰熔点与灰份组成关系的初探[J].精细化工中间体,1985,03:31-35
    杨时元.陶粒原料性能及其找寻方向的探讨[J].建材地质,1997(4):14-19.
    冶金工业部洛阳耐火材料研究所.GB 6900.2-86.粘土、高铝质耐火材料化学分析方法重量——钼蓝光度法测定二氧化硅量[S]
    叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程,2002,10(2):85-88.
    余杰,田宁宁,王凯军.我国污泥处理、处置技术政策探讨.中国给水排水,2005,8(21):84-87.
    余杰,田宁宁,王凯军等.中国城市污水处理厂污泥处理、处置问题探讨分析[J].环境工程学报,2007,1(1):82-86
    袁玲,施惠生.焚烧灰中重金属溶出行为及水泥固化机理[J].建筑材料学报,2004,7(1):77-80
    张格红.城市污水处理厂污泥中温两相厌氧消化及资源化的研究[硕士学位论文].陕西西安,长安大学,2006:15-16
    张建频.上海市城市污泥处理与处置方法探讨[A]论文集编委会.中国土木工程学会排水委员会论文集[C]海口:2003,82-83.
    张云峰,盛金聪.城市污水处理厂污泥制备陶粒的试验研究.砖瓦世界[J].2007,(5):45-48
    赵一德,张鹏,吴志超,等.生物浸沥去除污泥中的重金属[J].环境工程,2002,20(1):47.50.
    赵晓琳,朱晓丽,郁建元.利用污泥生产生态水泥的研究[J].中国资源综合利用,2011,29(7):25-27
    赵亚乾,Davis R.D.英国污泥处置现状及其发展概述[J].给水排水,1998,24(9):25--29.
    郑斌,高燚,雷鸣等.CJ/T221-2005城市污水处理厂污泥检验方法[S].北京:中国标准出版社,2006
    庄敏捷.上海市区排水管道通沟污泥处理处置探讨[J].上海环境科学,2010,29(2):85-88.
    中国大洋矿产资源研究开发协会,青岛海洋地质研究所,核工业北京地质研究院.GB/T20260-2006.海底沉积物化学分析方法[S].北京:中国标准出版社,2006.
    中国建筑科学研究院.JGJ52-92普通混凝土用砂质量标准及检验方法.北京中国建材工业出版社.1993.10
    中国建筑科学研究院.GB/T 14684-2001建筑用砂.北京中国建材工业出版社2002.2
    中国环境保护产业协会水污染治理委员会编.中国城市污水污泥处理处置问题探讨.北京:2005年中国国际水处理技术高级专家论坛,2005,142-146.
    祝桂英.陶瓷工艺实验[M].北京:中国建筑工业出版社,1987:134-136.
    周顺桂,周立祥,黄焕忠,等.生物淋滤技术在去除污泥中重金属的应用[J].生态学报,2002,22(1):125.133.
    周立祥,胡忠明,胡霭堂.未消化生活污泥中氮磷供应特性及其环境行为[J].农村生态环境.1995(4):19-22+56
    周少奇.城市污泥处理处置与资源化[M].广州:华南理工大学出版社,2002:44-45.
    朱乐辉,朱衷榜.水处理滤料——球形轻质陶粒的研究[J].环境保护,2000.1.35-39.
    Abdul G L, Azni I, Abdul A S, et al. Reusability of sewage sludge in clay bricks [J]. Journal of Material Cycles and Waste Management..2004,6(1):41-47
    Aggelides S M, Londra P A. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil [J]. Bioresource Technology.2000, 71(3):253-259.
    Benmoussa H. Tyagi RD. Campbell PGC. Simultaneous sewage sludge digestion and metal leaching using an internal loop reactor:effect of suspended solids concentration[J]. Water Research,1998,32(8):2378-2390
    Burlingame, Gary A, Odor profiling of environmental odors [J]. Water science and technology, 1999,40(6):31-38
    Campbell H W. Sewage Sludge Treatment and Use:New Development [M]. London:Elsevier Applied Science,1989.
    Chen GW, Chang IL, Hung WT, et al. Continuous moisture distribution in waste activated sludge [J]. Journal of Environmental Engineering ASCE.1997,123(3):253-258.
    Chen JB, Peng XF, Xue Y, et al. Convective drying of sludge cake [J]. Journal of Thermal Science.2002.11 (3):277-282.
    Chen XJ, Pauly U, Rehfus S, et al. Personal care compounds in a reed bed sludge treatment system[J].Chemosphere,2009,76(8):1094-1101
    Coackley P, Allos R, The drying characteristics of some sewage sludges[J]. Journal of Institute of Sewage Purification,1962.6:557-564.
    Cristian Favoni, Dino Minichelli, Franco Tubaro, Sergio Bruckner, Alessandro Bachiorrini, Stefano Maschio. Ceramic processing of municipal sewage sludge (MSS) and steelworks slags (SS) [J]. Ceramics international,2005,31 (5):697-702.
    George S M. Concrete aggregate from wastewater sludge[J]. Concrete International, 1986,11(8):27-30.
