用户名: 密码: 验证码:
人参皂甙Rb1调节AQP4表达在大鼠脊髓缺血再灌注损伤中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓缺血再灌注损伤(Spinal cord ischemia-reperfusion injury, SCII)一直是神经科学研究的难点之一,SCII是指在某种损伤因素作用下脊髓经过一定时间缺血后得到血液再灌注后出现明显的功能障碍,甚至出现不可逆性脊髓神经元迟发性死亡的现象。脊髓缺血再灌注的主要损伤因素在于再灌注后的继发性损伤,决定了脊髓缺血再灌注损伤的预后。继发损伤的发病机制主要涉及脊髓水肿、神经细胞凋亡等机制,因此保护脊髓神经元,避免脊髓水肿,是治疗脊髓缺血再灌注损伤的关键所在。
     水通道蛋白4(Aquaporin4,AQP4)广泛分布于脊髓之中,特异性介导水分子的双向转运,对维持细胞内外渗透压起着关键的作用。脊髓缺血再灌注损伤的具体发病机制虽不清楚,但早期脊髓组织水肿是得到广泛公认的病理改变,因此推测水通道蛋白4在脊髓缺血再灌注损伤中表达异常,而调控水通道蛋白4表达无疑有希望成为治疗脊髓缺血再灌注损伤的新型特异性靶点。
     人参作为一种名贵的中药,药性温和,药理作用广泛,其作为药物使用已有近3500年的历史。人参具有免疫调节、抗衰老、抗氧化、减少细胞凋亡、保护神经等作用。其发挥功效的主要成分之一是人参皂甙,人参皂甙是从人参在地表以上部分的茎叶中提取的有效成分,目前已提纯的单体成分有50多种。近年来,我国学者尝试将人参皂甙用于治疗神经系统疾病及神经损伤,已取得一定疗效,但人参皂甙对中枢神经系统的保护作用机制尚不清楚,缺乏系统深入的研究。在众多的人参皂甙单体中,人参皂甙单体Rb1具有显著的神经修复,抗氧化,清除氧自由基,减少细胞凋亡等效应,而脊髓缺血再灌注损伤中也涉及上述损伤机制,因此推测人参皂甙Rb1可能在脊髓缺血再灌注损伤中发挥重要治疗效应。
     本研究拟通过建立大鼠脊髓缺血再灌注损伤模型,应用The Basso BeattieBresnahan(BBB)评分系统评价脊髓神经功能;HE染色,尼氏体染色,Tunel凋亡检测等方法明确神经细胞形态变化及凋亡情况;应用免疫荧光,western blot,Real-time PCR等手段检测水通道蛋白4的表达情况。同时给予人参皂甙Rb1干预,观察人参皂甙Rb1干预对上述观测指标的影响,明确AQP4、人参皂甙Rb1和SCII三者间的作用及其可能机制,为临床研发新型治疗SCII的药物提供理论基础。
     1.人参皂甙Rb1对大鼠脊髓缺血再灌注损伤的干预作用目的:明确人参皂甙Rb1对SCII的治疗作用,寻找适宜治疗剂量方法:SD大鼠120只,随机分为空白对照组,脊髓缺血再灌注组,人参皂甙5mg/kg·d治疗组,人参皂甙10mg/kg·d治疗组,人参皂甙治20mg/kg·d治疗组。采用腹主动脉夹闭法建立SCII模型,不同组别给予相应剂量的人参皂甙Rb1腹腔注射。给予腹腔注射人参皂甙后即刻记为0点,24小时后记为1d,分别在1d、3d、5d和7d四个时间点处死大鼠,采用BBB评分系统评价神经功能,HE染色观察病理组织结构和细胞形态改变,Tunel方法检测细胞凋亡情况。结果:脊髓缺血再灌注组,人参皂甙Rb15mg/kg·d治疗组,人参皂甙Rb110mg/kg·d治疗组,人参皂甙Rb120mg/kg·d治疗组均不同程度存在后肢功能障碍。人参皂甙Rb110mg/kg·d治疗组的BBB评分在1d后明显优于脊髓缺血再灌注组(P<0.05)和人参皂甙Rb15mg/kg·d治疗组(P<0.05);但与人参皂甙Rb120mg/kg·d治疗组的BBB评分无显著差异(P>0.05)。HE染色显示脊髓缺血再灌注组部分神经元受损,一些神经元胞体膨大,结构不清,可见细胞胞核固缩,组织间充血。人参皂甙Rb15mg/kg·d治疗组,人参皂甙Rb110mg/kg·d治疗组,人参皂甙Rb120mg/kg·d治疗组的镜下病理组织结构和细胞形态与脊髓缺血再灌注组比较均有一定的改善。Tunel检测显示空白对照组很少有细胞凋亡,脊髓缺血再灌注组的神经细胞凋亡率较高。在3d,5d和7d三个时间点,脊髓缺血再灌注组的细胞凋亡率较空白组细胞显著增高(P<0.05);与脊髓缺血再灌注组相比,不同剂量的人参皂甙Rb1干预均会显著减少细胞凋亡(P<0.05);人参皂甙Rb15mg/kg·d治疗组的细胞凋亡率显著高于人参皂甙Rb110mg/kg·d治疗组(P<0.05);但是给予人参皂甙Rb110mg/kg·d和20mg/kg·d比较,细胞凋亡率没有显著性差异(P﹥0.05)。结论:人参皂甙Rb1对大鼠SCII有治疗作用,适宜剂量为10mg/kg·d。
     2.水通道蛋白4在大鼠脊髓缺血再灌注损伤中的动态表达变化目的:探讨水通道蛋白4在大鼠脊髓缺血再灌注损伤中的作用方法:SD大鼠72只随机分为空白组,假手术组和SCII组,每组24只。建立大鼠脊髓缺血再灌注损伤模型,并于1d、3d、5d、7d四个时间点分别处死6只。BBB评分评价神经功能,Western blot和免疫荧光方法检测AQP4的表达情况。结果:空白对照组和假手术组在不同时间点的BBB评分均为21分,SCII组的BBB评分在1d时最低,随时间推移逐渐增加,3d明显优于1d(P<0.05),5d明显优于3d(P<0.05),5d明显优于7d(P<0.05)。Western blot在34KD及43KD分子量处可见特异性条带,SCII组早期AQP4的表达水平显著下降,即在1d、3d、5d、7d四个时间点AQP4的表达显著低于空白对照组和假手术组,但呈逐渐增加趋势;但在7d仍显著低于正常空白组和假手术组(P<0.05)。免疫荧光检测AQP4的表达变化趋势与Western blot的检测结果相似。结论:SCII会导致AQP4低表达,这可能是造成SCII神经功能障碍的重要原因。
     3.人参皂甙Rb1通过调控AQP4环节治疗脊髓缺血再灌注损伤的机制研究目的:探讨人参皂甙Rb1对SCII大鼠AQP4表达的调控作用方法:SD大鼠96只,随机分为正常组,假手术组,SCII组和人参皂甙Rb1治疗组,每组24只。建立大鼠脊髓缺血再灌注损伤模型,治疗组每日给予腹腔注射人参皂甙Rb110mg/kg·d。所有组别分别在1d、3d、5d、7d四个时间点处死6只大鼠。BBB评分系统评价神经功能。HE染色、尼氏体染色检测脊髓组织结构和细胞形态变化,Tunel方法检测细胞凋亡情况。分别采用Western blot、real timePCR和免疫荧光法检测AQP4的蛋白和mRNA表达变化。
     结果:与SCII对照组比较,人参皂甙Rb1治疗可显著增加大鼠BBB评分,改善神经细胞形态,减少细胞凋亡。人参皂甙Rb1可以显著增加SCII模型的AQP4蛋白和mRNA表达,并且在人参皂甙Rb1干预7d后AQP4蛋白和mRNA表达水平恢复至正常水平,与空白对照组比较无显著差异(P﹥0.05)。
     结论:人参皂甙Rb1对大鼠SCII具有治疗效果,其作用机制可能是上调AQP4表达,减少神经水肿及细胞凋亡。
Spinal cord ischemia-reperfusion injuryis(SCII) is one of the difficulties ofneuroscience research. SCII usually occurs after spinal cord injury, spinal cord againreceive blood perfusion after a certain period of ischemia and appearant dysfunction.In some cases, even resulting the phenomenon of irreversible spinal cord delayedneuronal death. The main damage caused by spinal cord ischemia-reperfusion injuryis secondary injury after reperfusion, which determined the prognosis of spinal cordischemia-reperfusion injury. Therefore, protecting the spinal cord neurons to avoidspinal cord edema, is the key to the treatment of spinal cord ischemia and reperfusioninjury.
     Aquaporin4is widely distributed in the spinal cord. The bi-directionaltransferation of water molecules specificity mediated by AQP4, which play a key rolein the maintenance of intracellular and extracellular osmotic pressure. Thepathogenesis of spinal cord ischemia-reperfusion injury is unclear, but earlypathological changes lead to tissue edema is the most important one of themechanisms. Thus, aquaporin4become a specific target for the treatment of spinalcord ischemia-reperfusion injury.
