用户名: 密码: 验证码:
手性金属—有机骨架材料用于高分辨气相色谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架材料(Metal-Organic Frameworks, MOFs),也称配位聚合物,通常是指由过渡金属离子或金属簇与有机配体(大多是芳香多酸或多碱)利用分子组装和晶体工程的方法得到的具有周期性网络结构的晶体材料。金属-有机骨架材料是目前研究很热的一类新型多孔材料,具有比表面积大、孔结构高度有序和化学稳定性好的特性。金属-有机骨架材料作为新一代功能性分子材料已广泛用作气体储存材料、分离材料、催化材料、非线性光学材料、复合功能材料、分子磁体、传感器材料和药物传递材料等。
     随着手性金属-有机骨架材料的快速的发展,已有大量的手性金属-有机骨架材料被合成出来,主要用于不对称催化和手性拆分。手性金属-有机骨架材料在手性拆分方面的应用还主要集中于液相吸附拆分手性化合物,而作为色谱固定相的报道还非常之少。据我们所知,将手性金属-有机骨架材料作为气相色谱固定相还未见他人报道。在本论文中,合成了一些手性金属-有机骨架材料,并将这些材料用作手性固定相用于高分辨气相色谱分离性能的研究。主要工作有:将一种具有三维单手螺旋结构的手性金属-有机骨架材料[{Cu(sala)}n]用作固定相制备了涂敷型开管柱,并考察了其分离性能;制备了一种具有固有手性拓扑结构的三维开放骨架材料Co-(D-Cam)1/2(bdc)1/2(tmdpy)作为固定相用于气相色谱拆分手性化合物;利用一种结合分子手性、手性螺旋和固有手性拓扑结构的三维开放骨架材料Ni(D-cam)(H2O)2用作固定相用于对映体分离;研究了使用一种具有均一手性链和蜂巢状三维通道的金属-有机骨架材料[Mn3(HCOO)4(D-Cam)]n作为固定相的开管柱;合成了一种具有钻石网络结构和左手螺旋结构的金属-有机骨架材料InH(D-C10H1404)2,并考察了其在高分辨气相色谱中的手性识别能力;使用多孔金属膜对PAHs进行了固相萃取研究。
     第一部分绪论
     介绍了手性的基本概念、手性拆分的重要现实意义、手性识别的主要方法、高分辨气相色谱的发展,毛细管气相色谱柱和气相色谱手性固定相。对手性金属-有机骨架材料的合成方法和在手性拆分方面的应用进行了综述。最后,介绍了固相萃取技术的发展,并提出了本论文的研究目的和意义。
     第二部分手性金属-有机骨架材料[{Cu(sala)}.]用于高分辨气相色谱分离性能的研究
     合成了一种具有三维单手螺旋结构的手性金属-有机骨架材料[{Cu(sala)}.](H2sala=N-(2-hydroxybenzyl)-L-alanine).将此手性金属-有机骨架材料用作气相色谱固定相,采用动态涂渍法制备了内径和长度不同的A(30m×530μm i.d.). B(30m×250μm i.d.).C(9mx75μm i.d.)和D(2m×75μm i.d.)四根毛细管柱。使用正十二烷在120℃下测定了A、B、C和D四根柱子的每米柱长理论塔板数,分别为1500块/m、2200块/m、3500块/m和3600块/m。为了考察固定相在毛细管柱内壁的成膜性能,对柱A的内表面和截面进行扫描电镜(SEM)分析,扫描结果显示固定相在内壁成膜均匀,膜厚大约为1μm。热重分析显示[{Cu(sala)}n]在220℃以内具有良好的热稳定性,适合作气相色谱固定相。同时,为了考察柱子的分离性能,柱B、C和D用于分离各种类型的有机化合物,包括外消旋体、位置异构体、烷烃、醇类和Grob试剂等。实验结果表明此固定相对这些有机化合物具有良好的分离能力,尤其对外消旋化合物表现出很好的选择识别能力,11个外消旋化合物在柱D上得到拆分,这些外消旋化合物包括醛、有机酸、醇和氨基酸等。拆分谱图表明除了樟脑和2-甲基-1-丁醇,大部分化合物达到基线分离或达到85%的拆分程度。为了证实单手螺旋结构适合对映体的拆分,将金属配合物[Cu(sala)]2·2H20用作固定相制备了E柱(2mx75μm i.d.)并对相同的11个外消旋体化合物进行拆分。对比实验结果表明[Cu(sala)]2·2H20固定相对外消旋化合物的拆分能力远不如[{Cu(sala)}n]固定相,证实了MOF中的单手螺旋结构在气相色谱手性拆分中起着至关重要的作用。
     第三部分基于一种具有固有手性拓扑结构的三维开放骨架材料Co-(D-Cam)1/2(bdc)1/2(tmdpy)新型气相色谱固定相的研究
     本章使用手性金属-有机骨架材料Co(D-Cam)1/2(bdc)1/2(tmdpy)(D-Cam. D-camphoric acid;bdc=1,4-benzenedicarboxylate;tmdpy=4,4'-trimethylenedipyri-dine)制备了涂敷型开管柱用于高分辨气相色谱分离手性化合物。该晶体是具有固有手性拓扑结构的三维开放骨架材料。将Co(D-Cam)1/2(bdc)1/2(tmdpy)用作固定相采用动态涂渍法制备了内径和长度不同的两根开管柱。使用正十二烷作为检测物在120℃条件下考察了两根柱子的色谱性能,两根柱子的的理论塔板数分别为1450块/m和3100块/m。选择外消旋体、位置异构体、正构烷烃、正构醇和Grob试剂等多种有机化合物评价了柱子的分离性能。实验结果表明此固定相对这些有机化合物具有良好的选择性,尤其在外消旋化合物的拆分中表现出较好的手性选择识别能力。
     第四部分基于一种结合分子手性、手性螺旋和固有手性拓扑结构的三维开放骨架材料Ni(D-cam)(H2O)2新型气相色谱固定相的研究
     用旋光纯的D-樟脑酸有机配体合成了一种结合分子手性、手性螺旋和固有手性拓扑结构的三维开放骨架材料Ni(D-cam)(H2O)2。将Ni(D-cam)(H2O)2用作固定相涂渍了柱A (30mx250μm i.d.)和柱B (2m×75×m i.d.)。对柱A的内表面和截面进行了SEM分析,通过TGA实验考察了柱子的热稳定性。柱B用于分离了各种类型的有机物,结果表明此固定相对这些化合物具有良好的分离能力,尤其对手性化合物,如醛、有机酸、醇和氨基酸等。该固定相具有较好的成膜性能、较高的热稳定性和良好的分离性能,作为一种新型的气相色谱固定相具有很好的应用前景。
     第五部分一种具有蜂巢状三维通道的手性金属-有机骨架材料[Mn3(HCOO)4(D-Cam)]n用于高分辨气相色谱分离性能的研究
     本章使用一种具有蜂巢状三维通道的手性金属-有机骨架材料[Mn3(HCOO)4(D-Cam)]n作为固定相制备了柱A (30mx250μm i.d.)和柱B(5m×75μm i.d.)用于高分辨气相色谱研究。分别采用SEM和TGA实验考察了固定相的涂敷性能和热稳定性。选用一些外消旋体、正构烷烃和位置异构体作为测试物在柱B上进行了分离。结果表明该固定相对这些有机物具有较好的分离能力。
     第六部分一种具有钻石网络结构和左手螺旋通道的金属-有机骨架材料InH(D-C10H14O4)2用于高分辨气相色谱分离性能的研究
     使用D-樟脑酸有机配体合成了一种具有钻石网络结构和左手螺旋通道的多孔手性金属-有机骨架材料InH(D-C10H14O4)2(D-C10H14O4=D-(+)-camphoric acid)用作气相色谱手性固定相。采用动态涂渍法制备了不同内径和长度的InH(D-C10H14O4)2涂敷开管柱用于高分辨气相色谱分离一系列有机化合物,包括外消旋化合物、位置异构体、烷烃、醇和Grob试剂。考察了柱子的柱效、极性和选择性。结果表明此固定相对这些化合物表现出优良的选择性和识别能力,尤其对外消旋化合物。
     第七部分多孔金属膜对多环芳烃的固相萃取研究
     固相萃取(SPE)是近年来使用最广泛的样品前处理技术之一,主要用于样品分离、纯化和浓缩。目前,用于样品前处理的膜材料主要有有机聚合物膜、纤维素膜和玻璃纤维膜等。在本章中,我们使用多孔金属膜作为一种新型的吸附材料用于固相萃取研究。为了评价多孔金属膜在固相萃取中的吸附性能,选用萘、芴、蒽、菲、荧蒽、芘、屈、苝和苯并(a)芘共9种多环芳烃(PAHs)作为被分析物。在固相萃取实验中,对几个影响因素进行了优化,包括萃取时间、NaCl的浓度、萃取温度和搅拌速率。实验结果表明多孔金属膜对PAHs表现出较高的吸附能力。在最佳实验条件下,该方法的检出限范围在0.03-0.082μg L-1(S/N=5)之间;在0.1-60μL-1的浓度范围内,PAHs的浓度与峰面积之间具有良好的线性相关性;5次重复萃取PAHs实验的标准偏差(RSD)范围为2.6-5.0%。自来水和河水加标(PAH的浓度均为20μg L-1)回收率为83.0%-112.5%。多孔金属膜用于固相萃取PAHs具有耐用、操作简单、价格低廉、重现性好和较高吸附能力等特点。
Metal-organic frameworks (MOFs), also known as coordination polymer, are crystal materials with infinite network structures built from transition metal ions or metal clusters and organic bridging ligands (mostly aromatic acid or alkaline) by the approaches of molecular assembly and crystal engineering. MOFs are a new kind of porous materials being largely researched in recent years, which possess outstanding properties, such as large surface area, highly ordered pore structure and good chemical stability. They have been widely used as gas storage, separation, catalysis, sensor, drug delivery, molecular magnet, nonlinear optical material and composite functional material, etc.
