用户名: 密码: 验证码:
阻燃型木纤维—聚丙烯复合材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料是当前生物质材料研究领域中重要的研究方向之一。但是,由于木塑复合材料属于易燃材料,直接用于室内存在一定的安全隐患。本文开展的阻燃型木纤维-聚丙烯复合材料的研究,将提供一种具有阻燃功能的新型木塑复合材料,为扩展木塑复合材料的室内应用提供技术基础。
     在本研究中,木纤维-聚丙烯复合材料的制备采用人造板平压工艺。通过对复合材料物理力学性能、燃烧性能等主要影响因子的研究,利用热重-差热联用分析仪、锥形量热仪以及红外光谱分析仪在对原料及复合材料的热解、燃烧特性进行分析基础上,筛选出适当的阻燃剂体系。在进行工艺因子与阻燃型木塑复合材料性能的相关性分析评价后,制备出高性能的阻燃型木塑复合材料。
     本论文的主要研究结果如下:
     1.聚丙烯(PP)加量、补强剂种类、产品密度和纤维形态四个变量因子对复合材料的物理力学性能有不同程度的影响。增加PP用量复合材料的各项物理力学性能都有显著提高;补强剂对复合材料物理力学性能提高也较明显,以2%PAPI的效果更好;提高产品密度对抗弯性能提高最显著;纤维形态对产品性能的影响规律不明显。制备高性能的木纤维-聚丙烯复合材料最佳因子水平为:PP加量为40%,补强剂为2%PAPI,产品密度为1.05g/cm~3,纤维形态为中粗纤维,制备的复合材料性能大幅度超过GB/T11718-1999室外用纤维板要求。
     2.塑料原料的燃烧热是决定木塑复合材料燃烧性能的关键因子。PP燃烧热值高,其加量对复合材料的滞燃性能有非常显著的负面影响。复合材料中PP含量增加,复合材料氧指数大幅度降低,热释放速率和燃烧热值迅速升高。加入补强剂加速了复合材料的燃烧过程;其他因素如产品密度和纤维形态对复合材料的燃烧特性影响规律不明显。木塑复合材料的热解过程中,木纤维和聚丙烯有相互促进热解、燃烧的现象。
     3.通过改变木纤维热解方式,SA阻燃剂促进木纤维提前分解成炭,减缓燃烧过程达到阻燃目的。通过热解活化能计算、红外光谱分析等机理分析证实,阻燃剂SA对木材的脱水过程中促使木材纤维表面活化,促使木塑界面和纤维间更好的相互融合,进而提高了木塑复合材料的物理力学性能,这一结论与传统的阻燃型人造板制造中阻燃剂对板材性能起负面作用的结论相反。
     塑料阻燃剂以质量比3∶1的十溴二苯乙烷和三氧化二锑组成的DBT配方,质量比2.7∶1的十溴二苯乙烷和硼酸锌组成的DBZ配方以及100%高聚磷酸铵的APM配方阻燃效果较好。
     由于阻燃剂阻燃机理的不同,单独使用木纤维阻燃剂或塑料阻燃剂配方都难以达到对木塑复合材料既定的阻燃目标。
     4.制备阻燃型木纤维-聚丙烯复合材料的结果表明:木纤维阻燃剂SA加量、补强剂种类、补强剂加量、塑料阻燃剂种类、塑料阻燃剂加量和木塑比例6个变量因子中,木材阻燃剂SA加量、塑料阻燃剂加量和木塑比例对木塑复合材料的阻燃性能(氧指数)有显著影响,其他因子影响不显著。木材阻燃剂SA加入不仅显著提高了板材的氧指数,还使板材的一些物理力学性能有了显著提高;塑料阻燃剂APM和木材阻燃剂SA共同作用使木塑复合材料的阻燃效果显著增加;PP塑料在复合材料中含量的提高可以显著增强复合材料的物理力学性能,但导致材料氧指数有较大幅度的降低;补强剂加量增加可有效提高复合材料物理力学性能,而补强剂种类和塑料阻燃剂种类对物理力学性能的影响较小。木纤维阻燃剂SA影响了补强剂的固化效果,其交互作用对物理力学性能有一定的影响。
     与普通木塑复合材料相比,阻燃型木塑复合材料氧指数显著提高,在整个燃烧过程的热释放速率,平均质量损失速率和有效燃烧热值等燃烧特性值都有显著降低。
     在最优工艺条件下,本研究制备的阻燃型木塑复合材料性能达到以下指标:氧指数为39.6%,达到国家公共安全行业标准GA87-94中防火板F1级中氧指数≥35%的要求;物理力学性能:24h吸水厚度膨胀率为10.18%,内结合强度为0.966MPa,静曲强度为35.45MPa,弹性模量为4031MPa,沸腾试验内结合强度为0.272MPa,超过GB/T11718-1999中室内潮湿环境用(防潮型)中密度纤维板要求,甚至达到室外用板的性能指标。研究达到预期目标。
Research on wood-plastic composites is one of important part in the filed of biomaterials science.As flammability character of wood-plastic composites,fire hazard exists for its indoor usage.The main objective of this study is to find out new flame-retardant wood-plastic composites that can be used indoors and collect technical data for study in its further indoor application.