     Ginseng is a valuable medicine, which has extensive pharmacological effects andis mild in nature. Ginsenoside is the active ingredient extracted from the leaves andstems of ginseng. The Ginsenoside have more than50kinds of monomer have beenpurificated. In recent years, scholars tried to apply ginsenosides in nervous systemdisease and achieved a certain effects. However, the protective mechanism ofginsenosides on the central nervous system is still lack of in-depth research.Ginsenoside Rb1is a diol group ginsenosides, with the role of inhibition of the central nervous system, decreasing the intracellular calcium, antioxidant, remove free radicals,and reduction of myocardial ischemia and reperfusion injury. Therefore, we selectedginsenoside Rb1as the experimental drug.
     In this study, a spinal cord ischemia-reperfusion injury model of rats wasestablished. Application of BBB scoring system, HE staining, Nissl staining, the Tunelapoptosis detection evaluated neurological function of rats. Immunofluorescence,Western blot and Real-time PCR were applied to analysis the levels of AQP4proteinand mRNA, respectively. Observed above-mentioned changes after application ofginsenoside Rb1treatment, and offering new ideas for the exploitation of treatmentSCII drug.1. Effects of Ginsenoside Rb1on spinal cord ischemia-reperfusion injuryof rats
     Objectives:
     Determined treatment effects of ginsenoside Rb1on SCII and finding the appropriatetreatment doseMethods:
     One handred and twenty Sprague–Dawley rats were randomly divided into fivegroups with twelve rats in each group. The groups were: blank group; SCII group;ginsenoside Rb1-treated group with5mg/kg·d; ginsenoside Rb1-treated group with10mg/kg·d; and ginsenoside Rb1-treated group with20mg/kg·d. Abdominal aorticclipping method establishes the SCII model, and given intraperitoneal injection ofdifferent doses of ginsenoside Rb1intervention. BBB scoring system to evaluate thenerve function, organizational structure and cell morphology were determined by HEstaining. The apoptosis was detected by Tunel.
     Results:
     Hind limb dysfunction appearant in all the following groups including SCII group;ginsenoside Rb1-treated with5mg/kg·d group; ginsenoside Rb1-treated with10mg/kg·d group; and ginsenoside Rb1-treated with20mg/kg·d group. But the degree of dysfunction is different. After10mg/kg·d ginsenoside Rb1-treated for1day, theBBB score was significantly higher than those of SCII group (P<0.05) and5mg/kg·dginsenoside Rb1-treated group (P<0.05). Interestingly,20mg/kg·d ginsenoside Rb1-treated for1day also could increase the BBB score compared to SCII group (P<0.05)and5mg/kg·d ginsenoside Rb1-treated group (P<0.05). However, we failed to detectany difference for20mg/kg·d ginsenoside Rb1-treated as compared to that of10mg/kg·d ginsenoside Rb1-treated (P>0.05). Cell morphology study found, in SCIIgroup, some neurons damaged, some neuron body swelling, structure of neuron isunclear, cell nucleus condensation, inter-organizational congestive. Given differentdoses of ginsenoside intervention can improve the cell morphology. Givenginsenoside (either10mg/kg·d or20mg/kg·d) interve for7days, cell structuresignificantly improved and nuclear structure becomes clear. Tunel study showedapoptosis was significantly increased of SCII group compared to blank group at5dand7d (P<0.05). Apoptosis rate of different ginsenoside Rb1dose groups comparedto the blank group had no significant difference. Apoptosis rate of ginsenoside Rb1group was markedly lower than that of SCII group (P<0.05). At the same time, furtherstudies showed that apoptosis rate of Rb1-treated with10mg/kg·d group wassignificantly lower than that of Rb1-treated with5mg/kg·d group (P<0.05). However,the apoptosis rate have no significant difference between Rb1-treated with10mg/kg·dgroup and Rb1-treated with20mg/kg·d group (P>0.05).
