用户名: 密码: 验证码:
新型石墨纸和石墨烯在微生物燃料电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(microbial fuel cells,MFCs)是一种利用自然界中廉价易得的微生物细菌作为生物催化剂,将有机物中的化学能转变为电能的装置。在废水处理、植入式医疗设备和生物传感器等方面有巨大的潜在应用价值。但是微生物燃料电池的输出功率密度偏低,限制了其大规模的实际应用。影响微生物燃料电池性能的因素有:电池构型、接种体、培养基、质子交换材料和电极面积等,其中阴阳极材料是影响其性能的主要因素。阳极材料决定着细菌的实际附着量和界面电子传递电阻的大小。因此,一个高效能的阳极材料对于提高微生物燃料电池的功率输出起着十分重要的作用。在阴极,氧气因其在环境中方便易得并且产物干净环保,是一种理想的阴极电子受体。但是在微生物燃料电池的阴极介质中,氧还原反应的动力学过程较差,从而限制了其作为阴极最终电子受体的使用,因此需要寻找高效的氧还原催化剂。
     本论文将新型石墨纸(novel graphite paper,GTS)和石墨烯(graphene)应用于微生物燃料电池,解决微生物燃料电池阳极和阴极中存在的问题,提高电池的功率密度,改善电池的产电性能。具体来说本论文的研究结果概括如下:
     (1)以大肠杆菌(E.coli)为生物催化剂,GTS为阳极构建双室型微生物燃料电池,放电曲线和极化曲线显示:GTS有很好的电催化性能。该电池的最大输出功率密度为2249mW m~(-2)。从扫描电镜(scanning electron microscopy,SEM)结果来看,这可能归因于GTS良好的生物兼容性。
     (2)以聚四氟乙烯(polytetrafluoroethylene,PTFE)为粘合剂,不锈钢网(stainlesssteel mesh,SSM)为基底,附载石墨烯作为阳极构建微生物燃料电池。SSM电极、 PTFE修饰的SSM电极(PMS)和石墨烯修饰的SSM电极(GMS)的循环伏安(cyclicvoltammogram,CV)、放电曲线和极化曲线结果显示:GMS的电化学性能最好。以GMS为阳极构建的微生物燃料电池的最大功率密度可达2668mW m~(-2),分别比以SSM和PMS为阳极的电池功率大18和17倍。
     (3)利用透射电镜(transmission electron microscopy,TEM)和X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)分别对石墨烯的形貌和元素组成进行了表征。循环伏安的测定结果显示:石墨烯在中性的缓冲溶液中对氧气的还原反应具有较好的催化活性。以不锈钢网附载石墨烯作为阴极可以提高微生物燃料电池的产电性能,最大功率密度为289mW m~(-2)。
     (4)利用非共价方法制备四磺酸基酞菁铁(iron tetrasulfophthalocyanine,FeTsPc)修饰的石墨烯复合物(FeTsPc-graphene),该方法可以在防止石墨烯团聚的同时,生成一种有效的氧还原催化剂。利用循环伏安法和线性扫描伏安法(linear sweepvoltammogram,LSV)对FeTsPc-graphene进行了电化学测试,发现其比FeTsPc修饰的电极的氧还原电位更正,电流更大。将FeTsPc-graphene修饰的碳纸用作微生物燃料电池的阴极,电池功率可达817mW m~(-2),要大于用FeTsPc修饰的电极结果(523mW m~(-2)),与用铂/碳(Pt/C)修饰的电极结果(856mW m~(-2))相似,因此,在微生物燃料电池中,FeTsPc-graphene复合物可以替代铂用于催化氧的还原。
Microbial fuel cells (MFCs) are renewable energy devices that can convert organicsubstrates into electricity via the catalyzation of microorganisms. The low power density ofMFCs remains one of the main obstacles for their practical applications. Aside from all theother factors affecting the MFCs performance, which include cell design, inoculum, substrate,proton exchange material and electrode surface areas, etc. the fabrication materials of anodeand cathode play a profound role in influencing the power generation. The anode material candetermine the actual accessible area for bacteria to anchor and affect the interfacial electrontransfer resistance. Therefore, a high-performance anode material is most essential to improvethe power outputs of MFCs. In cathode, oxygen is an ideal electron acceptor due to itsaccessibility in environment and clean product. However, the poor kinetics of oxygenreduction reaction in the MFCs cathodic medium limits the efficient utilization of oxygen asfinal electron acceptor for most cathode materials.
     In this study, novel graphite paper (GTS) and graphene were used to improve theperformance of MFCs. Some innovative findings have been found as follows:
     (1) GTS has been used as anodic catalyst in MFC based on E.coli (ATCC25922) andcharacterized by discharge experiment and polarization curve. Findings from thesemeasurements revealed that GTS showed an excellent electrochemical performance. Thetwo-chambered MFC operated with the GTS anode delivered a maximum power density of2249mW m~(-2). Scanning electron microscopy (SEM) results indicate that the high poweroutput could be attributed to the high biocompatibility of the GTS.
     (2) A graphene-modified stainless steel mesh (GMS) has been used as anodic catalyst ofMFCs based on E.coli. The electrochemical activities of stainless steel mesh (SSM),polytetrafluoroethylene (PTFE) modified SSM (PMS) and GMS have been investigated bycyclic voltammogram (CV), discharge experiment and polarization curve measurement. TheGMS shows better electrochemical performance than those of SSM and PMS. The MFCequipped with GMS anode delivers a maximum power density of2668mW m~(-2), which is18times larger than that obtained from the MFC with the SSM anode and is17times larger thanthat obtained from the MFC with the PMS anode.
     (3) The morphologies and surface elemental analysis of graphene were characterized bytransmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Theelectrochemical activity was evaluated by CV. Graphene exhibited high oxygen reductionactivity. The MFC operated with the graphene cathode delivered a maximum power density of 289mW m~(-2), which demonstrated that the graphene is promising candidate for application ofMFC.
     (4) Noncovalent functionalization of graphene with iron tetrasulfophthalocyanine(FeTsPc) is achieved not only to prevent the aggregation of graphene but also form anefficient electrocatalyst for the oxygen reduction reaction (ORR) in a dual-chamber microbialfuel cell. The electrochemical activity of the FeTsPc-functionalized graphene(FeTsPc-graphene) is evaluated towards the ORR using CV and linear sweep voltammogram(LSV) methods. More positive peak potential and larger peak current of oxygen reduction arefound using FeTsPc-graphene electrode as compared to FeTsPc electrode. The maximumpower density of817mW m~(-2)obtained from the MFC with a FeTsPc-graphene cathode ishigher than that of523mW m~(-2)with a FeTsPc cathode and is close to that of856mW m~(-2)with a Pt/C cathode. Thus, FeTsPc-graphene nanocomposites can be a good alternative to Ptcatalyst in MFCs.
引文
[1] P. L. McCarty, J. Bae and J. Kim. Domestic Wastewater Treatment as a Net EnergyProducer-Can This be Achieved?[J]. Environmental Science&Technology.2011,45(17):7100-7106.
    [2] B. E. Logan. Extracting hydrogen electricity from renewable resources [J]. EnvironmentalScience&Technology.2004,38(9):160a-167a.
    [3] B. E. Logan, B. Hamelers, R. A. Rozendal, et al. Microbial fuel cells: Methodology andtechnology [J]. Environmental Science&Technology.2006,40(17):5181-5192.