     In the experiment,wood fiber-polypropylene (PP) composites were made by manufacturing process of wood-based board.The main experimental factors that influence physical-mechanical properties and combustion properties of wood fiber-PP composites was analyzed first,then proper fire retardants were chosen for wood fiber-PP composites by utilizing these data from TG-DTA analysis,cone calorimeter and FTIR analysis.Finally orthogonal experimental design method was used to analyze the relations among key factors and properties of fire retardant composites.By the experiment result,a kind of flame-retardant wood fiber-PP composites with excellent physical-mechanical properties was produced.
     In this paper,the main research conclusions are as follows.
     1.PP content,reinforcement species,density of products and fiber size were considered as experimental factors and their influence on physical-mechanical properties of wood fiber-PP composites was analyzed.The results showed that the four factors had different effect on physical-mechanical properties.More PP content caused significant enhancement of physical-mechanical properties;reinforcement can increase the properties very well,especially when adding 2%PAPI in the composites;When the designed density increased,it caused the most significant improvement on properties of modulus of rupture (MOR) and modulus of elasticity (MOE);Influence of fiber size on properties is not significant,but middle-size fiber had relatively better performance.As a result,to produce excellent wood fiber-PP composites,the levels of factors should be:40%PP content,2%PAPI,1.05g/cm~3 density and middle size fiber.Test results showed that composites made under the chosen factors had super properties and could meet requirement of national standard GB/T11718-1999 for exterior fiberboard.
     2.The crucial factor dominating combustion properties of composites was combustion heat of PP material.Combustion heat of PP was much higher than wood and it badly decreased fire endurance of composites. With the increase of PP,the oxygen index (OI) fell down,heat release rate (HRR) and effective heat of combustion (EHC) increased rapidly.Reinforcement kept dimensional stability in fire but accelerated burring behavior of composites;other variables,such as density of product and fiber size had some effect on fire behavior,but their influence was not significant.The calculated apparent activation energy showed that in the pyrolysis process of wood and PP composites,the materials showed co-decomposition behavior.
     3.TG and DTA analysis results showed that SA changed thermal pyrolysis characteristics of wood.Flame-retardance resulted from SA catalyzing decomposition of wood to charcoal at lower temperature to slower combustion process.The test results of physical-mechanical properties showed that differ from regular fire-retardant wood-based panels,the SA fire retardant enhanced physical-mechanical properties of wood fiber-PP composites.It can be explained like that SA enhanced surface activation of wood fiber and that could make activated bonding at interface of wood and PP and was identified in mechanism analysis.
     Different ratio of plastic fire retardant led to different OI of PP.Following three kind of compound have good performance on flame retardance:DBT compound by 3 parts of decabromodiphenyl ethane (DBDPE) and 1 part of antimony trioxide (ST);DBZ compound by 2.7 parts of DBDPE and 1 part of zinc borate (ZB),APM made from 100%ammonium polyphosphate (APP).
     Because of different fire retarding mechanism,using wood fiber fire retardant or plastic fire retardant alone can not meet fire retardant objective of wood fiber-PP composites.