     Conclusion:
     Ginsenoside Rb1has therapeutic effect on SCII, and the appropriate dose is10mg/kg·d.
     2. Expression of AQP4on spinal cord ischemia-reperfusion injury of rats
     Objectives:
     To establish a rats model of spinal cord ischemia-reperfusion injury, to explore theeffect of AQP4on spinal cord ischemia-reperfusion injury, and its possiblemechanism.
     Methods:Sprague–Dawley rats were randomly divided into three groups with twenty-four ratsin each group. The groups were: sham operation; blank group; and spinal cordischemia-reperfusion injury at1,3,5, or7days after reperfusion started, six rats ofevery group were then killed, and the spinal cords were quickly removed, and theexpression of AQP4was determined by western-blot and immunofluorescence.
     Results:
     The scores of spinal cord injury was determined by BBB system. At different time,the BBB score of blank group and sham operation have no fluctuations, and has nosignificant differences. In spinal cord ischemia-reperfusion injury group, the BBBscore has a dynamic change, with a significant increasing at1d~7d, going to thehighest level at5d and7d, and the acore at5d and7d have no significant differences.The AQP4protein production were markedly lower than those of blank group at1d,3d,5d and7d, respectively. At the same time, the AQP4measured also byimmunofluorescence, the expression of AQP4in spinal cord ischemia-reperfusioninjury group significant decreased compared to another two groups from1d, thengradually increased, but until7d, the AQP4expression still lowed than those of shamoperation group and blank group (P<0.05).
     Conclusion:
     The AQP4level was significantly decreased in the SCII early phase, AQP4expressiongradually recovery with time tration, indicating that the low expression of AQP4might play an important role in the mechanisms of SCII neurological dysfunction. 3. Effects of ginsenoside Rb1on spinal cord ischemia-reperfusion injuryand its mechanism.
     Objectives:
     To investigate the effect of ginsenoside Rb1on spinal cord ischemia-reperfusioninjury of rats and its mechanism.
     Methods:
     Ninety-six Sprague–Dawley rats were randomly divided into four groups withtwenty-four rats in each group. The groups were: blank group; sham operation; SCIIgroup; and ginsenoside Rb1-treated group. In ginsenoside Rb1-treated group,intraperitoneal injection with ginsenoside Rb110mg/kg·d for7days. At1,3,5, or7days after reperfusion started, six rats of every group were then killed, and thefollowing studies were performed: the scores of spinal cord injury was determined byBBB system, the organizational structure were analyzed by HE staining, Nisslstaining, and the apoptosis rate was measured by Tunel. The AQP4expression wasdetected with immunofluorescence, Western blot and Real-time PCR.
     Results:
     The BBB score of ginsenoside Rb1-treated group was higher than that of SCII group.Ginsenoside Rb1had protect effects on the morphous of neurone, and compared withthe SCII group, the congestion of tissue space and cellular swelling were signifficantreduced. Nissl staining showed, the structure of Nissl body was obscure, presentinggranular, surface loosening in SCII group, and the impairment was significantlyinhibited by ginsenoside Rb1. Tunel also found ginsenoside Rb1treatment cansignificantly reduced apoptosis compared with SCII group. The dynamic changes ofAQP4in SCII was significantly decreased from1d to7d, especially in1d. Withginsenoside Rb1treatment, AQP4expression could notably been up-regulated. Theseresults indicate that ginsenoside Rb1could partly block the AQP4reduction causingby SCII.
     Conclusion:
     Ginsenoside Rb1had treatment effects on SCII. The possible mechanism may be involved with up-regulation AQP4expression, reduction nerve adema and apoptosis.
引文
[1] Radcliff KE, Kepler CK, Delasotta LA, et al. Current management review ofthoracolumbar cord syndromes[J]. Spine J,2011;11(9):884-892.
    [2] Anderberg L, Aldskogius H, Holtz A. Spinal cord injury-scientific challengesfor the unknown future[J]. Ups J Med Sci,2007;112(3):259-288.
    [3] Lanska DJ. Historical perspective: neurological advances from studies of warinjuries and illnesses[J]. Ann Neurol,2009;66(4):444-459.
    [4] Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cordinjury[J]. Nat Rev Neurosci,2006;7(8):628–643.
    [5] Albert T, Ravaud JF, Tetrafigap group. Rehabilitation of spinal cord injury inFrance: a nationwide multicentre study of incidence and regional disparities[J].Spinal Cord,2005;43(6):357-365.
    [6]李建军,周红俊,洪毅,等.2002年北京市脊髓损伤发病率调查[J].中国康复理论与实践,2004;7:412-413.
    [7] Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiologyof acute apinal cord injury[J]. Spine,2001;26(24):S2-12.
    [8] Shingu H, Ohama M, Ikata T, et al. A nationwide epidemiological survey ofspinal cord injuries in japan from January1990to December1992[J].Paraplegia,1995;33(4):183-188.
    [9] Schwab JM, Brechtel K, Mueller CA, et al. Experimental strategies to promotespinal cord regeneration--an integrative perspective[J]. Prog Neurobiol,2006;78(2):91-116.
    [10] Azmoon S, Demarest C, Pucillo AL, et al. Neurologic and cardiac benefits oftherapeutic hypothermia[J]. Cardiol Rev,2011;19(3):108-114.
    [11] Sliwa JA, Maclean IC. Ischaemic myelopathy: a review of spinal vasculatureand related clinical syndromes[J]. Arch Phys Med Rehabil,1992;73(4):365-372.
    [12] Hwang J, Huh J, Kim J, et al. Pretreatment with erythropoietin attenuates theneurological injury after spinal cord ischemia[J]. Spinal Cord,2012;50(3):208-212.
    [13] Hwang J, Kim J, Park S, et al. Magnesium sulfate does not protect spinal cordagainst ischemic injury[J]. J Invest Surg,2011;24(6):250-256
    [14] Shaafi S, Afrooz MR, Hajipour B, et al. Anti-oxidative effect of lipoic Acid inspinal cord ischemia/reperfusion[J]. Med Princ Pract,2011;20(1):19-22.