    [4] S. K. Lower, M. F. Hochella and T. J. Beveridge. Bacterial recognition of mineral surfaces:Nanoscale interactions between Shewanella and alpha-FeOOH [J]. Science.2001,292(5520):1360-1363.
    [5] D. H. Park and J. G. Zeikus. Improved fuel cell and electrode designs for producingelectricity from microbial degradation [J]. Biotechnology and Bioengineering.2003,81(3):348-355.
    [6] B. E. Logan and J. M. Regan. Electricity-producing bacterial communities in microbialfuel cells [J]. Trends in Microbiology.2006,14(12):512-518.
    [7] M. E. Hernandez and D. K. Newman. Extracellular electron transfer [J]. Cellular andMolecular Life Sciences.2001,58(11):1562-1571.
    [8] S. K. Chaudhuri and D. R. Lovley. Electricity generation by direct oxidation of glucose inmediatorless microbial fuel cells [J]. Nature Biotechnology.2003,21(10):1229-1232.
    [9] P. G. Yi and Y. H. Liang. Theoretical studies of conjugation and substituent effect onintramolecular proton transfer in the ground and excited states [J]. Chemical Physics.2006,322(3):382-386.
    [10] D. H. Park and J. G. Zeikus. Electricity generation in microbial fuel cells using neutralred as an electronophore [J]. Applied and Environmental Microbiology.2000,66(4):1292-1297.
    [11] G. C. Gil, I. S. Chang, B. H. Kim, et al. Operational parameters affecting the performanceof a mediator-less microbial fuel cell [J]. Biosensors&Bioelectronics.2003,18(4):327-334.
    [12] G. Reguera, K. D. McCarthy, T. Mehta, et al. Extracellular electron transfer via microbialnanowires [J]. Nature.2005,435(7045):1098-1101.
    [13] Y. A. Gorby, S. Yanina, J. S. McLean, et al. Electrically conductive bacterial nanowiresproduced by Shewanella oneidensis strain MR-1and other microorganisms [J]. Proceedingsof the National Academy of Sciences of the United States of America.2006,103(30):11358-11363.
    [14] B. E. Logan. Simultaneous wastewater treatment and biological electricity generation [J].Water Science and Technology.2005,52(1-2):31-37.
    [15] R. A. Rozendal, H. V. M. Hamelers, K. Rabaey, et al. Towards practical implementationof bioelectrochemical wastewater treatment [J]. Trends in Biotechnology.2008,26(8):450-459.
    [16] Y. C. Song, K. S. Yoo and S. K. Lee. Surface floating, air cathode, microbial fuel cellwith horizontal flow for continuous power production from wastewater [J]. Journal of PowerSources.2010,195(19):6478-6482.
    [17] J. Sun, Y. Y. Hu, Z. Bi, et al. Improved performance of air-cathode single-chambermicrobial fuel cell for wastewater treatment using microfiltration membranes and multiplesludge inoculation [J]. Journal of Power Sources.2009,187(2):471-479.
    [18] O. Lefebvre, Z. Tan, Y. J. Shen, et al. Optimization of a microbial fuel cell for wastewatertreatment using recycled scrap metals as a cost-effective cathode material [J]. Bioresourcetechnology.2013,127:158-164.
    [19] D. Gong and G. Qin. Treatment of oilfield wastewater using a microbial fuel cellintegrated with an up-flow anaerobic sludge blanket reactor [J]. Desalination and WaterTreatment.2012,49(1-3):272-280.
    [20] L. J. Zhang, H. C. Tao, X. Y. Wei, et al. Bioelectrochemical recovery ofammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell [J].Chemosphere.2012,89(10):1177-1182.
    [21] L. Zhuang, Y. Yuan, Y. Q. Wang, et al. Long-term evaluation of a10-liter serpentine-typemicrobial fuel cell stack treating brewery wastewater [J]. Bioresource technology.2012,123:406-412.
    [22] Y. P. Wang, X. W. Liu, W. W. Li, et al. A microbial fuel cell-membrane bioreactorintegrated system for cost-effective wastewater treatment [J]. Applied Energy.2012,98:230-235.
    [23] M. M. Mardanpour, M. N. Esfahany, T. Behzad, et al. Single chamber microbial fuel cellwith spiral anode for dairy wastewater treatment [J]. Biosensors&Bioelectronics.2012,38(1):264-269.
    [24] H. Liu, R. Ramnarayanan and B. E. Logan. Production of electricity during wastewatertreatment using a single chamber microbial fuel cell [J]. Environmental Science&Technology.2004,38(7):2281-2285.
    [25] X.Y Liu, X.Y Du, X. Wang, et al. Improved microbial fuel cell performance byencapsulating microbial cells with a nickel-coated sponge [J]. Biosensors&Bioelectronics.2013,41:848-851.
    [26] Y.Q Wang, B. Li, L.Z Zeng, et al. Polyaniline/mesoporous tungsten trioxide composite asanode electrocatalyst for high-performance microbial fuel cells [J]. Biosensors&Bioelectronics.2013,41:582-588.
    [27] A. Rhoads, H. Beyenal and Z. Lewandowski. Microbial fuel cell using anaerobicrespiration as an anodic reaction and biomineralized manganese as a cathodic reactant [J].Environmental Science&Technology.2005,39(12):4666-4671.
    [28] B. K. Min, S. A. Cheng and B. E. Logan. Electricity generation using membrane and saltbridge microbial fuel cells [J]. Water research.2005,39(9):1675-1686.
    [29] B. E. Logan, C. Murano, K. Scott, et al. Electricity generation from cysteine in amicrobial fuel cell [J]. Water research.2005,39(5):942-952.
    [30] J. R. Kim, B. Min and B. E. Logan. Evaluation of procedures to acclimate a microbialfuel cell for electricity production [J]. Applied Microbiology and Biotechnology.2005,68(1):23-30.
    [31] Z. He, S. D. Minteer and L. T. Angenent. Electricity generation from artificial wastewaterusing an upflow microbial fuel cell [J]. Environmental Science&Technology.2005,39(14):5262-5267.
    [32] B. Min and B. E. Logan. Continuous electricity generation from domestic wastewaterand organic substrates in a flat plate microbial fuel cell [J]. Environmental Science&Technology.2004,38(21):5809-5814.
    [33] H. Liu and B. E. Logan. Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchange membrane [J].Environmental Science&Technology.2004,38(14):4040-4046.
    [34] H. Liu, S. A. Cheng and B. E. Logan. Power generation in fed-batch microbial fuel cellsas a function of ionic strength, temperature, and reactor configuration [J]. EnvironmentalScience&Technology.2005,39(14):5488-5493.
    [35] S. Cheng, H. Liu and B. E. Logan. Increased power generation in a continuous flowMFC with advective flow through the porous anode and reduced electrode spacing [J].Environmental Science&Technology.2006,40(7):2426-2432.
    [36] D. R. Bond, D. E. Holmes, L. M. Tender, et al. Electrode-reducing microorganisms thatharvest energy from marine sediments [J]. Science.2002,295(5554):483-485.
    [37] B. H. Kim, T. Ikeda, H. S. Park, et al. Electrochemical activity of an Fe(III)-reducingbacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors [J].Biotechnology Techniques.1999,13(7):475-478.
    [38] H. J. Kim, H. S. Park, M. S. Hyun, et al. A mediator-less microbial fuel cell using a metalreducing bacterium, Shewanella putrefaciense [J]. Enzyme and Microbial Technology.2002,30(2):145-152.