     With the rapid development of chiral MOF materials, a large number of chiral MOF materials have been synthesized and used for asymmetric catalysis and separation. Although chiral MOFs have been focused on the adsorption separation of chiral compounds, there are a few report of chiral MOFs used as stationary phases. To the best of our knowledge, there has been no attempt to utilize chiral MOFs in gas chromatography.
     In the dissertation, we synthesized some chiral MOF materials which were used as chiral stationary phases for high-resolution gas chromatographic separations. The main works were as follows:chiral MOF-coated open tubular columns were fabricated by a three-dimensional single-handed helical MOF ([{Cu(sala)}n]), and the separation ability of the [{Cu(sala)}n] was investigated; A three-dimensional open-framework material Co-(D-Cam)1/2(bdc)1/2(tmdpy) with intrinsic chiral topology was prepared and used as stationary phase for separation of chiral compounds in gas chromatography; A three-dimensional MOF with integrated molecular chirality, absolute helicity, and intrinsic chiral topology (Ni(D-cam)(H2O)2) was used as stationary phase for eantioseparations; Studied the open tubular columns prepared with a three-dimensional honeycomb channels with homochiral chains MOF ([Mn3(HCOO)4(D-Cam)]n); Synthesized a porous chiral MOF (InH(D-C10H14O4)2) with anionic-type diamond network and left-handed helical channel structure, it was used for chiral recognition in high-resolution gas chromatographiy; A porous metal membrane for SPE of PAHs was investigated.
     Part1:Preface
     The basic concepts of chirality, the important signification of chiral resolution, chiral recognition methods, the development of high-resolution gas chromatography, the capillary gas chromatographic columns and the chiral stationary phases were introduced. The synthetic methods and application of chiral MOF were reviewed, especially for its eantioseparation of chromatography. After stating the development and advantages of SPE technology, we illustrated the purpose and signification of the dissertation.
     Part2:Chiral MOF [{Cu(sala)}n] for high-resolution gas chromatographic separations.
     A three-dimensional chiral channel framework which has the formula [{Cu(sala)}n](H2sala=N-(2-hydroxybenzyl)-L-alanine) was synthesized. Four fused-silica open tubular columns with different inner diameters or lengths, including column A (30m×530μm i.d.), column B (30m×250μm i.d.), column C (9m×75μm i.d.) and column D (2m×75μm i.d.), were coated by a dynamic coating method using [{Cu(sala)}n] as stationary phase. The chromatographic properties of four MOF columns (A, B, C, D) were investigated, and their numbers of theoretical plates (plates/m) were1500,2200,3500and3600, respectively. In order to investigate the coating properties of stationary phase on open tubular column inner wall, the cross section and inner surface of open tubular column A were examined by scanning electron microscopy (SEM). The SEM analysis results showed that the fabricated column had an approximately1μm uniformly thick MOF coating on the inner wall. The thermogravimetric analysis (TGA) exhibited that the column was thermally stable below220℃and therefore suitable for GC usage. To evaluate the separation properties of columns, the columns (B, C, D) were used for the separation of various types of organic compounds, including racemates, isomers, alkanes, alcohols and Grob's test mixture. The experimental results indicate that the stationary phase has excellent selectivity toward isomers, alkanes, and alcohols etc, especially for chiral compounds. Eleven racemates include aldehyde, ketone, organic acid, amino acid and alcohol, were separated at least85%baseline resolution on column D. Comparing to column E fabricated by metal-complex [Cu(sala)]2-2H2O, the chiral recognition ability of MOF was more stronger than that of metal-complex. It demonstrated that the single-handed helical channels of the MOF made a significant contribution to the chiral separation in GC.
     Part3:A three-dimensional open-framework material Co-(D-Cam)1/2(bdc)1/2-(tmdpy) with intrinsic chiral topology used as stationary phase in gas chromotography
     We report the fabrication of Co(D-Cam)1/2(bdc)1/2(tmdpy)(D-Cam=D-camphoric acid; bdc=1,4-benzenedicarboxylate; tmdpy=4,4'-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic (GC) separation of chiral compounds. The Co(D-Cam)1/2(bdc)1/2(tmdpy) compound possesses a three-dimensional framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths were prepared by a dynamic coating method using Co-(D-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at120℃. The number of theoretical plates (plates/m) of the two metal-organic framework (MOF) columns was1450and3100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.
     Part4:Three-dimensional open-framework material Ni(D-cam)(H2O)2with integration of molecular chirality, absolute helicity and intrinsic chiral topology used as stationary phase in gas chromotography
     By using enantiopure D-camphoric acid as organic ligand, a three-dimensional open-framework material Ni(D-cam)(H2O)2with integration of molecular chirality, absolute helicity and intrinsic chiral topology was synthesized. Column A (30m×250μm i.d.) and column B (2m×75μm i.d.) coated by Ni(D-cam)(H2O)2were prepared The cross section and inner surface of open tubular column A were examined by SEM, and the thermally stable of these columns were tested by TGA. The column B was used for the separation of various types of organic compounds, it showed that the stationary phase possessed good separation ability, especially for chiral compounds, such as aldehyde, organic acid, alcohol and amino acid. Therefore, the stationary phase has a good prospect of application as a new type of GC stationary phase due to its good film-forming property, high thermal stability and excellent separation performance.
     Part5:Chiral MOF [Mn3(HCOO)4(D-Cam)]n with honeycomb channels for high-resolution gas chromatographic separations
     In this part, chiral MOFs [Mn3(HCOO)4(D-Cam)]n with honeycomb channels was used as stationary phase for column A (30m×250μm i.d.) and column B (5m×75μm i.d.) in high-resolution gas chromatography. We investigate the coating properties of stationary phase by SEM on open tubular column inner wall and the thermally stable by TGA. Some racemates, alkanes and isomers were used as targets for separation on column B. The experimental results showed that the stationary phase also possessed good separation ability toward these organic compounds.
     Part6:A porous chiral MOF InH(D-C10H14O4)2with diamond network and left-handed helical channel for high-resolution gas chromatographic enantioseparat-ions
     A porous chiral metal-organic framework InH(D-C10H14O4)2(D-C10H14O4= D-(+)-camphoric acid) with diamond network and a left-handed helical channel assembled from D-(+)-camphoric acid was used as chiral stationary phase in GC. InH(D-C10H14O4)2-coated open tubular columns with different inner diameters or lengths were prepared by a dynamic coating method for high-resolution GC separation of various types of organic compounds, including racemates, isomers, alkanes, alcohols and Grob's test mixture. Their column efficiency, polarity and selectivity were studied. The experimental results gave that the stationary phase had excellent selectivity and also possessed good recognition ability toward these organic compounds, especially for chiral compounds.