    [15] Yu QJ, Zhou QS, Huang HB, et al. Effects of ketamine on the balance of ionsCa2+, Mg2+, Cu2+and Zn2+in the ischemia-reperfusion affected spinal cordtissues in rabbits[J]. Neurochem Res,2009;34(12):2192-2196.
    [16] Shi E, Kazui T, Jiang X, et al. NS-7, a novel Na+/Ca2+channel blocker,prevents neurologic injury after spinal cord ischemia in rabbits[J]. J ThoracCardiovasc Surg,2005;129(2):364-371.
    [17] Kurihara M. Role of monoamines in experimental spinal cord injury in rats.Relationship between Na-K ATPase and lipid peroxidation. J Neurosurg1985;62(5):743–749.
    [18] Regan RF, Choi DW. Glutamate neurotoxicity in spinal cord cell culture.Neurosci1991;43(2-3):585–591.
    [19] Chen WF, Sung CS, Jean YH, et al. Suppressive effects of intrathecalgranulocyte colony-stimulating factor on excessive release of excitatory aminoacids in the spinal cerebrospinal fluid of rats with cord ischemia: role ofglutamate transporters[J]. Neuroscience,2010;165(4):1217-1232
    [20] Tasaki K, Ruetzler CA, Ohtsuki T, et al. Lipopolysaccharide pre-treatmentinduces resistance against subsequent focal cerebral ischemic damage inspontaneously hypertensive rats[J]. Brain Res,1997;748(1-2):267-270.
    [21] Emmez H, Yildirim Z, Kale A, et al. Anti-apoptotic and neuroprotective effectsof α-lipoic acid on spinal cord ischemia-reperfusion injury in rabbits[J]. ActaNeurochir,2010;152(9):1591-1600
    [22] Ning N, Dang X, Bai C, et al. Panax notoginsenoside produces neuroprotectiveeffects in rat model of acute spinal cord ischemia-reperfusion injury[J]. JEthnopharmacol,2012;139(2):504-512.
    [23] Gorio A, Madaschi L, Zadra G, Marfia G et al. Reparixin, an inhibitor ofCXCR2function, attenuates inflammatory responses and promotes recovery offunction after traumatic lesion to the spinal cord[J]. J Pharmacol Exp Ther,2007;322(3):973-981.
    [24] Carlson SL, Parrish ME, Springer JE, et al. Acute inflammatory response inspinal cord following impact injury. Exp Neurol,1998;151(4):77–88.
    [25] Matsuo Y, Kihara T, Ikeda M, et al. Role of neutrophils in radical productionduring ischemia and reperfusion of the rat brain: effect of neutrophil deletion onextracellular ascorbyl radical formation[J]. J Cereb Blood Flow Metab,2001;41(36):98-106.
    [26] Campagnolo DI, Bartlett JA, Keller SE. Influence of neurological level onimmune function following spinal cord injury:a review[J]. Spinal Cord Med,2000;23(2):121-128.
    [27] Farhood A, McGuire GM, Manning AM, et al. Intercellular adhesion molecule-1(ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusioninjury in rat liver.[J]Leukoc Biol,1995,57(3):368-374.
    [28] Neubauer K, Eichhorst ST, Wilfling T, et al. Sinusoidal intercellular adhesionmolecule-1up-regulation precedes the accumulation of leukocyte functionantigen-1-positive cells and tissue necrosis in a model of carbontetrachloride-induced acute rat liver injury[J]. Lab Invest,1998;78(2):185-194.
    [29] Tomoeda H. Effects of leukocyte-depleted warm blood cardioplegia on cardiacand endothelial function[J]. Kurume Med J,1999;46(1):31-38.
    [30] Ionescu CV, Cepinskas G, Savickiene J, et al. Neutrophils induce sequentialfocal changes in endothelial adherens junction components:role of elastase[J].Microcirculation,2003;10(2):205-210.
    [31] Burne MJ, Elghandour A, Haq M, et al. IL-1and TNF independent pathwaysmediate ICAM-1/VCAM-1up-regulation in ischemia reperfusion injury[J]. JLeukoc Biol,2001;70(2):192-198.
    [32]臧虎,杨小玉,朱庆三,等.大鼠脊髓缺血再灌注损伤后细胞间黏附因子-1的表达对损伤程度和预后的评估[J].中国临床康复杂杂志,2004;8(5):884-885.
    [33]杨小玉,朱庆三.脊髓缺血再灌注损伤细胞间黏附分子-1及调节因子IL-lB表达作用[J].中国脊柱脊髓损伤杂志,2004;3(1):39-42.
    [34] Wang YF, Gu YT, Xu WB, et al. Temporary loss of perivascular aquaporin-4inwhite matter after the spinal cord ischemic injury of rats[J]. Neuroreport,2009;20(2):145-149.
    [35] Hawryluk GW, Rowland J, Kwon BK, et al. Protection and repair of the injuredspinal cord: a review of completed, ongoing, and planned clinical trials for acutespinal cord injury[J]. Neurosurg Focus,2008;25(5):E14-15.
    [36] Nehrt A, Rodgers R, Shapiro S, et al. The critical role of voltage-dependentcalcium channel in axonal repair following mechanical trauma[J]. Neuroscience,2007;146(4):1504-1512.
    [37] Sharma HS. Selected combination of neurotrophins potentiate neuroprotectionand functional recovery following spinal cord injury in the rat[J]. ActaNeurochir Suppl,2010;106(1):295-300.
    [38] Yara T, Kato Y, Kataoka H, et al. Environmental factors involved in axonalregeneration following spinal cord transection in rats[J]. Med Mol Morphol,2009;42(3):150-154.
    [39] Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels inXenopus oocytes expressing red cell CHIP28protein[J]. Science,1992;256(5055):385-387.
    [40] Shen L, Zhu Z, Huang Y, et al. Expression profile of multiple aquaporins inhuman gastric carcinoma and its clinical significance[J]. Biomed Pharmacother,2010;64(5):313-318.
    [41] Isokpehi RD, Rajnarayanan RV, Jeffries CD, et al. Integrative sequence andtissue expression profiling of chicken and mammalian aquaporins[J]. BMCGenomics,2009,14(1);10:S7-8.
    [42] Boone M, Deen PM. Congenital nephrogenic diabetes insipidus: what can welearn from mouse models[J]? Exp Physiol,2009;94(2):186-190.