    [39] H. S. Park, B. H. Kim, H. S. Kim, et al. A novel electrochemically active andFe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from amicrobial fuel cell [J]. Anaerobe.2001,7(6):297-306.
    [40] D. H. Park, M. Laivenieks, M. V. Guettler, et al. Microbial utilization of electricallyreduced neutral red as the sole electron donor for growth and metabolite production [J].Applied and Environmental Microbiology.1999,65(7):2912-2917.
    [41] K. Rabaey, N. Boon, S. D. Siciliano, et al. Biofuel cells select for microbial consortia thatself-mediate electron transfer [J]. Applied and Environmental Microbiology.2004,70(9):5373-5382.
    [42] C. E. Reimers, L. M. Tender, S. Fertig, et al. Harvesting energy from the marinesediment-water interface [J]. Environmental Science&Technology.2001,35(1):192-195.
    [43] D. R. Bond and D. R. Lovley. Electricity production by Geobacter sulfurreducensattached to electrodes [J]. Applied and Environmental Microbiology.2003,69(3):1548-1555.
    [44] D. A. Lowy and L. M. Tender. Harvesting energy from the marine sediment-waterinterface III. Kinetic activity of quinone-and antimony-based anode materials [J]. Journal ofPower Sources.2008,185(1):70-75.
    [45] D. A. Lowy, L. M. Tender, J. G. Zeikus, et al. Harvesting energy from the marinesediment-water interface II-Kinetic activity of anode materials [J]. Biosensors&Bioelectronics.2006,21(11):2058-2063.
    [46] W. S. D. Wilcock and P. C. Kauffman. Development of a seawater battery for deep-waterapplications [J]. Journal of Power Sources.1997,66(1-2):71-75.
    [47] L. M. Tender, C. E. Reimers, H. A. Stecher, et al. Harnessing microbially generatedpower on the seafloor [J]. Nature Biotechnology.2002,20(8):821-825.
    [48] M. Rosenbaum, U. Schroder and F. Scholz. In situ electrooxidation of photobiologicalhydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides [J].Environmental Science&Technology.2005,39(16):6328-6333.
    [49] L.Y Feng, Y.Y Yan, Y.G Chen, et al. Nitrogen-doped carbon nanotubes as efficient anddurable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells [J]. Energy&Environmental Science.2011,4(5):1892-1899.
    [50] G. D. Zhang, Q. L. Zhao, Y. Jiao, et al. Efficient electricity generation from sewagesludge using biocathode microbial fuel cell [J]. Water research.2012,46(1):43-52.
    [51] H. Liu, S. A. Cheng and B. E. Logan. Production of electricity from acetate or butyrateusing a single-chamber microbial fuel cell [J]. Environmental Science&Technology.2005,39(2):658-662.
    [52] S. L. Chen, Y. Chen, G. H. He, et al. Stainless steel mesh supported nitrogen-dopedcarbon nanofibers for binder-free cathode in microbial fuel cells [J]. Biosensors&Bioelectronics.2012,34(1):282-285.
    [53] Y.F Chen, Z.S Lv, J.M Xu, et al. Stainless steel mesh coated with MnO2/carbon nanotubeand polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathodematerials [J]. Journal of Power Sources.2012,201:136-141.
    [54] B. R. Ringeisen, E. Henderson, P. K. Wu, et al. High power density from a miniaturemicrobial fuel cell using Shewanella oneidensis DSP10[J]. Environmental Science&Technology.2006,40(8):2629-2634.
    [55] K. Rabaey, P. Clauwaert, P. Aelterman, et al. Tubular microbial fuel cells for efficientelectricity generation [J]. Environmental Science&Technology.2005,39(20):8077-8082.
    [56] L. Galvani. De bononiensi scientiarum et artium instituto atque academia [J].Comentarrii.1791,7:363-418.
    [57] M.C. Potter. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London Series B-Containing Paper of a BiologicalCharacter.1911,84(571):260-276.
    [58] B.Cohen. The bacterial culture as an electrical half-cell [J]. Journal of Bacteriology.21(1):18-19.
    [59] Y. T. Ahn and B. E. Logan. A multi-electrode continuous flow microbial fuel cell withseparator electrode assembly design [J]. Applied Microbiology and Biotechnology.2012,93(5):2241-2248.
    [60] G. Chen, B. Wei, B. E. Logan, et al. Cationic fluorinated polymer binders for microbialfuel cell cathodes [J]. Rsc Advances.2012,2(13):5856-5862.
    [61] Q. Deng, X. Y. Li, J. E. Zuo, et al. Power generation using an activated carbon fiber feltcathode in an upflow microbial fuel cell [J]. Journal of Power Sources.2010,195(4):1130-1135.
    [62] E. HaoYu, S. Cheng, K. Scott, et al. Microbial fuel cell performance with non-Pt cathodecatalysts [J]. Journal of Power Sources.2007,171(2):275-281.
    [63] J. Heilmann and B. E. Logan. Production of electricity from proteins using a microbialfuel cell [J]. Water Environment Research.2006,78(5):531-537.
    [64] L. P. Huang and B. E. Logan. Electricity generation and treatment of paper recyclingwastewater using a microbial fuel cell [J]. Applied Microbiology and Biotechnology.2008,80(2):349-355.
    [65] J. Kim, B. Min and B. Logan. Development of a procedure to rapidly acclimate amicrobial fuel cell (MFC) for electricity production [J]. Abstracts of Papers of the AmericanChemical Society.2004,228: U622-U622.
    [66] B. E. Logan. Essential Data and Techniques for Conducting Microbial Fuel Cell andother Types of Bioelectrochemical System Experiments [J]. Chemsuschem.2012,5(6):988-994.
    [67] J. K. Jang, I. S. Chang, H. Y. Hwang, et al. Electricity generation coupled to oxidation ofpropionate in a microbial fuel cell [J]. Biotechnology Letters.2010,32(1):79-85.
    [68] J. K. Jang, I. S. Chang, H. Moon, et al. Nitrilotriacetic acid degradation under microbialfuel cell environment [J]. Biotechnology and Bioengineering.2006,95(4):772-774.
    [69] B. C. Jong, B. H. Kim, I. S. Chang, et al. Enrichment, performance, and microbialdiversity of a thermophilic mediatorless microbial fuel cell [J]. Environmental Science&Technology.2006,40(20):6449-6454.
    [70] T. H. Pham, J. K. Jang, H. S. Moon, et al. Improved performance of microbial fuel cellusing membrane-electrode assembly [J]. Journal of Microbiology and Biotechnology.2005,15(2):438-441.
    [71] T. H. Pham, J. K. Jang, I. S. Chang, et al. Improvement of cathode reaction of amediatorless microbial fuel cell [J]. Journal of Microbiology and Biotechnology.2004,14(2):324-329.
    [72] B. H. Kim, H. S. Park, H. J. Kim, et al. Enrichment of microbial community generatingelectricity using a fuel-cell-type electrochemical cell [J]. Applied Microbiology andBiotechnology.2004,63(6):672-681.
    [73] I. S. Chang, J. K. Jang, G. C. Gil, et al. Continuous determination of biochemical oxygendemand using microbial fuel cell type biosensor [J]. Biosensors&Bioelectronics.2004,19(6):607-613.
