用户名: 密码: 验证码:
复合变质对过共晶铝硅合金组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步,制造业的飞速发展,人类物质生活不断提高,出现了资源和能源逐渐枯竭,生存环境逐渐恶化的严重问题。这要求使用可持续发展的材料。另一方面,在节能、节材的要求下,材料又向着轻量化方向发展,以减轻自重、提高功率质量比,达到高速、高效、节能和减轻污染的目的。本文研究的铸造过共晶铝硅合金就是符合可持续发展的材料之一。因为从过共晶铝硅合金的性能来看:它具有优异的低膨胀性能,有很高的耐磨性、耐蚀性、较小的比重和良好的导热性。因此,它被广泛的应用于汽车、航天等领域。在汽车工业方面,研究开发高性能的汽车材料成为汽车工业发展的一个重要课题,别是关键零部件材料,如发动机活塞、转子等。
    但是长期以来,困扰和限制过共晶铝硅合金应用的主要问题是这类合金的缺点:脆性大,切削加工性差。因为过共晶铝硅合金的显微组织由粗大板状多角形的初生硅和粗针状的共晶硅所组成。粗大的初生硅作为硬质点可以提高合金耐磨性,但因其硬而脆,割裂基体严重,故使合金的力学性能降低,同时加工性能变差,加工时刀具易磨损,表面光洁度差。因此,如何细化初生硅,提高合金的力学性能,对过共晶铝硅合金变质理论的完善发展及其应用具有极其重要的意义。
    针对过共晶铝硅合金晶硅的细化变质问题,本文研究了不同体系变质剂对过共晶铝硅合金中晶硅细化的影响规律,发现了Al-Ti-TiC-P-Y(稀土)是变质效果较佳的复合变质剂。用此复合变质剂对不同硅含量的过共晶铝硅合金进行了变质,得出了较佳的变质处理工艺参数。并对复合变质及T6热处理的过共晶铝硅合金进行了性能分析。
    1 复合变质剂的组分配比
    
    为了研究不同变质剂及其组合对过共晶铝硅合金中晶硅变质效果的影响规律,
    本实验配置了不同组分的变质剂,通过实验优选出较佳的变质剂组分,本文共设计了6种不同体系的变质剂。
    (1) Al-Ti 体系; (2) Al-TiC 体系
    Al-Ti-TiC 体系; (4) Al-TiC-P 体系
    (5) Al-Ti-TiC-P 体系; (6) Al-Ti-TiC-P-Y(稀土) 体系
     本文研究出的新型复合变质剂Al-Ti-TiC-P-Y(稀土)的SEM、EDS及XRD分析如图1-1、1-2 所示:
    
    
    
    
    
    
    
    
    图1-1复合变质剂Al-Ti-TiC-P的SEM和EDS
    Fig.1-1 SEM and EDS of composite modifier Al-Ti-TiC-P
    图1-2 复合变质剂Al-Ti-TiC-P的XRD分析
    Fig.1-2 XRD analysis of composite modifier Al-Ti-TiC-P
    2、复合变质对过共晶Al-20wt.%Si合金组织的影响
    用配制的6种复合变质剂对过共晶Al-20wt.%Si 合金进行变质处理,发现复合变质剂Al-Ti-TiC-P-Y(稀土)对过共晶铝硅合金中晶硅的变质效果较佳。
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    图2过共晶Al-20wt.%合金的显微组织
    Fig2 Microstructure of hypereutectic Al-20w.t%Si alloy. (a)(b) unmodified as-cast alloy.
    (c)(d) composite modificatoin by addition of Al-Ti-TiC-P-Y(RE) composite modifier
    