    [43] Amiry-Moghaddam M, Frydenlund DS, Ottersen OP. Anchoring of aquaporin-4in brain: molecular mechanisms and implications for the physiology andpathophysiology of water transport[J]. Neuroscience,2004;129(4):999-1010.
    [44] Saini H, Fernandez G, Kerr D, et al. Differential expression of aquaporin-4isoforms localizes with neuromyelitis optica disease activity[J]. JNeuroimmunol,2010;221(1-2):68-72.
    [45] Nicaise C, Soyfoo MS, Authelet M, et al. Aquaporin-4overexpression in ratALS model[J]. Anat Rec,2009;292(2):207–213.
    [46] Filippidis AS, Kalani MY, Rekate HL. Hydrocephalus and aquaporins: the roleof aquaporin-4[J]. Acta Neurochir Suppl,2012;113(1):55-58.
    [47] Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, et al. Structure and functionsof aquaporin-4-based orthogonal arrays of particles[J]. Int Rev Cell Mol Biol,2011;287(1):1-41.
    [48] Jarius S, Wildemann B. AQP4antibodies in neuromyelitis optica: diagnostic andpathogenetic relevance[J]. Nat Rev Neurol,2010;6(7):383-392.
    [49] Zeng XN, Sun XL, Gao L, et al. Aquaporin-4deficiency down-regulatesglutamate uptake and GLT-1expression in astrocytes[J]. Mol Cell Neurosci,2007;34(1):34-39.
    [50] Kiening KL, van Landeghem FK, Schreiber S, et al. Decreased hemisphericAquaporin-4is linked to evolving brain edema following controlled corticalimpact injury in rats[J]. Neurosci Lett,2002;324(2):105-108.
    [51] Zador Z, Stiver S, Wang V, et al. Role of aquaporin-4in cerebral edema andstroke[J]. Handbook of Experimental Pharmacology.2009;190:159170.
    [52] Verkman AS, Binder DK, Bloch O, et al. Three distinct roles of aquaporin-4inbrain function revealed by knockout mice[J]. Biochim et Biophysia Acta,2006;1758(8):1085-1093.
    [53] Papadopoulos MC, Verkman AS. Aquaporin-4and brain edema[J]. PediatrNephrol,2007;22(6):778-784.
    [54] Lim JH, Gibbons HM, O'Carroll SJ, et al. Extracellular signal-regulated kinaseinvolvement in human astrocyte migration[J]. Brain Res,2007;1164(1):1-13.
    [55] Auguste KI, Jin S, Uchida K, et al. Greatly impaired migration of implantedaquaporin-4-deficient astroglial cells in mouse brain toward a site of injury[J].FASEB J,2007;21(1):108-116.
    [56] Gordon N. Epilepsy and disorders of neuronal migration. II: Epilepsy as asymptom of neuronal migration defects[J]. Dev Med Child Neurol,1996;38(1):1131-1134.
    [57] Li J, Patil RV, Verkman AS. Mildly abnormal retinal function in transgenic micewithout Muller cell aquaporin-4water channels[J]. Invest Ophthalmol Vis Sci,2002;43(2):573–579.
    [58] Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4waterchannels[J]. J Biol Chem,2001;276(33):31233–31237.
    [59] Lu DC, Zhang H, Zador Z, et al. Impaired olfaction in mice lacking aquaporin-4water channels[J]. FASEB J,2008;22(9):3216–3223.
    [60] Binder DK, Yao X, Zador Z, et al. Increased seizure duration and slowedpotassium kinetics in mice lacking aquaporin-4water channels[J]. Glia,2006;53(6):631–636.
    [61] Zhang H, Verkman AS. Aquaporin-4independent Kir4.1K+channel function inbrain glial cells[J]. Mol Cell Neurosci,2008;37(1):1–10.
    [62] Li L, Zhang H, Verkman AS. Greatly attenuated experimental autoimmuneencephalomyelitis in aquaporin-4knockout mice[J]. BMC Neurosci,2009;10(1):94-96.
    [63] Li L, Zhang H, Varrin-Doyer M, Zamvil SS, et al. Proinflam matory role ofaquaporin-4in autoimmune neuroinflammation[J]. FASEB J,2011;25(5):1556-1566.
    [64] Pittock SJ, Weinshenker BG, Lucchinetti CF, et al. Neuromyelitis optica brainlesions localized at sites of high aquaporin4expression[J]. Arch Neurol,2006;63(7):964-968.
    [65] Jung JS, Bhat RV, Preston GM, et al. Molecular characterization of an aquaporincDNA from brain: candidate osmoreceptor and regulator of water balance[J].Proc Natl Acad Sci USA,1994,91(26):13052-13056.
    [66] Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channelsinmouse spinal cord[J]. Neuroscience,2004;127(3):685-693.
    [67] Waters P, Jarius S, Littleton E, et al. Aquaporin-4antibodies in neuromyelitisoptica and longitudinally extensive transverse myelitis[J]. Arch Neurol,2008;65(7):913-919.
    [68] Takahashi T, Fujihara K, Nakashima I, et al. Anti-aquoporin-4antibody isinvolved in the pathogenesis ofNMO: a study on antibody titre[J]. Brain,2007;130(Pt5):1235-1243.
    [69] Fujiki M, Furukawa Y, Kobayashi H, et al. Geranylgeranylacetone limitssecondary injury, neuronal death, and progressive necrosis and cavitation afterspinal cord injury[J]. Brain Res,2005;1053(1-2):175–184.
    [70] Leypold BG, Flanders AE, Burns AS. The early evolution of spinal cord lesionson MR imaging following traumatic spinal cord injury[J]. AJNR Am JNeuroradiol,2008;29(5):1012–1016.
    [71] Nesic O, Lee J, Ye Z, et al. Acute and chronic changes in aquaporin4expressionafter spinal cord injury[J]. Neuroscience,2006;143(3):779–792.
    [72] Saadoun S, Bell BA, Verkman AS, et al. Greatly improved neurologicaloutcome after spinal cord compression injury in AQP4-deficient mice[J]. Brain,2008;131(Pt4):1087–1098.
    [73] Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascularaquaporin-4in neocortex after transient middle cerebral artery occlusion inmice[J]. Proc Natl Acad Sci USA,2006;103(36):13532–13536.
    [74] Lu H, Sun SQ. A correlative study between AQP4expression and themanifestation of DWI after the acute ischemic brain edema in rats[J]. Chin MedJ,2003;116(7):1063–1069.