    [74] K. H. Kang, J. K. Jang, T. H. Pham, et al. A microbial fuel cell with improved cathodereaction as a low biochemical oxygen demand sensor [J]. Biotechnology Letters.2003,25(16):1357-1361.
    [75] B. H. Kim, I. S. Chang, G. C. Gil, et al. Novel BOD (biological oxygen demand) sensorusing mediator-less microbial fuel cell [J]. Biotechnology Letters.2003,25(7):541-545.
    [76] H. J. Kim, M. S. Hyun, I. S. Chang, et al. A microbial fuel cell type lactate biosensorusing a metal-reducing bacterium, Shewanella putrefaciens [J]. Journal of Microbiology andBiotechnology.1999,9(3):365-367.
    [77] L. Fu, S. J. You, F. L. Yang, et al. Synthesis of hydrogen peroxide in microbial fuel cell[J]. Journal of Chemical Technology and Biotechnology.2010,85(5):715-719.
    [78] F. Qian, G. M. Wang and Y. Li. Solar-Driven Microbial Photoelectrochemical Cells witha Nanowire Photocathode [J]. Nano Letters.2010,10(11):4686-4691.
    [79] J. M. Weiner and D. R. Lovley. Anaerobic benzene degradation inpetroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizingenrichment [J]. Applied and Environmental Microbiology.1998,64(2):775-778.
    [80] R. T. Anderson and D. R. Lovley. Ecology and biogeochemistry of in situ groundwaterbioremediation [J]. Advances in Microbial Ecology, Vol15.1997,15:289-350.
    [81] K. B. Gregory, D. R. Bond and D. R. Lovley. Graphite electrodes as electron donors foranaerobic respiration [J]. Environmental Microbiology.2004,6(6):596-604.
    [82] K. B. Gregory and D. R. Lovley. Remediation and recovery of uranium fromcontaminated subsurface environments with electrodes [J]. Environmental Science&Technology.2005,39(22):8943-8947.
    [83] I. S. Chang, H. Moon, J. K. Jang, et al. Improvement of a microbial fuel cell performanceas a BOD sensor using respiratory inhibitors [J]. Biosensors&Bioelectronics.2005,20(9):1856-1859.
    [84] B. Min, J. R. Kim, S. E. Oh, et al. Electricity generation from swine wastewater usingmicrobial fuel cells [J]. Water research.2005,39(20):4961-4968.
    [85] S. Cheng, B. E. Logan. Sustainable and efficient biohydrogen production viaelectrohydrogenesis [J]. Proceedings of the National Academy of Sciences of the United Statesof America.2007,104(47):18871-18873.
    [86] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thincarbon films [J]. Science.2004,306(5696):666-669.
    [87] R.E.Peierls. Quelques proprietes typiques des corps solides [J]. Ann. Inst. Henri Poincare.1935,5(2):177-222.
    [88] J. Hass, W. A. de Heer and E. H. Conrad. The growth and morphology of epitaxialmultilayer graphene [J]. Journal of Physics-Condensed Matter.2008,20(32).
    [89] A. K. Geim and K. S. Novoselov. The rise of graphene [J]. Nature Materials.2007,6(3):183-191.
    [90] D. Li, R. B. Kaner. Materials science-Graphene-based materials [J]. Science.2008,320(5880):1170-1171.
    [91] C. Lee, X. D. Wei, J. W. Kysar, et al. Measurement of the elastic properties and intrinsicstrength of monolayer graphene [J]. Science.2008,321(5887):385-388.
    [92] C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, et al. Graphene, the new nanocarbon [J].Journal of Materials Chemistry.2009,19(17):2457-2469.
    [93] Y. W. Son, M. L. Cohen, S. G. Louie. Energy gaps in graphene nanoribbons [J]. PhysicalReview Letters.2006,97(21).
    [94] P. W. Sutter, J. I. Flege, E. A. Sutter. Epitaxial graphene on ruthenium [J]. NatureMaterials.2008,7(5):406-411.
    [95] Y. Pan, H. G. Zhang, D. X. Shi, et al. Highly Ordered, Millimeter-Scale, Continuous,Single-Crystalline Graphene Monolayer Formed on Ru (0001)[J]. Advanced Materials.2009,21(27):2739-2739.
    [96] K. S. Kim, Y. Zhao, H. Jang, et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes [J]. Nature.2009,457(7230):706-710.
    [97] J. Coraux, A. T. N'Diaye, M. Engler, et al. Growth of graphene on Ir(111)[J]. NewJournal of Physics.2009,11.
    [98] J. Coraux, A. T. N'Diaye, C. Busse, et al. Structural coherency of graphene on Ir(111)[J].Nano Letters.2008,8(2):565-570.
    [99] Y. Gamo, A. Nagashima, M. Wakabayashi, et al. Atomic structure of monolayer graphiteformed on Ni(111)[J]. Surface Science.1997,374(1-3):61-64.
    [100] T. Kawano, M. Kawaguchi, Y. Okamoto, et al. Preparation of layered B/C/N thin filmson nickel single crystal by LPCVD [J]. Solid State Sciences.2002,4(11-12):1521-1527.
    [101] A. Reina, X. T. Jia, J. Ho, et al. Large Area, Few-Layer Graphene Films on ArbitrarySubstrates by Chemical Vapor Deposition [J]. Nano Letters.2009,9(1):30-35.
    [102] A. Ambrosi, A. Bonanni, Z. Sofer, et al. Large-scale quantification of CVD graphenesurface coverage [J]. Nanoscale.2013,5(6):2379-2387.
    [103] G. Nandamuri, S. Roumimov and R. Solanki. Chemical vapor deposition of graphenefilms [J]. Nanotechnology.2010,21(14).
    [104] H. Y. He, J. Klinowski, M. Forster, et al. A new structural model for graphite oxide [J].Chemical Physics Letters.1998,287(1-2):53-56.
    [105] S. Stankovich, D. A. Dikin, R. D. Piner, et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide [J]. Carbon.2007,45(7):1558-1565.
    [106] V. C. Tung, M. J. Allen, Y. Yang, et al. High-throughput solution processing oflarge-scale graphene [J]. Nature Nanotechnology.2009,4(1):25-29.
    [107] J. I. Paredes, S. Villar-Rodil, M. J. Fernandez-Merino, et al. Environmentally friendlyapproaches toward the mass production of processable graphene from graphite oxide [J].Journal of Materials Chemistry.2011,21(2):298-306.
    [108] M. J. McAllister, J. L. Li, D. H. Adamson, et al. Single sheet functionalized graphene byoxidation and thermal expansion of graphite [J]. Chemistry of Materials.2007,19(18):4396-4404.
    [109] H. L. Guo, X. F. Wang, Q. Y. Qian, et al. A Green Approach to the Synthesis ofGraphene Nanosheets [J]. Acs Nano.2009,3(9):2653-2659.
    [110] Y. Y. Shao, J. Wang, M. Engelhard, et al. Facile and controllable electrochemicalreduction of graphene oxide and its applications [J]. Journal of Materials Chemistry.2010,20(4):743-748.
    [111] M. Zhou, Y. L. Wang, Y. M. Zhai, et al. Controlled Synthesis of Large-Area andPatterned Electrochemically Reduced Graphene Oxide Films [J]. Chemistry-a EuropeanJournal.2009,15(25):6116-6120.
    [112] Z. J. Wang, X. Z. Zhou, J. Zhang, et al. Direct Electrochemical Reduction ofSingle-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase [J].Journal of Physical Chemistry C.2009,113(32):14071-14075.