    Glasser F P. Chemistry and microstructure of solidified waste forms[M]. Boca Raton:Lewis Publishers,1993:1-31
    Ignacio M, Luis F. Arevalo, Fernando Romero. Characterization and possible uses of ashes from wastewater treatment plants [J]. Waste management,2005,25 (10):1046-1054.
    Ignacio M, Luis F. Arevalo, Fernando Romero. Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives [J]. Waste management,2007,27 (12):1829-1844.
    Jordan M M, Almendro-Candel M B, Romero M. Application of sewage sludge in the manufacturing of ceramic tile bodies[J].Applied Clay Science,2005,30:219-224
    Jung IH, Decterov SA, Pelton AD. Critical Thermodynamic Evaluation and Optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 Systems[J]. Journal of Phase Equilibria and Diffusion 2004,25(4):329-345.
    Lee D L, Lai J Y, Mujumdar A S, Moisture distribution and dewatering efificiency for wet materials[J]. Drying Technology,2006.24(10):1201-1208.
    Lin KL, Chiang KY, Lin DF. Effect of heating temperature on the sintering characteristics of sewage sludge ash[J]. Journal of hazardous materials,2006,128 (2-3,6):175-181.
    Katanda Y, Mushonga C, Banganayi F, et al. Effects of heavy metals contained in soil irrigated with a mixture of sewage sludge and effluent for thirty years on soil microbial biomass and plant growth [J]. Physics and Chemistry of the Earth,2007,32,1185-1194.
    Mantovia P, Baldoni G, Toderi G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land:effects of long-term application on soil and crop [J]. Water Research,2005, 39,289-296.
    Mcbride MB. Mobility and Solubility of toxic metals and nutrients in soil fifteen years after sludge application [J]. Soil Science,1997,162 (7):487-500.
    Michael Al, Kafui N, Nosa O E. The leaching of chromium form cement-based waste form via a predominantly biological mechanism[J]. Advances in Environmental Research,2004,8(3): 483-491
    Moussa Samamake利用植物稳定污泥和去除重金属[博士学位论文],广东广州,华南农业大学2003
    Nagaharu Okuno, Shim Takahashi. Full scale application of manufacturing bricks from sewage. Water Science and Technology,1997,36(11):243-250
    Nakouzi S.A novel approach to paint sludge recycling [S].Journal of Material Research, 1998,13(1):53-60.
    Nielsen S, Willoughby N. Sludge treatment and drying reed beds systems in Denmark[J].Wfcter and Environmental Journal,2005,19(4):296-305. Riley CM. Relation of Chemical Properties to the Bloating of Clays[J].Journal of the American Ceramic Society,151,34(4):121-128 Smollen M, Categories of moisture content and dewatering characteristics of biological sludges, in Proceeding of the 4th World Filtration Congress[M].1986:Belgium, Ostend.22-25.
    Soda S, Iwai Y, Sei K. et al.Model analysis of energy consumption and greenhouse gas emissions of sewage sludge treatment systems with different processes and scales[J] Water Science and Shimod.2010,61(2):365-373
    Stefanakis AL, Akratos CS Melidis P. et al. Surplus activated sludge dewatering in pilot-scale sludge drying reed beds[J] Journal of Hazardous Materials,2009,172(2/3):1122-1130.
    Su Hunghai, Johnson D L. Master sintering curve:a practical approach to sintering [J]. Journal of the American Ceramic Society 79 (1996) 3211-3217
    Tammann G, Westerhold Fr, Garre B, Ernst Kordes, H. Kalsing, Chemische Reaktionen in pulverformigen Gemengen zweier Kristallarten[J]. Zeitschrift fur anorganische und allgemeine Chemie.1925 149(1):21-98
    Tay JH, Show KY. Resource recovery of sludge as a building and construction material-a future trend in sludge management [J]. Water Science and Technology.1997.36 (11):259-266.
    Tay JH, Yip WK, Show K. Clay-blended sludge as lightweight aggregate concrete material [J]. Journal of Environment Engineering-ASCE,1991,17:834-844.
    Tay JH, Show KY, Hong SY. Concrete aggregates made from sludge-marine clay mixes[J].Journal of Materials in Civil Engineering,2002,9(11):392-398.
    Vaxelaire J, Cezac P, Moisture distribution in activated sludges:a review[J]. Water Research, 2004.38(9):2215-2230.
    Vesilind PA, Ramsey TB. Effect of drying temperature on the fuel value of wastewater sludge [J]. Wastewater Management and Research.1996,14(2):189-196.
    Werthera J, Ogadab T. Sewage sludge combustion [J]. Progress in Energy and Combustion Science.1999,25(1):55-116
    Yin Y, Impellitteri C A, You S J, et al. The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils [J]. Science of the Total Environment,2002,287,107-119.
    Young Jun Park, Soon Ok Moon, Jong Heo. Crystalline phase control of glass ceramics obtained from sewage sludge Cow Ash [J]. Ceramic International 29 (2003) 223-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700