     Part7:Porous metal membranes for solid-phase extraction of polycyclic aromatic hydrocarbons
     Solid-phase extraction (SPE) is one of the most important techniques for sample preparation, purification, concentration, and cleanup. Membrane made from synthetic organic polymers, cellulose, or glass fibers are used for sample pretreatment. However, in previous reports there are no porous metal membranes for solid-phase extraction. In this work, we report that porous metal membrane, the metal filters in HPLC, was used as a novel kind of solid-phase extraction adsorbent material for the extraction of polycyclic aromatic hydrocarbons (PAHs). To evaluate the performance of the porous metal membrane for SPE, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, perylene and benzo(a)pyrene were selected for investigation. Several conditions that affected the extraction efficiency such as the extraction time, the concentration of NaCl, the extraction temperature and the agitation speed were examined. The experimental result indicates that the porous metal membrane possesses high adsorption ability to the tested PAHs. In the optimum conditions, the detection limits of the developed method were in the range of0.03-0.082μg L-1(S/N=5), and the excellent linear correlation between peak area and the concentration of PAHs over the range of0.1-60μg L-1. The precisions (RSD) for five replicate extractions of the PAHs from sample solution were in the range of2.6-5.0%. The recoveries of the PAHs of tap water and river water samples spiked with9PAHs (20ug L-1of each individual PAH) ranged from83.0%to112.5%. The porous metal membrane is durable, simple, inexpensive, reproducible and high adsorption ability for the SPE of PAHs.
引文
[1]袁黎明.手性识别材料[M].北京:科学出版社,2010.
    [2]B. Knoche, G. Blaschke. J. Chromatogr.,1994,666:35.
    [3]S. C. Stinson. Chem. Eng. News,1995,9:44.
    [4]"FDA's policy statement for the development of new stereoisomeric drugs", Food and Drug Administration, Washington, DC,1992.
    [5]G. Q. Lin, Q. D. You, J. F. Cheng. Chiral Drugs:Chemistry and Biological Action. New York: John Wiley & Sons,2011,22.
    [6]廖春阳,孙立力,李声时.自然杂志,2001,23:349.
    [7]N. M. Maier, P. Franco, W. Lindner. J. Chrommatogr. A,2001,906:3.
    [8]黄量,戴立信,杜灿屏,吴镭.手性药物的化学与生物学[M].北京:化学工业出版社,2002.
    [9]林国强,陈耀全,陈新滋,李月明.手性合成-不对称反应及其应用[M].北京:科学出版社,2000.
    [10]S. Yamada, C. Hongo, Y. Ryuzo. Agric. Biol. Chem.,1979,43:395.
    [11]许激扬,倪孟祥.中国药科大学学报,1998,29:394.
    [12]E. Fogassy, M. Acs, T. Szili, B. Simandi, J. Sawinsky. Tetrahadron Lett.,1994,35:257.
    [13]P. J. Hiroshi, S. Satoshi. Inorg. Chem.,1998,37:1585.
    [14]B. Gutierrez, N. Rubio, C. Minguillon. Desalination,2006,200:117.
    [15]Z. Y. Jiang, Y. X. Yu, H. Wu. J. Membr. Sci.,2006,280:876.
    [16]J. Wang, C. J. Fu, T. Lin, L. X. Yu, S. L. Zhu. J. Membr. Sci.,2006,276:193.
    [17]Y. Matasuoka, N. Kanda, Y M. Lee, A. Higuchi. J. Membr. Sci.,2006,280:116.
    [18]Y. C. Xiao, T. S. Chung. J. Membr. Sci.,2007,290:78.
    [19]S. M. Xie, W. F. Wang, P. Ai, M. Yang, L. M. Yuan. J. Membr. Sci.,2008,321:293.
    [20]W. W. Xiong, W. F. Wang, L. Zhao, Q. Song, L. M. Yuan. J. Membr. Sci.,2009,328:268.
    [21]M. Zhao, X. L. Xu, Y. D. Jiang, W. Z. Sun, W. F. Wang, L. M. Yuan. J. Membr. Sci.,2009, 336:149.
    [22]M. Yang, M. Zhao, S. M. Xie, L. M. Yuan. J. Appl. Polym. Sci.,2009,112:2516.
    [23]W. F. Wang, W. W. Xiong, M. Zhao, W. Z. Sun, F. R. Li, L. M. Yuan. Tetrahedron: Asymmetry,2009,20:1052.
    [24]C. Ma, X. L. Xu, P. Ai, S. M. Xie, Y. C. Lv, H. Q. Shan, L. M. Yuan. Chirality,2011,23:379.
    [25]T. J. Ward, B. A. Baker. Anal. Chem.,2008,80:4363.
    [26]T. J. Ward, K. D. Ward. Anal. Chem.,2010,82:4712.
    [27]袁黎明.制备色谱技术及应用[M],第二版.北京:化学工业出版社,2012.
    [28]汪正范,杨树民,吴侔天,岳卫华.色谱联用技术[M],第二版.北京:化学工业出版社,2006.
    [29]刘虎威.气相色谱方法及应用[M],第二版.北京:化学工业出版社,2007.
    [30]D. H. Desty, J. N. Haresnape, B. H. F. Whyman. Anal. Chem.,1960,32:302.
    [31]R. P. W. Scott. Nature,1959,183:1753.
    [32]R. D. Dandeneau, E. H. Zerenner. J. High Resoln. Chromatogr. Commun.,1979,2:351.
    [33]傅若农.分析实验室,2009,28:103.
    [34]傅苦农.色谱,2009,27:584.
    [35]C. Vidal-Madjar, S. Bekassy, M. F. Gonnord, P. Arpino, G. Georges. Anal. Chem.,1977, 49:768.
    [36]C. Watanabe, H. Tomita. J. Chromatogr.,1975,3:123.
    [37]L. D. Metcalfe, R. J. Martin. Anal. Chem.,1967,39:1204.
    [38]金恒亮.手性气相色谱法-环糊精衍生物为固定相[M].北京:化学工业出版社,2006.
    [39]T. Welsch, W. Engewald, C. Klaueke. Chromatographia,1977,10:22.
    [40]G. Schomburg, H. Husann. Chromatographia,1975,8:517.
    [41]C. H. Lochmuller, J. D. Fisk. J. High Resoln. Chromatogr. Commun.,1981,4:232.
    [42]K. Grob, G. Grob. J. High Resoln. Chromatogr. Commun.,1982,5:119.
    [43]B. Xu, N. P. E. Vermeulen. HRC&CC,1985,8:32.
    [44]E. Gil-Av, B. Fiebush, R. Charles-Sigler. Tetrahedron Lett.,1966,7:1009.
    [45]李莉,字敏,任朝兴,袁黎明.化学进展,2007,19:394.
    [46]H. Frank, G. J. Nicholson, E. Baye. J. Chromatogr. Sci.,1977,15:174.
    [47]H. Frank, G. J. Nicholson, E. Baye.Angew. Chem. Int. Ed. Engl.,1978,17:363.
    [48]申刚义.环糊精气相色谱固定相的制备及手性分离[M].北京:中央民族大学出版社,2009.
    [49]B. Feibush, E. Gil-Av. J. Gas Chromatogr.,1967,5:257.
    [50]B. Feibush, E. Gil-Av. Tetrahedron,1970,26:1361.
    [51]R. Charles, U. Beitler, B. Feibush, E. Gil-Av. J. Chromatogr.,1975,112:121.
    [52]R. Charles, E. Gil-Av. J. Chromatogr.,1980,195:317.
    [53]S. C. Chang, R. Charles, E. Gil-Av. J. Chromatogr,1980,202:247.
    [54]H. Frank, G. J. Nicholson, E. Bayer. J. Chromatogr. Scl.,1977,15:174.
    [55]H. Frank, A. Rettenmeier, H. Weicker, G. J. Nicholson, E. Bayer. Clin. Chem. Acta,1980,105: 201.
    [56]B. T. Golding, P. J. Sellars, A. K. Wong. J. Chem. Soc. Chem. Commun.,1977,570:1266.
    [57]V. Schurig. Chromatographia,1980,13:363.
    [58]V. Schurig, W. Burkle. Angew. Chem. Int. Ed. Engl,1978,17:132.
    [59]N. Oi, M. Horiba, H. Kitahara, T. Tani, T. Skibara. J. Chromatogr,1980,202:305.
    [60]V. Schurig, R. Weber. J. Chromatogr.,1981,217:51.
    [61]N. Oi, K. Shiba, T. Tani, T. Doi. J. Chromatogr.,1981,211:274.
    [62]V. Schurig, W. Burkle. J. Am. Chem. Soc.,1982,104:7573.
    [63]V. Schurig, D. Wistuba. Tetrahedron Lett.,1984,25:5633.