    从图中可以看出,复合变质后初生硅从大小、形态都到了明显改善。尺寸在5~20μm之间,形态由变质前的多角形、长条状变为规则的块状,分布也非常均匀。
    复合变质剂Al-Ti-TiC-P-Y(稀土)变质过共晶Al-20wt.%Si合金的工艺参数为:变质剂加入量0.5wt.%;变质时间5分钟;变质温度850℃。
    随着过共晶铝硅合金中硅含量的增加,复合变质剂的加入量也需要随之相应的增加,硅含量每增加3wt.%,变质剂的加入量相应的增加0.3wt.%。
    3、复合变质对不同硅含量的过共晶铝硅合金性能的影响
    对不同硅含量的过共晶铝硅合金复合变质及T6热处理后,测试合金的性能,包括布氏硬度、磨粒磨损和抗拉强度,主要研究结果如下:
    (1) T6热处理可以改善过共晶铝硅合金组织,使共晶硅粒状化,由原来的针状、纤维状转变为椭球状。T6热处理对初晶硅影响不大,可以使长板状星
    
    
    形初生硅在尖角初发生熔断、钝化,但不改变初生硅尺寸。
    (2) 复合变质后的过共晶铝硅合金布氏硬度明显提高,且随着含硅量的增加硬度也随着提高。五种硅含量(16.8wt%,19.6wt.%,22.5wt.%,25.8wt.%,28.4wt.%)的过共晶铝硅合金变质后的布氏硬度比未变质铸态分别提高了26.2%,24%,22.8%,19.5%,18.9%;变质+T6热处理的布氏硬度比未变质+T6热处理分别提高了21.4%,15.5%,10%,1.2%,3.7%。
    (3) 复合变质及T6热处理使过共晶Al-16.8wt.%Si合金的抗拉强度及韧性提高。未变质合金进行T6热处理,σb和δ比未变质铸态分别提高了29%和34.8%;
    变质合金进行T6热处理的σb和δ比未变质合金进行T6热处理分别提高了10.1%和47.7%。
    (4) 复合变质及T6热处理后,过共晶铝硅合金的耐磨性提高。T6热处理后,五种不同硅含量的实验合金的耐磨性比未变质合金分别提高了21.9%,16.6%,15.5%。24.9%,21.5%(5N);10.8%,13.8%,13.3%,11.6%,22.2%(15N)。而变质合金进行T6热处理后,耐磨性比未变质合金进行T6热处理又有所提高,分别提高了4.5%,6.1%,9.2%,2.7%,9.9%(5N);6.0%,6.1%,3.3%,1.2%,5.1%(15N)。
    合金耐磨性的提高主要是因为复合变质后,初生硅得到细化,组织分布均匀,起到耐磨质点的作用。另外经T6热处理,合金基体得到明显强化,增加
The substantial life of the human has been improved step by step with the development of the society and manufacturing, but meantime the resource and power has being lacking and the environment has being damaged. Therefore, some permanent materials are imperative to be made and applied. On the other hand, the material is developed to be lighter, leading to be more efficient and decreasing the pollution. The cast hypereutectic Al-Si alloy we are researching is one of these materials, whose properties are as follows: the lower expanding and density behavior, the higher resistance to wear and corrosion and excellent conduct. And therefore, it has being widely applied to automobile and aviation industry. It is a vital subject for the automobile industry that some auto-materials with more excellent properties are explored and put in use, especially to some materials of the key parts such as some engine plunger and rotor etc.
    However, for a long time, the hypereutectic Al-Si alloy can’t been widely applied because of it’s the disadvantages: the bigger brittleness and the worse machining property, which can be attributed to the lath primary Si and coarse eutectic Si in the microstructure. The coarse primary Si, as hard particles, can improve the resistance to wear, but at the same time reduce the mechanical and machining properties due to its brittleness and the dissevering effect to the matrix. It is o great interest for the research development of the hypereutectic Al-Si alloy to improve the mechanical properties by fining the primary Si.
    