    [113] Z. S. Wu, W. C. Ren, L. B. Gao, et al. Synthesis of Graphene Sheets with HighElectrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation[J]. Acs Nano.2009,3(2):411-417.
    [114] D. Li, M. B. Muller, S. Gilje, et al. Processable aqueous dispersions of graphenenanosheets [J]. Nature Nanotechnology.2008,3(2):101-105.
    [115] Q. Kuang, S. Y. Xie, Z. Y. Jiang, et al. Low temperature solvothermal synthesis ofcrumpled carbon nanosheets [J]. Carbon.2004,42(8-9):1737-1741.
    [116] M. Choucair, P. Thordarson and J. A. Stride. Gram-scale production of graphene basedon solvothermal synthesis and sonication [J]. Nature Nanotechnology.2009,4(1):30-33.
    [117] J. M. Shen and Y. T. Feng. Formation of flower-like carbon nanosheet aggregations andtheir electrochemical application [J]. Journal of Physical Chemistry C.2008,112(34):13114-13120.
    [118] X. Y. Yang, X. Dou, A. Rouhanipour, et al. Two-dimensional graphene nanoribbons [J].Journal of the American Chemical Society.2008,130(13):4216-4217.
    [119] W. Hendel, Z. H. Khan and W. Schmidt. Hexa-Peri-Benzocoronene, a Candidate for theOrigin of the Diffuse Interstellar Visible Absorption-Bands [J]. Tetrahedron.1986,42(4):1127-1134.
    [120] K. Balasubramanian, M. Friedrich, C. Y. Jiang, et al. Electrical transport and confocalRaman studies of electrochemically modified individual carbon nanotubes [J]. AdvancedMaterials.2003,15(18):1515-1518.
    [121] N. Liu, F. Luo, H. X. Wu, et al. One-step ionic-liquid-assisted electrochemical synthesisof ionic-liquid-functionalized graphene sheets directly from graphite [J]. AdvancedFunctional Materials.2008,18(10):1518-1525.
    [122] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping ofcarbon nanotubes to form graphene nanoribbons [J]. Nature.2009,458(7240):872-875.
    [123] Y. Hernandez, V. Nicolosi, M. Lotya, et al. High-yield production of graphene byliquid-phase exfoliation of graphite [J]. Nature Nanotechnology.2008,3(9):563-568.
    [124] K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj, et al. A study of graphenesprepared by different methods: characterization, properties and solubilization [J]. Journal ofMaterials Chemistry.2008,18(13):1517-1523.
    [125] O. E. Andersson, B. L. V. Prasad, H. Sato, et al. Structure and electronic properties ofgraphite nanoparticles [J]. Physical Review B.1998,58(24):16387-16395.
    [126] C. L. Kane. Materials science-Erasing electron mass [J]. Nature.2005,438(7065):168-170.
    [127] K. I. Bolotin, K. J. Sikes, Z. Jiang, et al. Ultrahigh electron mobility in suspendedgraphene [J]. Solid State Communications.2008,146(9-10):351-355.
    [128] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, et al. Bipolar supercurrent ingraphene [J]. Nature.2007,446(7131):56-59.
    [129] M. D. Stoller, S. J. Park, Y. W. Zhu, et al. Graphene-Based Ultracapacitors [J]. NanoLetters.2008,8(10):3498-3502.
    [130] Y. Wang, Z. Q. Shi, Y. Huang, et al. Supercapacitor Devices Based on GrapheneMaterials [J]. Journal of Physical Chemistry C.2009,113(30):13103-13107.
    [131] C. P. Burgess and B. P. Dolan. Modular symmetry, the semicircle law, and quantum Hallbilayers [J]. Physical Review B.2007,76(15).
    [132] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al. Control of Graphene's Properties byReversible Hydrogenation: Evidence for Graphane [J]. Science.2009,323(5914):610-613.
    [133] J. B. Oostinga, H. B. Heersche, X. L. Liu, et al. Gate-induced insulating state in bilayergraphene devices [J]. Nature Materials.2008,7(2):151-157.
    [134] V. V. Cheianov and V. I. Fal'ko. Selective transmission of Dirac electrons and ballisticmagnetoresistance of n-p junctions in graphene [J]. Physical Review B.2006,74(4).
    [135] M. I. Katsnelson, K. S. Novoselov and A. K. Geim. Chiral tunnelling and the Kleinparadox in graphene [J]. Nature Physics.2006,2(9):620-625.
    [136] A. A. Balandin, S. Ghosh, W. Z. Bao, et al. Superior thermal conductivity ofsingle-layer graphene [J]. Nano Letters.2008,8(3):902-907.
    [137] J. C. Meyer, A. K. Geim, M. I. Katsnelson, et al. The structure of suspended graphenesheets [J]. Nature.2007,446(7131):60-63.
    [138] A. Fasolino, J. H. Los and M. I. Katsnelson. Intrinsic ripples in graphene [J]. NatureMaterials.2007,6(11):858-861.
    [139] S. Ghosh, I. Calizo, D. Teweldebrhan, et al. Extremely high thermal conductivity ofgraphene: Prospects for thermal management applications in nanoelectronic circuits [J].Applied Physics Letters.2008,92(15).
    [140] R. R. Nair, P. Blake, A. N. Grigorenko, et al. Fine structure constant defines visualtransparency of graphene [J]. Science.2008,320(5881):1308-1308.
    [141] Z. Q. Li, E. A. Henriksen, Z. Jiang, et al. Dirac charge dynamics in graphene by infraredspectroscopy [J]. Nature Physics.2008,4(7):532-535.
    [142] Y. Wang, Y. Huang, Y. Song, et al. Room-Temperature Ferromagnetism of Graphene [J].Nano Letters.2009,9(1):220-224.
    [143] T. Enoki and K. Takai. Unconventional electronic and magnetic functions ofnanographene-based host-guest systems [J]. Dalton Transactions.2008,(29):3773-3781.
    [144] A. Qaiumzadeh, N. Arabchi and R. Asgari. Quasiparticle properties of graphene in thepresence of disorder [J]. Solid State Communications.2008,147(5-6):172-177.
    [145] K. S. Novoselov, Z. Jiang, Y. Zhang, et al. Room-temperature quantum hall effect ingraphene [J]. Science.2007,315(5817):1379-1379.
    [146] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, et al.100-GHz Transistors fromWafer-Scale Epitaxial Graphene [J]. Science.2010,327(5966):662-662.
    [147] H. Park, J. A. Rowehl, K. K. Kim, et al. Doped graphene electrodes for organic solarcells [J]. Nanotechnology.2010,21(50).
    [148] P. Blake, P. D. Brimicombe, R. R. Nair, et al. Graphene-based liquid crystal device [J].Nano Letters.2008,8(6):1704-1708.
    [149] F. Schedin, A. K. Geim, S. V. Morozov, et al. Detection of individual gas moleculesadsorbed on graphene [J]. Nature Materials.2007,6(9):652-655.
    [150] N. G. Shang, P. Papakonstantinou, M. McMullan, et al. Catalyst-Free Efficient Growth,Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with SharpEdge Planes [J]. Advanced Functional Materials.2008,18(21):3506-3514.
    [151] Z.H Sheng, X.Q Zheng, J.Y Xu, et al. Electrochemical sensor based on nitrogen dopedgraphene: Simultaneous determination of ascorbic acid, dopamine and uric acid [J].Biosensors&Bioelectronics.2012,34(1):125-131.