    [64]V. Schurig, U. Leyrer, R. Weber. HRC&CC,1985,8:459.
    [65]W. Keim, A. Kohnes, W. Meltzow. J. High Resol. Chromatogr,1991,14:507.
    [66]K. Jaques, W. M. Buda, M. Pottie, J. Van der Eycken, M. Vandewalle, A. Venama, P. Sandra. J. High Resol. Chromatogr.,1993,16:703.
    [67]W. A. Konig, S. Lutz, M. Hagen, R. Krebber, G. Wenz, K. Baldenius, J. Ehlers, H. Dieck. J. High Resol. Chromatogr.,1989,16:703.
    [68]A. Venema, H. Henderiks, R. Geest. J. High Resol. Chromatogr,1991,14:676.
    [69]W. Y. Li, H. L. Jin, D. W. Armstrong. J. Chromatogr,1990,509:303.
    [70]H. Wan, Y. Wang, Q. Y. Qu, W. L. Yu. J. Chromatogr.,1993,644:202.
    [71]Z. Jin, H. L. Jin. Chromatographia,1994,38:22.
    [72]H-G. Schmarr, A. Mosandl, A. Kaunzinger. J. Microcol. Sep.,1991,3:395.
    [73]A. Ghanem. Talanta,2005,66:1234.
    [74]E. Takahisa, K. H. Engel. J. Chromatogr. A,2005,1063:181.
    [75]S. Tisse, V. Peulon-Agasse, P. Gardinael, J. P. Bouillon, J. C. Combret. Anal. Chim. Acta, 2006.560:207.
    [76]周岩,字敏,韩熠,许志刚,任朝兴,严志宏,袁黎明.化学试剂,2006,28:8.
    [77]刘秀辉,董存武,杨俊,张凯,卢小泉.高等学校化学学报,2008,29:1216.
    [78]J. Ding, D. W. Armstrong. Chirality,2005,17:281.
    [79]仇深杰,刘庆彬,胡进勇,张占辉,张福军.化学通报,2007,70:409.
    [80]孙洪海,高宇,翟永爱,张青,刘凤岐,高歌.化学进展,2008,20:698.
    [81]D. W. Armstrong, L. F. He, Y. S. Liu. Anal. Chem.,1999,71:3873.
    [82]J. Ding, T. Welton, D. W. Armstrong. Anal. Chem.,2004,76:6819.
    [83]P. Wasserscheid, A. Bomsmann, C. Bolm. Chem. Commun.,2002,200.
    [84]L. M. Yuan, Y. Han, Y. Zhou, X. Meng, Z. Y. Li, M. Zi, Y. X. Chang. Anal. Lett.,2006,39: 1439.
    [85]任朝兴,艾萍,李莉,字敏,孟霞,丁惠,袁黎明.分析化学,2006,34:1637.
    [86]L. Zhao, P. Ai, A. H. Duan, L. M. Yuan. Anal. Bioanal. Chem.,2011,399:143.
    [87]D. K. Bwambok, H. M. Marwani, V. E. Fernand, S. O. Fakayode, M. Lowry, I. Negulescu, R. M. Strongin, I. M. Warner. chirality,2008,20:151.
    [88]李芙蓉,宋卿,赵丽,袁黎明.,高等学校化学学报,2009,30:258.
    [89]V. Schurig, H. P. Nowotny, M. Schleimer, D. Schmalzing. J. High Resol. Chromatogr.,1989, 12:549.
    [90]V. Schurig, J. Zhu, V. Muschalek. Chromatographia,1993,35:237.
    [91]L. M. Yuan, Y. Zhou, Y. H. Zhang. Anal. Lett,2006,39:173.
    [92]L. M. Yuan, R. N. Fu, N. H. Tan. Anal. Lett,2002,35:203.
    [93]艾萍,刘凯华,字敏,齐素华,袁黎明.高等学校化学学报,2006,27:2073.
    [94]周喜春,严慧,吴采樱,陈远荫,卢雪然.分析化学,1996,24:1123.
    [95]C. E. Dalgliesh. J. Chem. Soc.,1952,1:137.
    [96]W. H. Pirkle, T. C. Pochapsky. Chem. Rev.,1989,89:347.
    [97]方千荣.多孔及手性金属-有机骨架化合物的合成,结构与性能研究(2007届吉林大学博士学位论文,第一章)
    [98]J. Gascon, F. Kapteijn. Angew. Chem. Int. Ed.,2010,49:1530.
    [99]K. A. Cychosz, R. Ahmad, A. J. Matzger. Chem. Sci.,2010,1:293.
    [100]J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jin, K. Kim. Nature,2000,404:982.
    [101]孙福兴.新型多孔金属-有机羧酸骨架化合物的设计合成,结构与性质(2010届吉林大学博士学位论文,第一章)
    [102]B. F. Hoskins, R. Robson. J. Am. Chem. Soc.,1989,111:5962.
    [103]J. R. Long, O. M. Yaghi. Chem. Soc. Rev.,2009,38:1213.
    [104]F. A. Almeida Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tome, J. A. S. Cavaleiro, J. Rocha. Chem. Soc. Rev.,2012,41:1088.
    [105]H. L. Li, M. Eddaoudi, M. O'keeffe, O. M. Yaghi. Nature,1999,402:276.
    [106]M. Eddaoudi, J. Kim, N. Rsi, D. Vodak, J. Wachter, M. O'keeffe, O. M. Yaghi. Science, 2002,295:469.
    [107]H. K. Chae, D. Y. Siberio-Perezl, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'keeffe, O. M. Yaghi. Nature,2004,427:523.
    [108]H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ozgur-Yazaydin, R. Q. Snurr, M. O'keeffe, J. Kim, O. M. Yaghi. Science,2010,329:424.
    [109]K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'keeffe, O. M. Yaghi. PNAS,2006,103:10186.
    [110]R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'keeffe, O. M. Yaghi. Science,2008,319:939.
    [111]S. Kitagawa, R. Kitaura, S. Noro. Angew. Chem. Int. Ed.,2004,43:2334.
    [112]D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota, T. C. Kobayashi, M. Takata, S. Kitagawa. Angew. Chem. Int. Ed.,2008,47:3914.
    [113]K. Barthelet, J. Marrot, D. Riou, G. Ferey. Angew. Chem. Int. Ed.,2002,41:281.
    [114]F. Millange, C. Serre, G. Ferey. Chem. Commun.,2002,2:822.
    [115]G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki. Science,2005,309:2040.
    [116]F. Millange, C. Serre, N. Guillou, G. Ferey, R.I. Walton. Angew. Chem. Int. Ed.,2008,47: 4100.
    [117]W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, O. M. Yaghi. J. Am. Chem. Soc.,2008, 130:12626.
    [118]L. M. Huang, H. T. Wang, J. X. Chen, Z. B. Wang, J. Y. Sun, D. Y. Zhao, Y. S. Yan. Micropor. Mesopor. Mat.,2003,58:105.
    [119]H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke, J. Caro. J. Am. Chem. Soc.,2009, 131:16000.
    [120]S. Kitagawa, R. Kitaura, S. I. Noro. Angew. Chem. Int. Ed.,2004,43:2334.
    [121]J. R. Li, R. J. Kuppler, H. C. Zhou. Chem. Soc. Rev.,2009,38:1477.
    [122]J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyen. J. T. Hupp, Chem. Soc. Rev.,2009,38:1450.
    [123]M. Kurmoo. Chem. Soc. Rev.,2009,38:1353.
    [124]S. Shimomura, S. Bureekaew, S. Kitagawa. Struct. Bond.,2009,132:51.
    [125]R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Q. Yuan, D. Zhao, W. J. Zhuang, H. C. Zhou. Coord. Chem. Rev.,2009,253:3042.
    [126]D. Farrusseng, S. Aguado, C. Pinel. Angew. Chem. Int. Ed.,2009,48:7502.
    [127]A. Corma, H. Garcia, F. X. Llabres i Xamena. Chem. Rev.,2010,110:4606.
    [128]S. T. Meek, J. A. Greathouse, M. D. Allendorf. Adv. Mater.,2011,23:249.
    [129]W. M. Xuan, C. F. Zhu, Y. Liu, Y. Cui. Chem. Soc. Rev,2012,41:1677.
    [130]K. Kim, M. Banerjee, M. Yoon, S. Das. Top. Curr. Chem.,2010,293:115.
    [131]Y. Liu, W. M. Xuan, Y. Cui. Adv. Mater.,2010,22:4112.