    
    Aiming at the modification of the cast hypereutectic Al-Si alloy, in this present study, refining modification of hypereutectic Al-Si alloy has been studied by different modifiers. A kind of better complex modifier(Al-Ti-TiC-P-Y) chosen among these ones is used for modifying hypereutectic Al-Si alloy with different Si content and furthermore some good parameters are optimized. Furthermore, the properties of hypereutectic Al-Si alloy modified by the modifier and treated by T6 are tested.
    1、The chemical composition of the composite modifier
    In order to research the effect of different modifiers on hypereutectic
    Al-Si alloy, some modifiers are prepared in the present study, in clouding 6 modifiers as follows:
    (1) Al-Ti; (2) Al-TiC; (3) Al-Ti-TiC;
    (4) Al-TiC-P; (5) Al-Ti-TiC-P; (6) Al-Ti-TiC-P-Y.
     The key modifier is the Al-Ti-TiC-P-Y, which SEM,EDS and XRD are shown the Fig.1-1, 1-2:
    Fig.1-1 SEM and EDS of composite modifier Al-Ti-TiC-P
    Fig.1-2 XRD analysis of composite modifier Al-Ti-TiC-P
    2、Effect of the complex modifier on the structure
    
    By comparison of the 6 modifiers in the hypereutectic Al-20wt%Si, it is found that the modifier Al-Ti-TiC-P-Y is the best one.
    Fig2 Microstructure of hypereutectic Al-20wt%Si alloy r (a) unmodified as-cast (b) modified by addition of Al-Ti-TiC-P-Y(RE) composite modifie
    It can be seen from Figs. 2 (a) and (b) that the size and morphology of the primary Si improve significantly after composite modification. The largest size of it is 20?m, and the morphology changes over from polygon and strip to regular block and its distribution is uniform.
    The processing parameter of hypereutectic Al-Si alloys modified by Al-Ti-TiC-P-Y (RE) composite modifier is shown as follows,
    the content of the composite modifier addition :0.5%;
    the modified time :5 minutes;
    the modified temperature :850 ℃.
    The amount of composite modifier addition increases accordingly with increasing amount of Si in hypereutectic Al-Si alloys.
    3. Effect of composite modification on the properties
    After composite modification of hypereutectic Al-Si alloys with various Si content, they was heat treat by T6 and then, properties measurement containing
    
    
    hardness (HB), wear resistance and tensile strength was conducted. The main results o are shown as follows.
    (1) After T6 heat treat, the microstructure of hypereutectic Al-Si alloys is improved greatly, and eutectic Si becomes grainy, But it is found that the primary Si starlike blunt only at the
引文
[1] 齐广慧,刘相法,杨志强,柳研辉,边秀芳.绿色”高效Al-Si合金变质剂--Al-P中间合金.材料科学与工艺.2001,9(2):211-214.
    [2] K.Matsuura, M.Kuudoh, H.Kinoshita, H.Takahashi. Precipitation of Si Particles in a super-rapidly solidified Al-Si hypereutectic alloy. Materials chemistry and physics. 2003,(81):393-395
    [3] A J Criado, J A Martinez, R Calabres. Growth of eutectic silicon from primary silicon crystal in aluminum-silicon alloys. Scripta Meterialia. 1997, 36(1):47-54
    [4] 熊艳才,刘伯操.铸造铝合金现状及未来发展. 特种铸造及有色金属.1998, 15(4):1-4
    [5] Tae.kwon.Ha, Ww-jin Park, Sangho Ahn, Young Won Chang. Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior. Journal of matericals processing Technology. 2002, 6354: 1-1
    [6] Jien-Wei Yeh, Shi-Yuan, Chao-Hung Peng. A reciprocating extrusion process for producing hypereutectic Al-20wt% Si wrought alloys. Materials Science and Engineering A. 252 (1998) 212-221
    [7] C.M.Chen, C.C.Yang, C.G.Chao, Thixocasting of Hypereutectic Al-25Si-2.5Cu-1Mg-0.5Mn alloys using densified powder compacts. Matericals Science and Engineering A 366 (2004) 183-194
    [8] Rong Zhang, Qiufang Cao, Shuxian Pang, Yun Wei, Lin Liu. Dissolution kinetics of primary silicon in hypereutectic Al–Si melt. Science and Technology of Advanced Materials. 2001, 2:3-5.
    [9] M.M.Haque, M.A.Maleque. Effect of processing variables on structure and properties of aluminum-silicon piston alloy. Journal of Materials Processing Technology. 1998, 77:122-128
    [10] A.P.Sannino, H.J.Rack. Dry sliding wear of discontinuously reinforced aluminum composites:review and discussion. Wear. 189(1995) 1-19
    [11] A.R.Riahi, T.Perry, A.T.Alpas.Scuffing resistances of Al-Si Alloys: effects of etching condition surface roughness and particle morphology. Materials Science and Engineering A 343 (2003) 76-81.
    