    [75] Meng S, Qiao M, Lin L, et al. Correspondence of AQP4expression andhypoxic-ischaemic brain oedema monitored by magnetic resonance imaging inthe immature and juvenile rat[J]. Eur J Neurosci,2004;19(8):2261–2269.
    [76] Ou X, Jin H, Guo L, et al. Status and prospective on nutritional physiology andfertilization of Panax notoginseng[J]. Zhongguo Zhong Yao Za Zhi,2011;36(19):2620-2624.
    [77] Wang HY, Qi LW, Wang CZ, et al. Bioactivity enhancement of herbalsupplements by intestinal microbiota focusing on ginsenosides[J]. Am J ChinMed,2011;39(6):1103-1115.
    [78] Liu D, Pu S, Qian S, et al. Chemical constituents of Chinese red ginseng[J].Zhongguo Zhong Yao Za Zhi,2011;36(4):462-464.
    [79] Hu S, Concha C, Lin F, et al. Adjuvant effect of ginseng extracts on the immuneresponses to immunisation against Staphylococcus aureus in dairy cattle[J]. VetImmunol Immunopathol,2003;91(1):29-37.
    [80]李永坤,陈晓春,朱元贵.人参皂甙Rb1减轻冈田酸诱导的大鼠海马神经元Tau蛋白过度磷酸化[J].生理学报,2005;57(2):154-160.
    [81]耿庆,乌达,谢远财,等.人参皂甙Rb1对肺缺血-再灌注损伤细胞凋亡及其调控基因表达的影响[J].中国中西医结合急救杂志,2005;12(3):159-161.
    [82] Zong Y, Ai QL, Zhong LM, et al. Ginsenoside Rg1Attenuates Lipopolysaccharide-Induced Inflammatory Responses Via the Phospholipase C-γ1Signaling Pathway inMurine BV-2Microglial Cells[J]. Curr Med Chem,2012;19(5):770-779.
    [83] Wu CF, Bi XL, Yang JY, et al. Differential effects of ginsenosides on NO andTNF-alpha production by LPS-activated N9microglia[J]. Int Immunopharmacol,2007;7(3):313-320.
    [84] Hu C, Song G, Zhang B, et al. Intestinal metabolite compound K of panaxosideinhibits the growth of gastric carcinoma by augmenting apoptosis via Bid-mediated mitochondrial pathway[J]. J Cell Mol Med,2012;16(1):96-106.
    [85] Wang XD, Gu TX, Shi EY, et al. Effect and mechanism of panaxoside Rg1onneovascularization in myocardial infarction rats[J]. Chin J Integr Med,2010;16(2):162-166.
    [86] Liang W, Ge S, Yang L, et al. Ginsenosides Rb1and Rg1promoteproliferation and expression of neurotrophic factors in primary Schwann cellcultures[J]. Brain Res,2010;1357(1):19-25.
    [87] Lu MC, Lai TY, Hwang JM, et al. Proliferation-and migration-enhancingeffects of ginseng and ginsenoside Rg1through IGF-I-and FGF-2-signalingpathways on RSC96Schwann cells[J]. Cell Biochem Funct,2009;27(4):186-192.
    [88] Zhang MH, Fan JM, Xie XS, et al. Ginsenoside-Rg1protects podocytes fromcomplement mediated injury[J]. J Ethnopharmacol,2011;137(1):99-107.
    [89] Guo Y, Yang T, Lu J, et al. Rb1postconditioning attenuates liver warmischemia-reperfusion injury through ROS-NO-HIF pathway[J]. Life Sci,2011;88(13-14):598-605.
    [90] Fan L, Shi H, Li X. Advances in studies on metabolism and biotansformation ofginsenosides in vitro[J]. Zhongguo Zhong Yao Za Zhi,2011;36(15):2021-2026.
    [91] Li XF, Lui CN, Jiang ZH, et al. Neuroprotective effects of ginsenosides Rh1andRg2on neuronal cells. Chin Med,2011;6(1):19-20.
    [92] Sakanaka M, Zhu P, Zhang B, et al. Intravenous infusion of dihydroginsenosideRb1prevents compressive spinal cord injury and ischemic brain damagethrough upregulation of VEGF and Bcl-XL. J Neurotrauma,2007Jun;24(6):1037-1054.
    [93]郭岱琦,杨雷,肖建德.人参皂甙对大鼠急性脊髓损伤的影响实验研究[J].中国现代医学杂志,2004;14(12):69-74.
    [94]刘景臣,袁绍辉,赵刚.人参皂甙对脊髓损伤后脊髓组织及血中SOD和GSH的影响[J].白求恩医科大学学报,2000;26(3):238-240.
    [95] Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injuredspinal cord. J Neurotrauma,2006;23(3-4):318-334.
    [96] Ballard JL. Thoracoabdominal aortic aneurysm repair: historical review anddescription of a re-engineered technique. Perspect Vasc Surg Endovasc Ther,2005;17(3):207-215.
    [97] Xu WB, Gu YT, Wang YF, et al. Bradykinin preconditioning modulatesaquaporin-4expression after spinal cord ischemic injury in rats. Brain Res,2008;1246(3):11-18.
    [98] Yousuf S, Atif F, Kesherwani V, et al. Neuroprotective effects of Tacrolimus(FK-506) and Cyclosporin (CsA) in oxidative injury. Brain Behav,2011;1(2):87-94.
    [99] Xiong M, Chen S, Yu H, et al. Neuroprotection of erythropoietin andmethylprednisolone against spinal cord ischemia-reperfusion injury. J HuazhongUniv Sci Technolog Med Sci,2011;31(5):652-656.
    [100] Sahin MA, Onan B, Guler A, et al. Cilostazol, a type III phosphodiesteraseinhibitor, reduces ischemia/reperfusion-induced spinal cord injury. Heart SurgForum,2011;14(3):E171-177.
    [101] Diaz-Ruiz A, Salgado-Ceballos H, Montes S, et al. Delayed administration ofdapsone protects from tissue damage and improves recovery after spinal cordinjury. J Neurosci Res,2011;89(3):373-380.
    [102] Perry E, Howes MJ. Medicinal plants and dementia therapy: herbal hopes forbrain aging? CNS Neurosci Ther,2011;17(6):683-698.