    [132]C. J. Kepert, T. J. Prior, M. J. Rosseinsky. J. Am. Chem. Soc.,2000,122:5158.
    [133]J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jeon, K. Kim. Nature,2000,404:982.
    [134]D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim. Angew. Chem. Int. Ed.,2006,45:916.
    [135]R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky. Angew. Chem. Int. Ed.,2006,45:6495.
    [136]G. Yuan, C. Zhu, W. Xuan, Y. Cui. Chem. Eur. J.,2009,15:6428.
    [137]T. Kaczorowski, I. Justyniak, T. Lipi ska, J. Lipkowski, J. Lewi ski. J. Am. Chem. Soc., 2009,131:5393.
    [138]A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi, V. P. Fedin. J. Am. Chem. Soc., 2007,129:12958.
    [139]M. Padmanaban, P. Muller, C. Lieder, K. Gedrich, R. Grunker, V. Bon, I. Senkovska, S. Baumga'rtner, S. Opelt, S. Paasch, E. Brunner, F. Glorius, E. Klemm, S. Kaskel. Chem. Commun.,2011,47:12089.
    [140]R. G. Xiong, X. Z. You, B. F. Abrahams, Z. L. Xue, C. M. Che. Angew. Chem. Int. Ed.,2001, 40:4422.
    [141]Y. R. Xie, X. S. Wang, H. Zhao, J. Zhang, L. H. Weng, C. Y. Duan, R. G. Xiong, X. Z. You, Z. L. Xue. Organometallics,2003,22:4396.
    [142]Y. M. Song, T. Zhou, X. S. Wang, X. N. Li, R. G. Xiong. Cryst. Growth Des.,2006,6:14.
    [143]D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky. J. Am. Chem. Soc., 2004,126:6106.
    [144]R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky. Angew. Chem. Int. Ed.,2006,45:6495.
    [145]D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim. Angew. Chem. Int.Ed.,2006,45:916.
    [146]G. Li, W. Yu, J. Ni, T. Liu, Y. Liu, E. Sheng, Y. Cui. Angew. Chem. Int. Ed.,2008,47: 1245.
    [147]G. Li, W. Yu, Y. Cui. J. Am. Chem. Soc.,2008,130:4582.
    [148]Y. Gao, T. Wada, K. Yang, K. Kim, Y. Inoue. Chirality,2005,17:S19.
    [149]L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. E. M. Denayer, D. E. De Vos. Angew. Chem. Int. Ed., 2007,46:4293.
    [150]L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock, D. E. De Vos. J. Am. Chem. Soc.,2008,130:14170.
    [151]L. Alaerts, M. Maes, M. A. van der Veen, P. A. Jacobs, D. E. De Vos. Phys. Chem. Chem. Phys.,2009,11:2903.
    [152]R. Ameloot, A. Liekens, L. Alaerts, M. Maes, A. Galameau, B. Coq, G. Desmet, B. F. Sels, J. F. M. Denayer, D. E. De Vos. Eur:J. Inorg. Chem.,2010,24:3735.
    [153]C. X. Yang, X. P. Yan. Anal. Chem.,2011,83:7144.
    [154]R. Ahmad, A. G. Wong-Foy, A. J. Matzger. Langmuir; 2009,25:11977.
    [155]H. L. Jiang, Y. Tatsu, Z. H. Lu, Q. Xu. J. Am. Chem. Soc.,2010,132:5586.
    [156]C. X. Yang, Y. J. Chen, H. F. Wang, X. P. Yan. Chem. Eur, J.,2011,17:11734.
    [157]K. Tanaka, T. Muraoka, D. Hirayama, A. Ohnish. Chem. Commun., 2012,48:8577.
    [158]B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. Angew. Chem. Int. Ed.,2006,45:1390.
    [159]J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, J. S. Chang. Adv. Mater.,2007,19:1830.
    [160]V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P. A. Jacobs, G. V. Baron, J. F. M. Denayer. J. Am. Chem. Soc.,2008,130:7110.
    [161]V. Finsy, S. Calero, E. Garcia-Perez, P. J. Merkling, G. Vedts, D. E. D. Vos, G. V. Baron, J. F. M. Denayer. Phys. Chem. Chem. Phys.,2009,11:3515.
    [162]Z. Y. Gu, X. P. Yan. Angew. Chem. Int. Ed.,2010,49:1477.
    [163]N. Chang, Z. Y. Gu, X. P. Yan. J. Am. Chem. Soc.,2010,132:13645.
    [164]Z. Y. Gu, J. Q. Jiang, X. P. Yan. Anal. Chem.,2011,83:5093.
    [165]陈松涛.纳米二氧化钛固相萃取与光谱法联用分离/富集/分析环境中重金属研究(2008届江苏大学博士学位论文,第一章)
    [166]臧志鹏.新型固相萃取吸附剂的制备及其对溶液样品中痕量元素吸附性能的研究(2010届兰州大学博士学位论文,第一章)
    [167]阎吉吕.环境分析[M].北京:化学工业出版社,2002.
    [168]郭佳佳.离子印迹固相萃取在线原子光谱分析及光谱分析新方法研究(2009届中国科学技术大学博士学位论文,第一章)
    [169]贺群.新型功能化吸附材料的制备及在痕量组分固相萃取中的应用(2008届兰州大学博士学位论文,第一章).
    [1]J. L. C. Rowsell, O. M. Yaghi. Angew. Chem. Int. Ed.,2005,44:4670.
    [2]Z. Q. Wang, S. M. Cohen. J. Am. Chem. Soc.,2007,129:12368.
    [3]C. D. Wu, W. B. Lin. Angew. Chem. Int. Ed.,2007,46:1075.
    [4]J. G. Vitillo, L. Regli, S. Chavan, G. Ricchiardi, G. Spoto, P. D. C. Dietzel, S. Bordiga, A. Zecchina. J. Am. Chem. Soc.,2008,130:8386.
    [5]J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp. Chem. Soc. Rev.,2009, 38:1450.
    [6]J. R. Li, R. J. Kuppler, H. C. Zhou. Chem. Soc. Rev.,2009,38:1477.
    [7]C. Gucuyener, J. Bergh, J. Gascon, F. Kapteijn. J. Am. Chem. Soc.,2010,132:17704.
    [8]A. Corma, H. Garcia, F. X. L. Xamena. Chem. Rev.,2010,110:4606.
    [9]D. Yuan, D. Zhao, D. Sun, H. C. Zhou. Angew. Chem. Int. Ed.,2010,49:5357.
    [10]C. Y. Lee, Y. S. Bae, N. C. Jeong, O. K. Farha, A. A. Sarjeant, C. L. Stern, P. Nichias, R. Q. Snurr, J. T. Hupp, S. T. Nguyen. J. Am. Chem. Soc.,2011,133:5228.
    [11]L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. E. M. Denayer, D. E. De Vos. Angew. Chem. Int. Ed., 2007,46:4293.
    [12]L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock, D. E. De Vos. J. Am. Chem. Soc.,2008,130:14170.
    [13]L. Alaerts, M. Maes, M. A. van der Veen, P. A. Jacobs, D. E. De Vos. Phys. Chem. Chem. Phys.,2009,11:2903.
    [14]R. Ameloot, A. Liekens, L. Alaerts, M. Maes, A. Galarneau, B. Coq, G. Desmet, B. F. Sels, J. F. M. Denayer, D. E. De Vos. Eur. J. Inorg. Chem.,2010,3735.
    [15]C. X. Yang, X. P. Yan. Anal. Chem.,2011,83:7144.
    [16]R. Ahmad, A. G. Wong-Foy, A. J. Matzger. Langmuir,2009,25:11977.
    [17]H. L. Jiang, Y. Tatsu, Z. H. Lu, Q. Xu. J. Am. Chem. Soc.,2010,132:5586.
    [18]C. X. Yang, Y. J. Chen, H. F. Wang, X. P. Yan. Chem. Eur, J.,2011,17:11734.
    [19]A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi, V. P. Fedin. J. Am. Chem. Soc., 2007,129:12958.
    [20]M. Padmanaban, P. Muller, C. Lieder, K. Gedrich, R. Grunker, V. Bon, J. Senkovska, S. Baumgartner, S. Opelt, S. Paasch, E. Brunner, F. Glorius, E. Klemm, S. Kaskel. Chem. Commun.,2011,47:12089.
    [21]K. Tanaka, T. Muraoka, D. Hirayama, A. Ohnish. Chem. Commun.,2012,48:8577.