    [12] 虞觉奇等.二元合金状态图集.上海科技出版社. 1983
    [13] 陈文松. 过共晶Al-Si合金性能和细化工艺概述, 热加工工艺.1998,vol.6
    [14] 赖化清.过共晶铝硅合金的研究应用. 汽车工艺与材料, 2001,vol.10
    [15] 杨朝聪. 过共晶铝硅合金的细化变质. 云南冶金. 1997, 2, Vol.26.No1
    [16] 赵品,谢辅洲,孙文山.材料科学基础.1998
    [17] Y.T.Pei, J.Th.M.DE.Hosson. Five-fold Branched Si Particles in laser clad AlSi Functionally Graded materials. Acta mater. 49 (2001) 561-571.
    [18] 杜满昌等.五瓣星状初晶硅形核机制.金属学报.1996,vo32
    [19] K.F.kobayashi, L.M.Hogan. The crystal growth of silicon in Al-Si alloys. J.Mater Sci. 20(1985)1961-1975
    [20] 王德满,郑子樵,石春生等.熔铸法生产的磷变质剂对过共晶铝-硅合金组织和性能的影响. 轻合金加工技术. 1995,(9):9.
    [21] W.J.Kyffin, W.M.Rainforth, H.Jones. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy. J.Mater Sci. 36(2001)2667-2672.
    [22] J.C.Weiss, C.R.Loper.Jr. Primary silicon in hypereutectic alumimum-silicon casting alloys. AFS Trans. 32,(1987)51.
    [23] T.Kowata, H.Horie, S.Hiratsuka, A.Chida. Imono 66(1994)803.
    [24] Zhao Heng Xian, Cai Jun. Inoculating an Al-Si alloy with phosphorus, Rare Earths, and sulfur. JOM 11(1994)42.
    [25] H.Lescuyer, M.Allibert, G.laslaz. Sollubility and precipitation of AlP in Al-Si melts studied with a temperature controlled filtration technique. Journal of Alloys and compounds. (279) 1998 237-244
    [26] C.R.HO, B.CANTOR.Heterogeneous nucleation of Solidification of Si in Al-Si and Al-Si-P alloys. Acta metal matter 1995 vol43 No8 3231-3246
    [27] J.Y.Chang,G.H.Kim, I.G.Moon, C.S.Choi, Rare Earth concentration in the primary Si crystal in Rare Earth added Al-21wt.%Si alloy. Scrpt Mater 39(1998)307-314.
    [28] 李树索,王德仁,毛卫民,钟雪友.Al-37% Si合金磷变质及电磁搅拌显微组织的研究. 机械工程材料. 1998,10, vol.22.No.5.
    [29] 戬家齐,李伟,盛险峰. Ba-P复合变质对铝硅合金初晶硅的细化作用.热加工工艺. 1997,5
    