    [152] Z. F. Wang, Q. W. Shi, Q. X. Li, et al. Z-shaped graphene nanoribbon quantum dotdevice [J]. Applied Physics Letters.2007,91(5).
    [153] S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, et al. Graphene-basedelectrochemical supercapacitors [J]. Journal of Chemical Sciences.2008,120(1):9-13.
    [154] C. G. Liu, Z. N. Yu, D. Neff, et al. Graphene-Based Supercapacitor with an UltrahighEnergy Density [J]. Nano Letters.2010,10(12):4863-4868.
    [155] D. F. Sun, X. B. Yan, J. W. Lang, et al. High performance supercapacitor electrodebased on graphene paper via flame-induced reduction of graphene oxide paper [J]. Journal ofPower Sources.2013,222:52-58.
    [156] H. L. Liu, Y. Wang, X. L. Gou, et al. Three-dimensional graphene/polyanilinecomposite material for high-performance supercapacitor applications [J]. Materials Scienceand Engineering B-Advanced Functional Solid-State Materials.2013,178(5):293-298.
    [157] S. Ryu, M. Y. Han, J. Maultzsch, et al. Reversible Basal Plane Hydrogenation ofGraphene [J]. Nano Letters.2008,8(12):4597-4602.
    [158] G. Srinivas, Y. W. Zhu, R. Piner, et al. Synthesis of graphene-like nanosheets and theirhydrogen adsorption capacity [J]. Carbon.2010,48(3):630-635.
    [159] A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, et al. Uptake of H2and CO2bygraphene [J]. Journal of Physical Chemistry C.2008,112(40):15704-15707.
    [160] G. X. Wang, X. P. Shen, J. Yao, et al. Graphene nanosheets for enhanced lithium storagein lithium ion batteries [J]. Carbon.2009,47(8):2049-2053.
    [161] D. Prasad, T. K. Sivaram, S. Berchmans, et al. Microbial fuel cell constructed with amicro-organism isolated from sugar industry effluent [J]. Journal of Power Sources.2006,160(2):991-996.
    [162] K. Rabaey and W. Verstraete. Microbial fuel cells: novel biotechnology for energygeneration [J]. Trends in Biotechnology.2005,23(6):291-298.
    [163] K. Rabaey, G. Lissens, S. D. Siciliano, et al. A microbial fuel cell capable of convertingglucose to electricity at high rate and efficiency [J]. Biotechnology Letters.2003,25(18):1531-1535.
    [164] Y. Ahn and B. E. Logan. Effectiveness of domestic wastewater treatment usingmicrobial fuel cells at ambient and mesophilic temperatures [J]. Bioresource technology.2010,101(2):469-475.
    [165] L. De Schamphelaire, P. Boeckx and W. Verstraete. Evaluation of biocathodes infreshwater and brackish sediment microbial fuel cells [J]. Applied Microbiology andBiotechnology.2010,87(5):1675-1687.
    [166] J. J. Sun, H. Z. Zhao, Q. Z. Yang, et al. A novel layer-by-layer self-assembled carbonnanotube-based anode: Preparation, characterization, and application in microbial fuel cell [J].Electrochimica Acta.2010,55(9):3041-3047.
    [167] X. Xie, L. B. Hu, M. Pasta, et al. Three-Dimensional Carbon Nanotube-Textile Anodefor High-Performance Microbial Fuel Cells [J]. Nano Letters.2011,11(1):291-296.
    [168] B. Logan, S. Cheng, V. Watson, et al. Graphite fiber brush anodes for increased powerproduction in air-cathode microbial fuel cells [J]. Environmental Science&Technology.2007,41(9):3341-3346.
    [169] Z. D. Liu and H. R. Li. Effects of bio-and abio-factors on electricity production in amediatorless microbial fuel cell [J]. Biochemical Engineering Journal.2007,36(3):209-214.
    [170] U. Schroder, J. Niessen and F. Scholz. A generation of microbial fuel cells with currentoutputs boosted by more than one order of magnitude [J]. Angewandte Chemie-InternationalEdition.2003,42(25):2880-2883.
    [171] S.E Oh, B. Min, B. E. Logan. Cathode Performance as a Factor in ElectricityGeneration in Microbial Fuel Cells [J]. Environmental Science&Technology.2004,38(18):4900-4904.
    [172] L. X. Zhang, S. G. Zhou, L. Zhuang, et al. Microbial fuel cell based on Klebsiellapneumoniae biofilm [J]. Electrochemistry Communications.2008,10(10):1641-1643.
    [173] Y. Qiao, S. J. Bao, C. M. Li, et al. Nanostructured polyanifine/titanium dioxidecomposite anode for microbial fuel cells [J]. Acs Nano.2008,2(1):113-119.
    [174] C. H. Feng, F. B. Li, H. Y. Liu, et al. A dual-chamber microbial fuel cell withconductive film-modified anode and cathode and its application for the neutral electro-Fentonprocess [J]. Electrochimica Acta.2010,55(6):2048-2054.
    [175] F. Rezaei, T. L. Richard, R. A. Brennan, et al. Substrate-enhanced microbial fuel cellsfor improved remote power generation from sediment-based systems [J]. EnvironmentalScience&Technology.2007,41(11):4053-4058.
    [176] D. Y. Lyon, F. Buret, T. M. Vogel, et al. Is resistance futile? Changing externalresistance does not improve microbial fuel cell performance [J]. Bioelectrochemistry.2010,78(1):2-7.
    [177] Y. Qiao, C. M. Li, S. J. Bao, et al. Carbon nanotube/polyaniline composite as anodematerial for microbial fuel cells [J]. Journal of Power Sources.2007,170(1):79-84.
    [178] E. Flahaut, M. C. Durrieu, M. Remy-Zolghadri, et al. Study of the cytotoxicity ofCCVD carbon nanotubes [J]. Journal of Materials Science.2006,41(8):2411-2416.
    [179] A. Magrez, S. Kasas, V. Salicio, et al. Cellular Toxicity of Carbon-Based Nanomaterials[J]. Nano Letters.2006,6(6):1121-1125.
    [180] H. Y. Tsai, C. C. Wu, C. Y. Lee, et al. Microbial fuel cell performance of multiwallcarbon nanotubes on carbon cloth as electrodes [J]. Journal of Power Sources.2009,194(1):199-205.
    [181] Y. J. Zou, C. L. Xiang, L. N. Yang, et al. A mediatorless microbial fuel cell usingpolypyrrole coated carbon nanotubes composite as anode material [J]. International Journalof Hydrogen Energy.2008,33(18):4856-4862.
    [182] S. A. Cheng and B. E. Logan. Ammonia treatment of carbon cloth anodes to enhancepower generation of microbial fuel cells [J]. Electrochemistry Communications.2007,9(3):492-496.
    [183] Y. J. Feng, Q. Yang, X. Wang, et al. Treatment of carbon fiber brush anodes forimproving power generation in air-cathode microbial fuel cells [J]. Journal of Power Sources.2010,195(7):1841-1844.
    [184] C. H. Feng, L. Ma, F. B. Li, et al. A polypyrrole/anthraquinone-2,6-disulphonicdisodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells [J].Biosensors&Bioelectronics.2010,25(6):1516-1520.