    [22]B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. Angew. Chem. Int. Ed.,2006,45:1390.
    [23]J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, J. S. Chang. Adv. Mater.,2007,19:1830.
    [24]V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P. A. Jacobs, G. V. Baron, J. F. M. Denayer. J. Am. Chem. Soc.,2008,130:7110
    [25]V. Finsy, S. Calero, E. Garcia-Perez, P. J. Merkling, G. Vedts, D. E. D. Vos, G. V. Baron, J. F. M. Denayer. Phys. Chem. Chem. Phys.,2009,11:3515.
    [26]Z. Y. Gu, X. P. Yan. Angew. Chem. Int. Ed.,2010,49:1477.
    [27]N. Chang, Z. Y. Gu, X. P. Yan. J. Am. Chem. Soc.,2010,132:13645.
    [28]Z. Y. Gu, J. Q. Jiang, X. P. Yan. Anal. Chem.,2011,83:5093.
    [29]S. M. Xie, Z. J. Zhang, Z. Y. Wang, L. M. Yuan. J. Am. Chem. Soc.,2011,133:11892.
    [30]L. L. Koh, J. O. Ranford, W. T. Robinson, J. O. Svensson, A. L. C. Tan, D. Q. Wu. Inorg. Chem.,1996,35:6466.
    [31]J. D. Ranford, J. J. Vittal, D. Q. Wu, X. D. Yang. Angew. Chem. Int. Ed.,1999,38:3498.
    [32]Y. Okamoto, E. Yashima. Angew. Chem. Int. Ed.,1998,37:1021.
    [33]T. Ikai, Y. Okamoto. Chem. Rev.,2009,109:6077.
    [1]D. N. Dybtsev, M. P. Yutkin, D. G. Samsonenko, V. P. Fedin, A. L. Nuzhdin, A. A. Bezrukov, K. P. Bryliakov, E. P. Talsi, R. V. Belosludov, H. Mizuseki, Y. Kawazoe, O. S. Subbotin, V. R. Belosludov. Chem. Eur. J.,2010,16:10348.
    [2]H. Frank, G. J. Nicholson, E. Bayer. J. Chromatogr. Sci.,1977,15:174.
    [3]H. Frank, A. Rettenmeier, H. Weicker, G. J. Nicholson, E. Bayer. Clin. Chem. Acta,1980,105: 201.
    [4]V. Schurig, F. Betschinger. Chem. Rev.,1992,92:873.
    [5]V. Schurig. J. Chromatogr. A,2001,906:275.
    [6]D. W. Armstrong, L. F. He, Y. S. Liu. Anal. Chem.,1999,71:3873.
    [7]J. Ding, T. Welton, D. W. Armstrong. Anal. Chem.,2004,76:6819.
    [8]L. M. Yuan, Y. Han, Y. Zhou, X. Meng, Z. Y. Li, M. Zi, Y. X. Chang. Anal. Lett.,2006,39: 1439.
    [9]L. Zhao, P. Ai, A. H. Duan, L. M. Yuan. Anal. Bioanal. Chem.,2011,399:143.
    [10]H. Furukawa, M. A. Michael, O. M. Yaghi. J. Mater. Chem.,2007,17:3197.
    [11]Z. Y. Gu, X. P. Yan. Angew. Chem. Int. Ed.,2010,49:1477.
    [12]N. Chang, Z. Y. Gu, X. P. Yan. J. Am. Chem. Soc.,2010,132:13645.
    [13]C. X. Yang, X. P. Yan. Anal. Chem.,2011,83:7144.
    [14]C. X. Yang, Y. J. Chen, H. F. Wang, X. P. Yan. Chem. Eur, J.,2011,17:11734.
    [15]S. Horike, M. Dinca, K. Tamaki, J. R. Long. J. Am. Chem. Soc.,2008,130:5854.
    [16]B. L. Chen, L. B. Wang, F. Zapata, G. D. Qian, E. B. Lobkovsky. J. Am. Chem. Soc.,2008, 130:6718.
    [17]P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey. Angew. Chem. Int. Ed. Engl,2006,45:5974.
    [18]Y. Song, T. Zhou, X. Wang, X. Li, R. G. Xiong. Cryst. Growth & Des.,2006,6:14.
    [19]R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky. Angew. Chem., Int. Ed.,2006,45:6495.
    [20]D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim. Angew. Chem., Int. Ed.,2006,45:916.
    [21]A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi, V. P. Fedin. J. Am. Chem. Soc, 2007,129:12958.
    [22]J. Zhang, S. Chen, H. Valle, M. Wong, C. Austria, M. Cruz, X. H. Bu. J. Am. Chem. Soc., 2007,129:14168.
    [23]J. Zhang, R. Liu, P. Feng, X. H. Bu. Angew. Chem., Int. Ed.,2007,46:8388.
    [24]J. Zhang, S. Chen, T. Wu, P. Feng, X. H. Bu. J. Am. Chem. Soc.,2008,130:12882.
    [25]G. Li, W. Yu, J. Ni, T. Liu, Y. Liu, E. Sheng, Y. Cui. Angew. Chem. Int. Ed.,2008,47:1245.
    [26]G. Li, W. Yu, Y. Cui. J. Am. Chem. Soc.,2008,130:4582.
    [27]D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky. J. Am. Chem. Soc., 2004,126:6106.
    [28]T. F. Liu, Y. Liu, W. M. Xuan, Y. Cui. Angew. Chem. Int. Ed.,2010,49:4121.
    [29]W. M. Xuan, M. N. Zhang, Y. Liu, Z. J. Chen, Y. Cui. J. Am. Chem. Soc.,2012,134:6904.
    [30]C. F. Zhu, G. Z. Yuan, X. Chen, Z. W. Yang, Y. Cui. J. Am. Chem. Soc.,2012,134:8058.
    [31]J. Zhang, S. M. Chen, A. Zingiryan, X. H. Bu. J. Am. Chem. Soc.,2008,130:17246.
    [1]B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. Angew. Chem., Int. Ed.,2006,45:1390.
    [2]J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, J. S. Chang. Adv. Mater.,2007,19:1830.
    [3]L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. E. M. Denayer, D. E. De Vos. Angew. Chem., Int. Ed., 2007,46:4293.
    [4]A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi, V. P. Fedin. J. Am. Chem. Soc., 2007,129:12958.
    [5]L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock, D. E. De Vos. J. Am. Chem. Soc.,2008,130:14170.
    [6]V. Finsy, H. Verelst, L. Alaerts, D. E. De Vos, P. A. Jacobs, G. V. Baron, J. F. M. Denayer. J. Am. Chem. Soc.,2008,130:7110.
    [7]L. Alaerts, M. Maes, M. A. van der Veen, P. A. Jacobs, D. E. De Vos. Phys. Chem. Chem. Phys.,2009,11:2903.
    [8]Z. Y. Gu, D. Q. Jiang, H. F. Wang, X. Y. Cui, X. P. Yan. J. Phys. Chem. C,2010,114:311.
    [9]Z. Y. Gu, X. P. Yan. Angew. Chem., Int. Ed.,2010,49:1477.
    [10]N. Chang, Z. Y. Gu, X. P. Yan.J. Am. Chem. Soc.,2010,132:13645.
    [11]M. Maes, F. Vennoortele. L. Alaerts, S. Couck, C. E. A. Kirschhock. J. F. M. Denayer, D. E. De Vos. J. Am. Chem. Soc.,2010.132:15277.
    [12]M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. MacKay, A. Ferreira, J. Rocha, S. Lidin. Nature,1994,367:347.
    [13]N. Rajic, N. Z. Logar, V. Kaucic. Zeolites,1995,15:672.
    [14]T. E. Gier, X. Bu, P. Feng, G. D. Stucky. Nature,1998,395:154.
    [15]M. E. Davis. Nature,2002,417:813.
    [16]Z. Lin, J. Zhang, G. Yang. Inorg. Chem.,2003,42:1797.
    [17]C. Dryzun, Y. Mastai, A. Shvalb, D. J. Avnir. Mater. Chem.,2009,19:2062.
    [18]J. L. Sun, C. Bonneau, A. Cantin, A. Corma, M. J. Diaz-Cabanas, M. Moliner, D. L. Zhang, M. R. Li, X. D. Zou. Nature,2009,458:1154.
    [19]A. Corma, H. Garcia, F. X. Llabres i Xamena. Chem. Rev.,2010,110:4606.
    [20]J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jeon, K. Kim. Nature,2000,404:982.