    [30] 宋勇敏,朱敦伦,魏真滑.过共晶铝硅合金新型细化剂的研究.兵器材料科学工程. 1994,(2):37
    [30] 蔡宗德,张连芳,孙建荣.特种铸造及有色合金.1990(4);37
    [32] 欧阳志英等.稀土对过共晶铝硅合金P变质效果的影响. 特种铸造及有色合金.2003,(1): 22
    [33] 张卫文,尹志民等.稀土在过共晶铝硅合金种的变质特点.稀土.1997,vol.18 No.3
    [34] 赵品,赵恩生.Ce+Sr复合变质对过共晶Al-Si合金铸态组织及性能的影响.中国稀土学报. 2002,12, vol.20.
    [35] Youming Liu, Bofan Xu, WenYi Li, Xun Cai, ZhengWei Yang. The effect of rare earth CeO2 on microstructure and properties of in sith TiC/Al-Si composite. Materials Letters. 58 (2004) 432-436.
    [36] CeO2在过共晶铝硅合金中变质机理的研究.特种铸造及有色合金.2002, vol6
    [37] R.Sharan, T.R.Anantharaman. Curr. Sci. 5 (1967) 568
    [38] 杜满昌等.航空材料学报. 1997, Vol.17
    [39] 金大州,葛丰德.特种铸造及有色合金.1998, (2):8
    [40] 毛高波,曾大新,磷钠联合变质对过共晶铝硅合金组织的影响.汽车工艺与材料.1999,3, vol.10
    [41] 张卫文,尹志民,赵阳等.过共晶高硅铸造铝合金磷-稀土双重变质处理.
    中国有色金属学报. 1995,(1):59
    [42] 柳连舜,徐小飞,赵恒先.用P和RE细化Al-20wt.%Si合金.轻金属.1995(9):52
    [43] 赖华清,毛高波.Ce-P 对过共晶铝硅合金的双重变质作用. 热加工工艺.1998,No.4
    [44] 孟繁琴.稀土和磷复合变质对过共晶铝硅合金晶体形貌与力学性能的影响. 稀土.1998,vol.19 No.2
    [45] 赖华清,毛高波.磷-稀土复合变质对过共晶Al-18% Si合金组织的影响.工艺-材料.1998,vol.11 No.2
    [46] 孙宝德,李克,王俊,周晓和.上海交通大学学报. 1999,Vol.33 No.1
    [47] A.Knuutinen, K.Nogita, S.D.McDonald, A.K.Dahle. Modification of Al-Si alloys of Ba, Ca, Y and Yb. Journal of Light Metals. 1 (2001) 229-240.
    
    [48] A.Knuutinen, K.Nogita, S.D.McDonald, A.K.Dahle. Porosity formation in aluminum alloy A356 modified with Ba, Ca, Y and Yb. Journal of Light Metals 1(2001) 241-249.
    [49] 刘相法等.Al-P中间合金在Al-Si活塞合金中的应用.特种铸造及有色合金.2002, vol,6
    [50] 赵玉涛.过共晶Al-23%Si合金中硅相生长的研究.铸造技术.1996,(6):43
    [51] 周尧和,胡壮鳞,介万奇 .凝固技术.机械工业出版社 1998,10
    [52] Ryoo Y H.Kimi J, Kim D H. Microstructural characheristics of semi-solid state processed hypereutectic Al-Si alloys[A].proceedings of the 4th international conference on semi- solid processing of alloys and composites[C]. Sheffield:the Department of Engineering Materials,Univers
    [53] Diew Wanit I, Flemings M C. Semi-solid forming of hypereutectic Al-Si alloys[A].Proceedings of the 4th international conference on semi-solid processing of alloys and composites[C].Sheffield:the Department of Engineering Materials.University of Sheffield.1996,30-34.
    [54] 李树索,王德仁,毛卫民,钟雪友.电磁搅拌过共晶铝硅合金的显微组织.特种铸造及有色合金.1998,s1
    [55] 张守魁.过共晶Al-22wt.Si合金在旋转磁场下凝固组织的研究.特种铸造及有色合金.1993(5):9
    [56] 胡汉启.金属凝固原理.机械工业出版社.1998
    [57] 谢壮德,沈平,董寅生,周彼德,李庆春. 快速凝固铝硅合金材料及其在汽车中的应用. 材料科学与工程. 1999,12 Vol.17 No. 4
    [58] Taek-Soo Kim, Byong-Taek Lee, Chul Ro Lee, Byong-Sun Chun. Microstructure of rapidly solidified Al-20Si alloy powders. Materials Science and Engineering A304-306(2001)617-620
    [59] Dasqapta.R. Property improvement in Al-Si alloys through rapid solidification processing. Journal of Materials Processing Technology. 1997, 72(3):38.-384
    [60] Zhang.K, Dahle A.K. Effect of SiC particles on crystal growth of Al-Si alloy during laser rapid solidification. Materials Science and Engineering:A. 2000,292(2):229-231
    