    [185] E.J. Yoo, J. Kim, E. Hosono, et al. Large Reversible Li Storage of Graphene NanosheetFamilies for Use in Rechargeable Lithium Ion Batteries [J]. Nano Letters.2008,8(8):2277-2282.
    [186] X. Wang, L. Zhi, K. Mullen. Transparent, Conductive Graphene Electrodes forDye-Sensitized Solar Cells [J]. Nano Letters.2007,8(1):323-327.
    [187] S. Stankovich, R. D. Piner, X. Q. Chen, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium4-styrenesulfonate)[J]. Journal of Materials Chemistry.2006,16(2):155-158.
    [188] S. A. Lee, Y. Choi, S. H. Jung, et al. Effect of initial carbon sources on theelectrochemical detection of glucose by Gluconobacter oxydans [J]. Bioelectrochemistry.2002,57(2):173-178.
    [189] X. Wang, Y. J. Feng, N. Q. Ren, et al. Accelerated start-up of two-chambered microbialfuel cells: Effect of anodic positive poised potential [J]. Electrochimica Acta.2009,54(3):1109-1114.
    [190] J. A. Gralnick and D. K. Newman. Extracellular respiration [J]. Molecular Microbiology.2007,65(1):1-11.
    [191] B. E. Logan. Exoelectrogenic bacteria that power microbial fuel cells [J]. NatureReviews Microbiology.2009,7(5):375-381.
    [192] Y. Zuo, D. F. Xing, J. M. Regan, et al. Isolation of the exoelectrogenic bacteriumOchrobactrum anthropi YZ-1by using a U-tube microbial fuel cell [J]. Applied andEnvironmental Microbiology.2008,74(10):3130-3137.
    [193] Y. Yuan and S. Kim. Polypyrrole-coated reticulated vitreous carbon as anode inmicrobial fuel cell for higher energy output [J]. Bulletin of the Korean Chemical Society.2008,29(1):168-172.
    [194] Y. Yuan, Y. Jeon, J. Ahmed, et al. Use of Carbon Nanoparticles for BacteriaImmobilization in Microbial Fuel Cells for High Power Output [J]. Journal of theElectrochemical Society.2009,156(10): B1238-B1241.
    [195] J. Li, Q. Fu, Q. Liao, et al. Persulfate: A self-activated cathodic electron acceptor formicrobial fuel cells [J]. Journal of Power Sources.2009,194(1):269-274.
    [196] S. J. You, Q. L. Zhao, J. N. Zhang, et al. A microbial fuel cell using permanganate as thecathodic electron acceptor [J]. Journal of Power Sources.2006,162(2):1409-1415.
    [197] J. M. Morris, S. Jin, J. Q. Wang, et al. Lead dioxide as an alternative catalyst toplatinum in microbial fuel cells [J]. Electrochemistry Communications.2007,9(7):1730-1734.
    [198] B. H. Kim, I. S. Chang and G. M. Gadd. Challenges in microbial fuel cell developmentand operation [J]. Applied Microbiology and Biotechnology.2007,76(3):485-494.
    [199] Z. W. Liu, F. Peng, H. J. Wang, et al. Design of Pt catalyst with high electrocatalyticactivity and well tolerance to methanol for oxygen reduction in acidic medium [J]. CatalysisCommunications.2012,29:11-14.
    [200] N. Gavrilov, I. A. Pasti, M. Mitric, et al. Electrocatalysis of oxygen reduction reactionon polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media [J].Journal of Power Sources.2012,220:306-316.
    [201] M. S. Ahmed and S. Jeon. New functionalized graphene sheets for enhanced oxygenreduction as metal-free cathode electrocatalysts [J]. Journal of Power Sources.2012,218:168-173.
    [202] S. Chen, J. Y. Bi, Y. Zhao, et al. Nitrogen-Doped Carbon Nanocages as EfficientMetal-Free Electrocatalysts for Oxygen Reduction Reaction [J]. Advanced Materials.2012,24(41):5593-5597.
    [203] F. Zheng, G. Q. Mu, Z. M. Zhang, et al. Nitrogen-doped hollow macroporous carbonspheres with high electrocatalytic activity for oxygen reduction [J]. Materials Letters.2012,68:453-456.
    [204] K. Gong, P. Yu, L. Su, et al. Polymer-Assisted Synthesis of Manganese Dioxide/CarbonNanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction ofOxygen [J]. Journal of Physical Chemistry C.2007,111(5):1882-1887.
    [205] F. Lima, M.L. Calegaro, E. A. Ticianelli. Investigations of the catalytic properties ofmanganese oxides for the oxygen reduction reaction in alkaline media [J]. Journal ofElectroanalytical Chemistry.2006,590(2):152-160.
    [206] R. X. Feng, H. Dong, Y. D. Wang, et al. A simple and high efficient direct borohydridefuel cell with MnO2-catalyzed cathode [J]. Electrochemistry Communications.2005,7(4):449-452.
    [207] Y. Qian, S. B. Lu and F. L. Gao. Synthesis of manganese dioxide/reduced grapheneoxide composites with excellent electrocatalytic activity toward reduction of oxygen [J].Materials Letters.2011,65(1):56-58.
    [208] Y. J. Wang, D. P. Wilkinson, A. Guest, et al. Synthesis of Pd and Nb-doped TiO2composite supports and their corresponding Pt-Pd alloy catalysts by a two-step procedure forthe oxygen reduction reaction [J]. Journal of Power Sources.2013,221:232-241.
    [209] E. H. Yu, Cheng Shaoan, K. Scott, et al. Microbial fuel cell performance with non-Ptcathode catalysts [J]. Journal of Power Sources.2007:275-281.
    [210] E. H. Yu, S. Cheng, B. E. Logan, et al. Electrochemical reduction of oxygen with ironphthalocyanine in neutral media [J]. Journal of Applied Electrochemistry.2009,39(5):705-711.
    [211] K. P. Gong, F. Du, Z. H. Xia, et al. Nitrogen-Doped Carbon Nanotube Arrays with HighElectrocatalytic Activity for Oxygen Reduction [J]. Science.2009,323(5915):760-764.
    [212] M. Lefevre, E. Proietti, F. Jaouen, et al. Iron-Based Catalysts with Improved OxygenReduction Activity in Polymer Electrolyte Fuel Cells [J]. Science.2009,324(5923):71-74.
    [213] S. Y. Wang, D. S. Yu, L. M. Dai, et al. Polyelectrolyte-Functionalized Graphene asMetal-Free Electrocatalysts for Oxygen Reduction [J]. Acs Nano.2011,5(8):6202-6209.
    [214] Y. Si and E. T. Samulski. Synthesis of water soluble graphene [J]. Nano Letters.2008,8(6):1679-1682.
    [215] S. Z. Zu and B. H. Han. Aqueous Dispersion of Graphene Sheets Stabilized by PluronicCopolymers: Formation of Supramolecular Hydrogel [J]. Journal of Physical Chemistry C.2009,113(31):13651-13657.
    [216] Q. D. Chen, L. M. Dai, M. Gao, et al. Plasma activation of carbon nanotubes forchemical modification [J]. Journal of Physical Chemistry B.2001,105(3):618-622.
    [217] I. Roche, K. Katuri and K. Scott. A microbial fuel cell using manganese oxide oxygenreduction catalysts [J]. Journal of Applied Electrochemistry.2010,40(1):13-21.
    [218] L. X. Zhang, C. S. Liu, L. Zhuang, et al. Manganese dioxide as an alternative cathodiccatalyst to platinum in microbial fuel cells [J]. Biosensors&Bioelectronics.2009,24(9):2825-2829.