    [21]R. G. Xiong, X. Z. You, B. F. Abrahams, Z. L. Xue, C. M. Che. Angew. Chem. Int. Ed.,2001, 40:4422.
    [22]Y. R. Xie, X. S. Wang, H. Zhao, J. Zhang, L. H. Weng, C. Y. Duan, R. G. Xiong, X. Z. You, Z. L. Xue. Organometallics,2003,22:4396.
    [23]D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky. J. Am. Chem. Soc., 2004,126:6106.
    [24]Y. Gao, T. Wada, K. Yang, K. Kim, Y. Inoue. Chirality,2005,17:S19.
    [25]Y. M. Song, T. Zhou, X. S. Wang, X. N. Li, R. G. Xiong. Cryst. Growth Des.,2006,6:14.
    [26]R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky. Angew. Chem. Int. Ed.,2006,45:6495.
    [27]D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin., K. Kim. Angew. Chem. Int. Ed.,2006,45:916.
    [28]G. Li, W. Yu, J. Ni, T. Liu, Y. Liu, E. Sheng, Y. Cui. Angew. Chem. Int. Ed.,2008,47:1245.
    [29]G. Li, W. Yu, Y. Cui. J. Am. Chem. Soc.,2008,130:4582.
    [30]J. Zhang, S. M. Chen, A. Zingiryan, X. H. Bu. J. Am. Chem. Soc.,2008,130:17246.
    [1]魏文英,方键,孔海宁,韩金玉,常贺英.化学进展,2005,17:1110.
    [2]穆翠枝,徐峰,雷威.化学进展,2007,19:1345.
    [3]T. Duren, L. Sarkisov, O. M. Yaghi, R. Q. Snurr. Langmuir,2004,20:2683.
    [4]J. L. C Rowsell, O. M. Yaghi. J. Am. Chem. Soc.,2006,128:1304.
    [5]H. Furukawa, M. A. Michael, O. M. Yaghi. J. Am. Chem. Soc.,2007,17:3197.
    [6]Y. Wang, P. Cheng, S. P. Yan. lnorg. Chem.,2007,46:4530.
    [7]S. Q. Ma, D. F. Sun, J. M. Simmons, C. D. Collier, D. Q. Yuan, H. C. Zhou. J. Am. Chem. Soc.,2008,130:1012.
    [8]B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. Angew. Chem. Int. Ed. Engl,2006,45:1390.
    [9]L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock, D. E. De Vos. J. Am. Chem. Soc.,2008,130:14170.
    [10]V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P. A. Jacobs, G. V. Baron, J. F. M. Denayer. J. Am. Chem. Soc.,2008,130:7110.
    [11]H. Guo, G. Zhu, I. J. Hewitt, S. Qiu. J. Am. Chem. Soc.,2009,131:1646.
    [12]S. Couck, J.F.M. Denayer, G.V. Baron, T. Remy, J. Gascon, F. Kapteijn. J. Am. Chem. Soc., 2009,131:6326.
    [13]L. Alaerts, M. Maes, M. A. van der Veen, P. A. Jacobs, D. E. De Vos. Phys. Chem. Chem. Phys.,2009,11:2903.
    [14]R. Ameloot, A. Liekens, L. Alaerts, M. Maes, A. Galarneau, B. Coq, G. Desmet, B. F. Sels, J. F. M. Denayer, D. E. De Vos. Eur. J. lnorg. Chem.,2010,3735.
    [15]H. L. Jiang, Y. Tatsu, Z. H. Lu, Q. Xu. J. Am. Chem. Soc.,2010,132:5586.
    [16]Z. Y. Gu, X. P. Yan. Angew. Chem. Int. Ed.,2010,49:1477.
    [17]N. Chang, Z. Y. Gu, X. P. Yan. J. Am. Chem. Soc.,2010,132:13645.
    [18]C. X. Yang, X. P. Yan. Anal. Chem.,2011,83:7144.
    [19]C. X. Yang, Y. J. Chen, H. F. Wang, X. P. Yan. Chem. Eur, J.,2011,17:11734.
    [20]F. Gandara, B. Gornez-Lor, E. Gutierrez-Puebla, M. Iglesias, M. A. Monge, D. M. Proserpio, N. Snejko. Chem. Mater.,2008,20:72
    [21]F. Schroder, D. Esken, M. Cokoja, M. W. E. van den Berg,0.1. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkowsky, H. H. Limbach, B. Chaudret, R. A. Fischer. J. Am. Chem. Soc., 2008,130:6119.
    [22]M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park, M. J. Rosseinsky. Chem. Commun.,2008,1287.
    [23]S. Horike, M. Dinca, K. Tamaki, J. R. Long. J. Am. Chem. Soc,2008,130:5854.
    [24]C. D.Wu, W. B. Lin. Angew. Chem. Int. Ed. Engl,2007,46:1075.
    [25]B. D. Chandler, D. T. Cramb, G. K. H. Shimizu, J. Am. Chem. Soc.,2006,128:10403.
    [26]C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A. Simmons, M. D. Allendorf. J. Am. Chem. Soc.,2007,129:7136.
    [27]C. Biswas, P. Mukherjee, M. G. B. Drew, C. J. Gomez-Garcia, J. M. Clemente-Juan, A. Ghosh. Inorg. Chem.,2007,46:10771.
    [28]Q. X. Jia, Y. Q.Wang, Q. Yue, Q. L.Wang, E. Q. Gao. Chem. Commun.,2008,4894.
    [29]J. R. Li, Q. Yu, E. C. Sanudo, Y. Tao, W. C. Son, X. H. Bu. Chem. Mater,2008,20:1218.
    [30]B. L. Chen, Y. Yang, F. Zapata, G. N. Lin, G. D. Qian, E. B. Lobkovsky. Adv. Mater,2007, 19:1693.
    [31]B. L. Chen, L. B.Wang, F. Zapata, G. D. Qian, E. B. Lobkovsky. J. Am. Chem. Soc.,2008, 130:6718.
    [32]M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, P. J. Hesketh. J. Am. Chem. Soc.,2008,130:14404.
    [33]P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey. Angew. Chem. Int. Ed. Engl.,2006,45:5974.
    [34]B. Kesanli, W. B. Lin. Coord. Chem. Rev.,2003,246:305.
    [35]D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin., K. Kim. Angew. Chem. Int. Ed.,2006,45:916.
    [36]G. Li, W. Yu, J. Ni, T. Liu, Y. Liu, E. Sheng, Y. Cui. Angew. Chem. Int. Ed.,2008,47:1245.
    [37]G. Li, W. Yu, Y. Cui. J. Am. Chem. Soc.,2008,130:4582.
    [38]L. Q. Ma, C. Abney, W. B. Lin. Chem. Soc. Rev.,2009,38:1248.
    [39]J. Zhang. S. M. Chen, H. Valle, M. Wong, C. Austria, M. Cruz, X. H. Bu. J. Am. Chem. Soc, 2007,129:14168.
    [1]H. Frank, G. J. Nicholson, E. Bayer. J. Chromatogr.Sci.,1977,15:174.
    [2]H. Frank, A. Rettenmeier, H. Weicker, G. J. Nicholson, E. Bayer. Clin. Chem. Acta,1980,105: 201.
    [3]V. Schurig, F. Betschinger. Chem. Rev.,1992,92:873.
    [4]V. Schurig. J. Chromatogr. A,2001,906:275.
    [5]D. W. Armstrong, L. F. He, Y. S. Liu. Anal. Chem.,1999,71:3873.
    [6]L. M. Yuan, Y. Han, Y. Zhou, X. Meng, Z. Y. Li, M. Zi, Y. X. Chang. Anal. Lett,2006,39: 1439.
    [7]L. Zhao, P. Ai, A. H. Duan, L. M. Yuan. Anal. Bioanal. Chem.,2011,399:143.
    [8]V. Schurig, H. P. Nowotny, M. Schleimer, D. Schmalzing. J. High Resol. Chromatogr.,1989, 12:549.
    [9]V. Schurig, J. Zhu, V. Muschalek. Chromalographia,1993,35:237.
    [10]L. M. Yuan, Y. Zhou, Y. H. Zhang. Anal. Lett.,2006,39:173.
    [11]L. M. Yuan, R. N. Fu, N. H. Tan. Anal. Lett.,2002,35:203.
    [12]艾萍,刘凯华,字敏,齐素华,袁黎明,高等学校化学学报,2006,27:2073.
    [13]L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. E. M. Denayer, D. E. De Vos. Angew. Chem. Int. Ed., 2007,46:4293.