    [103] Lee NH, Son CG. Systematic review of randomized controlled trials evaluatingthe efficacy and safety of ginseng. J Acupunct Meridian Stud,2011;4(2):85-97.
    [104] Xia R, Zhao B, Wu Y, et al. Ginsenoside Rb1preconditioning enhances eNOSexpression and attenuates myocardial ischemia/reperfusion injury in diabeticrats. J Biomed Biotechnol,2011;2011(1):767930.
    [105] Joo SS, Won TJ, Lee DI. Reciprocal activity of ginsenosides in the productionof proinflammatory repertoire, and their potential roles in neuroprotection invivo. Planta Med,2005;71(5):476-481.
    [106] Cheng B, Wang W, Lin L, et al. The change of the spinal cordischemia-reperfusion injury in mitochondrial passway and the effect of theGinkgo biloba extract's preconditioning intervention. Cell Mol Neurobiol.2011;31(3):415-420.
    [107] Grum DF, Svensson LG. Changes in cerebrospinalfluid pressure and spinal cordperfusion pressure prior to cross-clamping of the thoracic aorta in humans. JCardiothorac Vasc Anesth,1991;5(4):331–336.
    [108] Cassada DC, Tribble CG, Kaza AK, et al. Adenosineanalogue reduces spinalcord reperfusion injury in a time-depentent fasion. Surgery,2001;130(2):230–235.
    [109]肖博晗,陈强,杨东旭,等.脊髓缺血再灌注损伤模型改进的研究.中国实验诊断学杂志,2009;13(6):747-749.
    [110] Azbill RD, Mu X, Bruce-Keller AJ, et al. Impaired mitochondrial function,oxidative stress and altered antioxidant enzyme activities following traumaticspinal cord injury. Brain Res,1997;765(2):283–290.
    [111] Demediuk P, Saunders RD, Anderson DK, et al. Membrane lipid changes inlaminectomized and traumatized cat spinal cord. Proc Natl Acad Sci USA,1985;82(20):7071–7075.
    [112] Faden AI, Chan PH, Longar S. Alterations in lipid metabolism, Na-K-ATPaseactivity and tissue water content of spinal cord following experimental traumaticinjury. J Neurochem1987;48(6):1809–1816.
    [113] Saunders RD, Dugan LL, Demediuk P, et al. Effects of methylprednisolone andthe combination of alpha-tocopherol and selenium on arachidonic acidmetabolism and lipid peroxidation in traumatized spinal cord tissue. JNeurochem1987;49(1):24–31.
    [114] Vanichkin A, Patya M, Gazit A, et al. Late administration of a lipophilic tyrosinekinase inhibitor prevents lipopolysaccharide and Escherichia coli-induced lethaltoxicity. J Infect Dis,1996;173:927–933.
    [115] Zvara DA, Colonna DM, Deal DD, et al. Ischemic preconditioning reducesneurologic injury in a rat model of spinal cord ischemia. Ann Thorac Surg,1999,68(3):874-880.
    [116] Cinà CS, Abouzahr L, Arena GO, et al. Cerebrospinal fluid drainage to preventparaplegia during thoracic and thoracoabdominal aortic aneurysm surgery: asystematic review and meta-analysis. J Vasc Surg,2004,40(1):36-44.
    [117] Wang YF, Lv G, Gu YT. Bradykinin preconditioning induces protective effectson the spinal cord ischemic injury of rats. Neuroscience Letters,2008,433(2):114-118.
    [118] S nmez A, Kabak B, Vardar E, et al. Erythropoietin attenuates neuronal injuryand potentiates the expression of pCREB in anterior horn after transient spinalcord ischemia in rats. Surgical Neurology,2007;68(3):297-303.
    [119] Oruckaptan HH, Ozisik P, Atilla P, et al. Systemic Administration ofInterleukin-10Attenuates Early Ischemic Response Following Spinal CordIschemia Reperfusion Injury in Rats. Journal of Surgical Research,2009,155(2):345-356.
    [120] Su BX, Dong HL, Ma R, et al. Cannabinoid1receptor mediation of spinal cordischemic tolerance induced by limb remote ischemia preconditioning in rats.The Journal of Thoracic and Cardiovascular Surgery,2009,138(6):1409-1416.
    [121]徐贵森,潘显明.脊髓缺血再灌注损伤的防治[J].四川医学,2006;27(7):683-685.
    [122] Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins againstL-type Ca2+channel-mediated cell death in rat cortical neurons. BiochemBiophys Res Commun,2008;365(3):399-405.
    [123] Rausch WD, Liu S, Gille G, et al. Neuroprotective effects of ginsenoside. ActaNeurobiol Exp (Wars),2006;66(4):369-375.
    [124]江山,姜正林.人参皂甙Rb1对大鼠海马脑片缺血损伤的保护作用[J].中风与神经疾病杂志,2003;20(5):415-417.
    [125]胡棠,陈晓翔.人参皂甙促进大鼠雪旺细胞增殖的实验研究[J].中国修复重建外科杂志,2003;17(1):26-29.
    [126]张志军,江文.人参皂甙扩张兔基底动脉作用及其机制[J].心脏杂志,2003;15(5):313-315.
    [127]潘树义,刘大庸,余磊.人参皂甙对NGF引导的鼠胚脊髓神经节细胞轴突生长的影响[J].中国神经科学杂志,2000;16(4):345-348.
    [128]刘景臣,王华,尹飞.人参皂甙对损伤脊髓诱发电位的影响[J].中风与神经疾病杂志,2000;17(3):162-164.
    [129]赵东旭,袁洪萍,朱庆三.人参皂甙对大鼠脊髓损伤的实验研究[J].中国实验诊断学,2009;13(1):35-37.
    [130]熊涛.人参皂苷Rb1对大鼠睡眠脑电和觉醒初期记忆能力的影响[D].成都:电子科技大学,2008.
    [131]杨吉平.人参皂甙Rb1对阿尔茨海默病大鼠海马结构Aβ及其相关蛋白表达的影响[D].沈阳:中国医科大学,2008.
    [132]孙蓉.人参皂甙Rb1对慢性缺血致痴呆模型大鼠细胞凋亡因子Caspase-3、Tau蛋白及PP-2A影响的实验研究[D].长春:吉林大学,2007.
    [133]王万里.人参皂苷Rb1对大鼠IL_1_和TNF_表达及睡眠脑电影响的研究
    [D].成都:电子科技大学,2008.