    [61] Allen,D.R. Perepezko,J.H, Gremand,M. Nucleation-controlled micro-
    seructural development Al-Si alloys. Materials Science and Engineerig:A.
    1997, (226-228),173-177
    [62] 全燕鸣. 过共晶铝硅合金的研究进展.轻合金技术.1996,Vol.24,No2
    [63] Vantne.H.E, Sunndals.R. Efficeint Grain Refinement of Ingots of Commercial Wrought Aluminum alloys. Aluminum. 1999,75:84-90.
    [64] Q.C.Jiang, H.Y.Wang, J.G.Wang, Q.F.Guan, C.L.Xu. Fabrication of TiCp/Mg Composites by the thermal explosion synthesis reaction in molten magnesium. Materials Letters.4202(2002)1-4
    [65] P.S.Mohanty, J.E.Gruzleski, Grain Refinement Mechanisms of Hypoeutectic Al-Si Alloys. Acta Mater. 1996,44(9):3749-3760
    [66] B.Yang, F.Wang, J.S.Zhang. Microstructural characterization of in situ TiC/Al and TiC/Al-20Si-5Fe-3Cu-1Mg composites prepared by spray deposition. Acta Materialia. 51 (2003)4977-4989.
    [67] B.Yang, F.Wang, H.Cui, X.J.Duan, S.C.Hu, J.S.Zhang. TiC particulate-Reinforced Al-20Si-5Fe composite fabricated by melt in situ reaction spray forming. Journal of Materials Processing Technology 137 (2003) 198-190.
    [68] 韩延峰,刘相法,王振卿,边秀房.TiC 对新型Al-P中间合金变质效果的促进作用. 内燃机配件. 2002 2
    [69] 刘向法,乔进国,刘相俊,边秀房.新型Al-P中间合金对活塞合金中初生Si的团球化.内燃机配件. 2002, 4
    [70] Kpranos, .H.Kirkwood, H.V.Atkinson etc.Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy. Jourhal of Materials processing Technology. 6370(2003) 1-7.
    [71] D.Ott, C.A.Blue, M.L.Santella, P.J.Blau. The influence of a heat treatment on the tribilogical performance of a high wear resistant high Si Al-Si alloy weld overlay. Wear. 251(2001)868-874.
    [72] 罗启全. 合金熔炼与铸造.广东科技出版社2002, 9
    [73] Li.R. Solution heat treatment of 354 and 355 cast alloys. [J] AFS, Transtactions. 1996,26:777-783.
    [74] Hongkun Yi, Di Zhang. Morphologies of Si phase and La-rich phase in
    
    
    as-cast hypereutectic Al-Si-xLa alloys. Materials Letters. 57 (2003) 2523-2529.
    [75] Ru-yao Wang, wei-hua Lu, L.M. Hogan. Growth morphology of primary Si in cast Al-Si alloys and the mechanism of concentric growth. Journal of Crystal Growth. 207 (1999) 43-45.
    [76] F.Wang, B,yang, X.J.Duan, B.Q.Xiong, J.S.Zhang. The microstructure and mechanical properities of spray-deposited hypereutectic Al-Si-Fe alloy. Journal of Materials Processing Technology. 137 (2003) 191-194.
    [77] Feng Wang, Huimin Liu, Yajun Ya, Yuansheng Jin. Effect of Si content on the dry sliding wear properities of spray-deposited Al-Si alloy. Materials and Design. 25 (2004) 163-166.
    [78] Gui.M, Kang.SB, Lee JM. Wear of spray deposited Al-6Cu-Mn alloy under dry sliding conditions. Wear. 2000,240:186-98.
    [79] L.Lasa, J.M.Rodriguez-Ibabe,. Effect of composition and processing route on the wear behaviour of Al-Si alloys. Scripta Materialia. 46 (2002) 477-481
    [80] Mocellin.A, Brechet.Y, Fougeles,R. Fracture of an ospreyTMAlSiFe alloy: a microstructure based mode for fracture of microheterogeneous materials. Acta meter. 1995 43(3) 1135
    [81] 袁晓光,徐世鸣,李庆春.T6 热处理对喷射沉积Al-Si-Fe-Cu-Mg合金断裂机制的影响.材料工程.1997,12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700