    [219] X. Li, B. X. Hu, S. Suib, et al. Manganese dioxide as a new cathode catalyst inmicrobial fuel cells [J]. Journal of Power Sources.2010,195(9):2586-2591.
    [220] Z.S Wu, S.B Yang, Y, Sun, et al.3D Nitrogen-Doped Graphene Aerogel-SupportedFe3O4Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction [J].Journal of the American Chemical Society.2012,134(22):9082-9085.
    [221] F. Zhao, F. Harnisch, U. Schroder, et al. Application of pyrolysed iron(II)phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials inmicrobial fuel cells [J]. Electrochemistry Communications.2005,7(12):1405-1410.
    [222] L. Deng, M. Zhou, C. Liu, et al. Development of high performance of Co/Fe/N/CNTnanocatalyst for oxygen reduction in microbial fuel cells [J]. Talanta.2010,81(1-2):444-448.
    [223] K. N. Zhu, H. Y. Qin, B. H. Liu, et al. Carbon nanotubes supported Fe-basedcompounds as the electrode catalyst for oxygen reduction reaction [J]. Journal of PowerSources.2011,196(1):182-185.
    [224] J. Ahmed, Y. Yuan, L. Zhou, et al. Carbon supported cobalt oxide nanoparticles-ironphthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells [J].Journal of Power Sources.2012,208(0):170-175.
    [225] J. Wu, D. Zhang, Y. Wang, et al. Catalytic activity of graphene-cobalt hydroxidecomposite for oxygen reduction reaction in alkaline media [J]. Journal of Power Sources.2012,198(0):122-126.
    [226] H.J Zhang, X.X Yuan, W. Wen, et al. Electrochemical performance of a novelCoTETA/C catalyst for the oxygen reduction reaction [J]. Electrochemistry Communications.2009,11(1):206-208.
    [227] S. Li, Y.Y Hu, Q. Xu, et al. Iron-and nitrogen-functionalized graphene as anon-precious metal catalyst for enhanced oxygen reduction in an air-cathode microbial fuelcell [J]. Journal of Power Sources.2012,213:265-269.
    [228] H.J. Zhang, X.X Yuan, L.L Sun, et al. Pyrolyzed CoN(4)-chelate as an electrocatalystfor oxygen reduction reaction in acid media [J]. International Journal of Hydrogen Energy.2010,35(7):2900-2903.
    [229] G. Liu, X. Li, P. Ganesan, et al. Development of non-precious metal oxygen-reductioncatalysts for PEM fuel cells based on N-doped ordered porous carbon [J]. Applied Catalysis B:Environmental.2009,93(1-2):156-165.
    [230] T. Onodera, S. Suzuki, T. Mizukami, et al. Enhancement of oxygen reduction activitywith addition of carbon support for non-precious metal nitrogen doped carbon catalyst [J].Journal of Power Sources.2011,196(19):7994-7999.
    [231] Z. Lin, M. Song, Y. Ding, et al. Facile preparation of nitrogen-doped graphene as ametal-free catalyst for oxygen reduction reaction [J]. Physical Chemistry Chemical Physics.2012,14(10):3381-3387.
    [232] H. Oh, J. Oh, W. H. Lee, et al. The influence of the structural properties of carbon onthe oxygen reduction reaction of nitrogen modified carbon based catalysts [J]. InternationalJournal of Hydrogen Energy.2011,36(14):8181-8186.
    [233] L. Deng, M. Zhou, C. Liu, et al. Development of high performance of Co/Fe/N/CNTnanocatalyst for oxygen reduction in microbial fuel cells [J]. Talanta.2010,81(1-2):444-448.
    [234] Y. Yuan, J. Ahmed, S. Kim. Polyaniline/carbon black composite-supported ironphthalocyanine as an oxygen reduction catalyst for microbial fuel cells [J]. Journal of PowerSources.2011,196(3):1103-1106.
    [235] W. X. Li, X. Xu, K. S. B. De Silva, et al. Graphene Micro-Substrate Induced HighElectron-Phonon Coupling in MgB2[J]. Ieee Transactions on Applied Superconductivity.2013,23(3).
    [236] K. J. Huang, J. Li, Y. Y. Wu, et al. Amperometric immunobiosensor foralpha-fetoprotein using Au nanoparticles/chitosan/TiO2-graphene composite based platform[J]. Bioelectrochemistry.2013,90:18-23.
    [237] V. Sridhar, I. Lee, H. H. Chun, et al. Graphene reinforced biodegradablepoly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites [J]. Express Polymer Letters.2013,7(4):320-328.
    [238] H. C. Chang, X. M. Wang, K. K. Shiu, et al. Layer-by-layer assembly of graphene, Auand poly(toluidine blue O) films sensor for evaluation of oxidative stress of tumor cellselicited by hydrogen peroxide [J]. Biosensors&Bioelectronics.2013,41:789-794.
    [239] D. J. Kim, I. Y. Sohn, J. H. Jung, et al. Reduced graphene oxide field-effect transistorfor label-free femtomolar protein detection [J]. Biosensors&Bioelectronics.2013,41:621-626.
    [240] H. Razmi and R. Mohammad-Rezaei. Graphene quantum dots as a new substrate forimmobilization and direct electrochemistry of glucose oxidase: Application to sensitiveglucose determination [J]. Biosensors&Bioelectronics.2013,41:498-504.
    [241] M. Li, X. J. Zhou, W. Q. Ding, et al. Fluorescent aptamer-functionalized graphene oxidebiosensor for label-free detection of mercury(II)[J]. Biosensors&Bioelectronics.2013,41:889-893.
    [242] T. Y. Chen, T. K. L. Phan, C. L. Hsu, et al. Label-free detection of DNA hybridizationusing transistors based on CVD grown graphene [J]. Biosensors&Bioelectronics.2013,41:103-109.
    [243] X. L. Niu, W. Yang, H. Guo, et al. Highly sensitive and selective dopamine biosensorbased on3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wallcarbon nanotubes/ionic liquid composite film modified electrode [J]. Biosensors&Bioelectronics.2013,41:225-231.
    [244] C. C. Xiang, M. Li, M. J. Zhi, et al. A reduced graphene oxide/Co3O4composite forsupercapacitor electrode [J]. Journal of Power Sources.2013,226:65-70.
    [245] H. Liu, J. Gao, M. Q. Xue, et al. Processing of Graphene for ElectrochemicalApplication: Noncovalently Functionalize Graphene Sheets with Water-Soluble ElectroactiveMethylene Green [J]. Langmuir.2009,25(20):12006-12010.
    [246] L. N. Wu, X. J. Zhang and H. X. Ju. Detection of NADH and ethanol based on catalyticactivity of soluble carbon nanofiber with low overpotential [J]. Analytical Chemistry.2007,79(2):453-458.
    [247] S. Niyogi, E. Bekyarova, M. E. Itkis, et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society.2006,128(24):7720-7721.
    [248] T. Ramanathan, A. A. Abdala, S. Stankovich, et al. Functionalized graphene sheets forpolymer nanocomposites [J]. Nature Nanotechnology.2008,3(6):327-331.
    [249] K. P. Gong, P. Yu, L. Su, et al. Polymer-assisted synthesis of manganese dioxide/carbonnanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen[J]. Journal of Physical Chemistry C.2007,111(5):1882-1887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700