    [134]刘玉莲.人参皂苷Rb组单体和Rd对心肌缺血干预作用及机制的研究[D].长春:吉林大学,2009.
    [135] Carbrey JM, Agre P. Discovery of the aquaporins and development of the field.Handb Exp Pharmacol,2009;190(3):3-28.
    [136][143]143.Portincasa P, Palasciano G, Svelto M, et al. Aquaporins in thehepatobiliary tract. Which, where and what they do in health and disease. Eur JClin Invest,2008;38(1):1-10.
    [137] Nielsen S, Kwon TH, Fr kiaer J, et al. Regulation and dysregulation ofaquaporins in water balance disorders. J Intern Med,2007;261(1):53-64.
    [138] Verkman AS, Ratelade J, Rossi A, et al. Aquaporin-4: orthogonal array assembly,CNS functions, and role in neuromyelitis optica. Acta Pharmacol Sin,2011;32(6):702-710.
    [139] Nesic O, Guest JD, Zivadinovic D, et al. Aquaporins in spinal cord injury: thejanus face of aquaporin4. Neuroscience,2010;168(4):1019-1035.
    [140] Saadoun S, Papadopoulos MC. Aquaporin-4in brain and spinal cord oedema.Neuroscience,2010;168(4):1036-1046.
    [141] Bradl M, Lassmann DH. Anti-aquaporin-4antibodies in neuromyelitis optica:how to prove their pathogenetic relevance? Int MS J,2008;15(3):75-78.
    [142] Kimura A, Hsu M, Seldin M, et al. Protective role of aquaporin-4waterchannels after contusion spinal cord injury. Ann Neurol,2010;67(6):794-801.
    [143] Dyugovskaya L, Polyakov A. Neutrophil apoptosis and hypoxia. Fiziol Zh,2010;56(5):115-124.
    [144] Lochner A, Marais E, Genade S, et al. Protection of the ischaemic heart:investigations into the phenomenon of ischaemic preconditioning. Cardiovasc JAfr,2009;20(1):43-51.
    [145] Gougeon ML, Piacentini M. New insights on the role of apoptosis andautophagy in HIV pathogenesis. Apoptosis,2009;14(4):501-508.
    [146] Norata GD, Catapano AL. Molecular mechanisms responsible for theantiinflammatory and protective effect of HDL on the endothelium.Vasc HealthRisk Manag,2005;1(2):119-129.
    [147] Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. MolBiotechnol,2005;31(2):151-174.
    [148] Zhao J, Su C, Yang C, et al. Determination of ginsenosides Rb(1), Rb(2), andRb(3) in rat plasma by a rapid and sensitive liquid chromatography tandem massspectrometry method: Application in a pharmacokinetic study. J Pharm BiomedAnal,2012Feb25.
    [149] Wu L, Jin Y, Yin C, et al. Co-transformation of Panax major ginsenosides Rb(1)and Rg (1) to minor ginsenosides C-K and F (1) by Cladosporiumcladosporioides. J Ind Microbiol Biotechnol,2012;39(4):521-527.
    [150] Lee JG, Baek SH, Lee YY, et al. Anti-complementary ginsenosides isolated fromprocessed ginseng. Biol Pharm Bull,2011;34(6):898-900.
    [151] Kwok HH, Guo GL, Lau JK, et al. Stereoisomers ginsenosides-20(S)-Rg3and-20(R)-Rg3differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma. Biochem Pharmacol,2012;83(7):893-902.
    [152] Yuan HD, Kim do Y, Quan HY, et al. Ginsenoside Rg2induces orphan nuclearreceptor SHP gene expression and inactivates GSK3β via AMP-activatedprotein kinase to inhibit hepatic glucose production in HepG2cells. Chem BiolInteract,2012;195(1):35-42.
    [153] Ha SE, Shin DH, Kim HD, et al. Effects of ginsenoside Rg2on the ultravioletB-induced DNA damage responses in HaCaT cells. Naunyn SchmiedebergsArch Pharmacol,2010;382(1):89-101.
    [154] Jiang JW, Chen XM, Chen XH, et al. Ginsenoside Rg3inhibit hepatocellularcarcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol,2011;17(31):3605-3613.
    [155] Poon PY, Kwok HH, Yue PY, et al. Cytoprotective effect of20(S)-Rg3onbenzo[a]pyrene-induced DNA damage. Drug Metab Dispos,2012;40(1):120-129.
    [156] Cheng B, Li J, Du J, et al. Ginsenoside Rb1inhibits osteoclastogenesis bymodulating NF-κB and MAPKs pathways. Food Chem Toxicol,2012;50(5):1610-1615.
    [157] Tan S, Zhou F, Yu Z, et al. Study on characteristics of energy metabolism inskeletal muscle of rats with postoperative fatigue syndrome and interventionaleffect of ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi,2011;36(24):3489-3493.
    [158] Lee KT, Jung TW, Lee HJ, et al. The antidiabetic effect of ginsenoside Rb2viaactivation of AMPK. Arch Pharm Res,2011;34(7):1201-1208.
    [159] Cui J, Jiang L, Xiang H. Ginsenoside Rb3exerts antidepressant-like effects inseveral animal models. J Psychopharmacol,2011Sep24.
    [160] Shi Y, Han B, Yu X, et al. Ginsenoside Rb3ameliorates myocardialischemia-reperfusion injury in rats. Pharm Biol,2011;49(9):900-906.
    [161] Quan LH, Min JW, Sathiyamoorthy S, et al. Biotransformation of ginsenosidesRe and Rg1into ginsenosides Rg2and Rh1by recombinant β-glucosidase.Biotechnol Lett.2012Jan20.
    [162] Zhang C, Yu H, Hou J. Effects of20(S)-ginsenoside Rh2and20(R)-ginsenoside Rh2on proliferation and apoptosis of human lung adenocarcinomaA549cells. Zhongguo Zhong Yao Za Zhi,2011;36(12):1670-1674.
    [163] Li B, Zhao J, Wang CZ, et al. Ginsenoside Rh2induces apoptosis andparaptosis-like cell death in colorectal cancer cells through activation of p53.Cancer Lett,2011;301(2):185-192.
    [164] Yu JL, Dou DQ, Chen XH, et al. Ginsenoside-Ro enhances cell proliferation andmodulates Th1/Th2cytokines production in murine splenocytes. Yao Xue XueBao,2005;40(4):332-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700