    [14]L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock, D. E. De Vos. J. Am. Chem. Soc.,2008,130:14170.
    [15]L. Alaerts, M. Maes, M. A. van der Veen, P. A. Jacobs, D. E. De Vos. Phys. Chem. Chem. Phys.,2009,11:2903.
    [16]R. Ameloot, A. Liekens, L. Alaerts, M. Maes, A. Galarneau, B. Coq, G. Desmet, B. F. Sels, J. F. M. Denayer, D. E. De Vos. Eur. J. Inorg. Chem.,2010,3735.
    [17]C. X. Yang, X. P. Yan. Anal. Chem.,2011,83:7144.
    [18]R. Ahmad, A. G. Wong-Foy, A. J. Matzger. Langmuir,2009,25:11977.
    [19]H. L. Jiang, Y. Tatsu, Z. H. Lu, Q. Xu. J. Am. Chem. Soc,2010,132:5586.
    [20]C. X. Yang, Y. J. Chen, H. F. Wang, X. P. Yan. Chem. Eur, J.,2011,17:11734.
    [21]B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. Angew. Chem. Int. Ed.,2006,45:1390.
    [22]J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, J. S. Chang. Adv. Mater.,2007,19:1830.
    [23]V. Finsy, S. Calero, E. Garcia-Perez, P. J. Merkling, G. Vedts, D. E. D. Vos, G. V. Baron, J. F. M. Denayer. Phys. Chem. Chem. Phys.,2009,11:3515.
    [24]Z. Y. Gu, X. P. Yan. Angew. Chem. Int. Ed.,2010,49:1477.
    [25]N. Chang, Z. Y. Gu, X. P. Yan. J. Am. Chem. Soc.,2010,132:13645.
    [26]Z. Y. Gu, J. Q. Jiang, X. P. Yan. Anal. Chem.,2011,83:5093.
    [27]Y. Liu, W. M. Xuan, Y. Cui. Adv. Mater.,2010,22:4112.
    [28]L. P. Wang, T. Y. Song, L. L. Huang, J. N. Xu, C. Li, C. X. Ji, L. Shan, L. Wang. Cryst. EngComm.,2011,13:4005.
    [1]K. L. White. Environ. Carcinog. Rev.,1986, C4:163.
    [2]E. Manoli, C. Samara. Trends Anal. Chem.,1999,18:417.
    [3]X. C. Wang, Y. X. Zhang, R. F. Chen. Mar. Pollut. Bull.,2001,42:139.
    [4]P. E. T Douben. PAH:An Ecological Perspective, Willey, New York,2003.
    [5]G. M. Troisi, S. Bexton,I. Robinson. Environ. Sci. Technol.,2006,40:7938.
    [6]V. Mersch-Sundermann, S. Mochayedi, S. Kevekordes, S. Kern, F. Wintermann. Anticancer Res.,1993,13:2037.
    [7]R. A. Doong, S. M. Chang, Y. C. Sun. J. Chromatogr. A,2000,879:177.
    [8]T. M. Hii, C. Basheer, H. K. Lee. J. Chromatogr. A,2009,1216:7520.
    [9]G. G. Ying. in:L.M.L. Nollet (Ed.), Chromatographic Analysis of the Environment, CRC Press, Boca Raton, FL,2006, p.1246.
    [10]T. Wenzl, R. Simon, J. Kleiner, E. Anklam. Trends Anal. Chem.,2006,25:716.
    [11]A. E. McGowin. in:L.M.L. Nollet (Ed.), Chromatographic Analysis of the Environment, CRC Press, Boca Raton, FL,2006, p.555.
    [12]H. D. Liang, D. M. Han, X. P. Yan. J. Chromatogr. A,2006,1103:9.
    [13]R. Rodil, M. Schellin, P. Popp. J. Chromatogr. A,2007,1163:288.
    [14]N. Q. Li, H. K. Lee. Anal. Chem.,2000,72:5272.
    [15]C. Vogelsang, M. Grung, T. Gunnar Jantsch, K. Erik Tollefsen, H. Liltved. Water. Res., 2006,40:3559.
    [16]P. Navarro, E. Cortazar, L. Bartolome, M. Deusto, J. C. Raposo, O. Zuloaga, G. Arana, N. Etxebarria. J. Chromatogr. A,2006,1128:10.
    [17]K. Li, H. F. Li, L.B. Liu, Y. K. Hashi, T. Maeda, J. M. Lin. J. Chromatogr. A,2007,1154: 74.
    [18]G. Purcaro, P. Morrison, S. Moret, L. S. Conte, P. J. Marriott. J. Chromatogr. A,2007,1161: 284.
    [19]M. Marlow, R. J. Hurtubise. Anal. Chim. Acta,2004,526:41.
    [20]X. Liu, J. Zhang, X. Chen. J. Chromatogr. B,2007,852:325.
    [21]A. B. Prevot, M. Gulmini, V. Zelano, E. Pramauro. Anal. Chem.,2001,73:3790.
    [22]J. F. Liu, G. B. Jiang, Y. G. Chi, Y. Q. Cai, Q. X. Zhou, J. T. Hu. Anal. Chem.,2003,75: 5870.
    [23]W. D. Wang, Y. M. Huang, W. Q. Shu, J. Cao. J. Chromatogr. A,2007,1173:27.
    [24]M. T. Pena, M. C. Casais, M. C. Mejuto, R. Cela. J. Chromatogr. A,2007,1165:32.
    [25]M. Biziuk, A. Pryjazny, J. Czerwinski, M. Wiergowski. J. Chromatogr. A,1996,754:103.
    [26]G. M. Titato, F. M. Lancas. J. Liq. Chromatogr. Rel. Technol.,2005,28:3045.
    [27]S. G. Biddle, M. A. Robert, C. A. Jakober, M. P. Hannigan, M. J. Kleeman. Environ. Sci. Technol.,2007,41:1962.
    [28]N. Saim, J. R. Dean, M. Pauzi-Abdullah, Z. Zakaria. J. Chromatogr. A,1997,791:361.
    [29]M. Janska, M. Tomaniova, J. Hajslova, V. Kocourek. Anal. Chim. Acta,2004,520:93.
    [30]E. R. Brouwer, A. N. J. Hermans, H. Hingeman, U. A. T. Brinkman. J. Chromatogr. A,1994, 669:45.
    [31]N. Q. Li, H. K. Lee. J. Chromatogr. A,2001,921:255.
    [32]C. Bergvall, R. Westerholm. Environ. Sci. Technol.,2007,41:731.
    [33]Z. P. Qin, L. Bragg, G. F.Ouyang, J. Pawliszyn. J. Chromatogr. A,2008,1196/1197:89.
    [34]B. Kolahgar, A. Hoffmann, A. C. Heiden. J. Chromatogr. A,2002,963:225.
    [35]V. G. Zuin, L. Montero, C. Bauer, P. Popp. J. Chromatogr. A,2005,1091:2.
    [36]E. Perez-Carrera, V. M. L. Leon, A. G. Parra, E. Gonzalez-Mazo. J. Chromatogr. A,2007, 1170:82.
    [37]C. L. Arthur, J. Pawliszyn. Anal. Chem.,1990,62:2145.
    [38]P. Popp, C. Bauer, M. Moder, A. Paschke. J. Chromatogr. A,2000,897:153.
    [39]A. J. King, J. W. Readman, J. L. Zhou. Anal. Chim. Acta,2004,523:259.
    [40]V. Fernandez-Gonzalez, E. Concha-Grana, S. Muniategui-Lorenzo, P. Lopez-Mahia, D. Prada-Rodriguez. J. Chromatogr. A,2007,1176:48.
    [41]I. J. Barnabas, J. R. Dean, W. R. Tomlinson, S. P. Owen. Anal. Chem.,1995,67:2064.
    [42]B. A. Benner. Anal. Chem.,1998,70:4594.
    [43]G. Kiss, Z. Varga-Puchony, J. Hlavay. J. Chromatogr. A,1996,725:261.
    [44]F. Busetti, A. Heitz, M. Cuomo, S. Badoer, P. Traverso J. Chromatogr. A,2006,1102:104.
    [45]L. Oliferova, M. Statkus, G. Tsysin, O. Shpigun, Y. Zolotov. Anal. Chim. Acta,2005,538: 35.
    [46]F. L. Dickert, M. Tortschanoff. Anal. Chem.,1999,71:4559.
    本章内容已发表于 Analyst,2011,136,3988-3996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700