     4.Six experimental variables,such as SA content,reinforcement species,reinforcement content,plastic fire retardant species (PFRS, plastic fire retardant content (PFRC) and ratio between wood fiber and PP (WPR) were tested in manufacturing fire-retardant wood-plastic composites.The results showed that the SA content,PFRC and WPR were significant factors for fire retardant effect (OI) and other factors were not very important.Increase of SA content not only improved OI of composites,but also improved some physical-mechanical properties greatly;cooperation of APP in APM prescription and SA fire retardant made flameproof property improved significantly;adding PP can increase physical-mechanical properties at large scale but decrease OI rapidly.Reinforcement can increase the properties greatly,but reinforcement species and PWFS were not significant compared with other factors.Properties of SA had some bad effect on cure degree of reinforcement;their interaction had some influence on physical-mechanical properties of composites.
     Compared with normal wood fiber-PP composites,fire-retardant wood fiber-PP composites had much higher OI,and heat release rate (HRR),mean mass loss rate (MMLR) and mean effective heat of combustion (MEHC) was slow down greatly.
     Using the optimized factors the properties of fire-retardant wood fiber-PP composites were excellent.OI was 39.6%,which meet requirements of OI≥35%in standard GA87-94;thickness swelling after 24hour water absorption (24hTS) was 10.18%,internal bond (IB) was 0.966MPa,modulus of rupture (MOR) was 35.45MPa, modulus of elasticity (MOE) was 4031MPa and boiling test of internal bond (BTIB) was 0.272MPa. The test result surpassed national requirements of GB/Tl1718-1999 of humid resistant fiberboard, and it even meet requirement for outdoor usage.Objectives of the research had been met.
引文
[1] 王恺.木质纤维复合材料—一种有发展前景的复合材料[J].木材工业,1994,6(2):32~35
    [2] 黄泽雄编译.木/塑复合材料的发展趋势[J].国外塑料,2003,21(2):10~13
    [3] 王正.木塑复合材料的研究及进展[J].林业经济,2002年专刊:34~40
    [4] John A. Youngquist. Wood-based Composites and Panel Products [M]// Forest Products Laboratory. Wood handbook—Wood as an engineering material, chapter 10. Madison, WI: USDA, Forest Service, 1999
    [5] Clemons Craig. Wood-plastic composites in the United States: the interfacing of two industries [J].Forest Products Journal, 2002,52(6): 10~18
    [6] Paul M. Smith; Michael P. Wolcott. Opportunities for Wood/Natural Fiber-Plastic Composites in residential and industrial applications [J]. Forest products joumal,2006,56(3):4~11
    [7] 成俊卿.木材学[M].北京:中国林业出版社,1981
    [8] 刘燕吉.木质材料的燃烧与阻燃系列讲座之一[J].木材工业,1996,10(6):37~39
    [9] Optimat Ltd and MERL Ltd. Wood plastic composites study-technologies and UK market opportunities[R]. The waste and resources action programme. Banbury, Oxon, 2003
    [10] Douglas Gardner; Nicole M. Stark. Understanding the durability of wood plastic composites—An update: proceedings of durability in wood plastic & natural fiber composites 2006, San Antonio,December 4-5, 2006[C]
    [11] GB50222-1995.建筑内部装修设计防火规范[S].北京:中国标准出版社,1997
    [12] 范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006,36(1):1~8
    [13] Pdncipia partners. Formulating and processing advances in the global WPC industry 2005[C]. Exton:Principia partners, 2005
    [14] 贺金梅,李斌.热塑性聚合物/木纤维复合材料的研究进展.高分子材料科学与工程,2004,20(1):27~30
    [15] Kuruvilla Joseph; Sabu Thomast. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites [J]. Polymer, 1996,37(23):5139~5149
    [16] S.Dong; S.Sapieha; H.P.Schreiber. Mechanical properties of corona-modified cellulose/polyethylene composites[J].Polymer engineering and science,1993,33(6): 343~346
    [17] Kristiina Oksman, Henrik Lindberg. Influence of thermoplastic elastomers on adhesion in polyethylene-wood flour composites. Journal of applied polymer science, 1998,68(11): 1845~1855
    [18] Kristiina Oksman, Henrik Lindberg, Allan Holmgren. The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites[J]. Journal of applied polymer science, 1998,69(1): 201~209
    [19] Byung-Dae Park; John J. Balatinecz. A comparison of compounding processes for wood-fiber/thermoplastic composites[J]. Polymer composites, 1997,18(3) :425~431
    [20] 王正,赵行志,郭文静.回收塑料-木材纤维复合材料的工艺及性能.北京林业大学学报.2005,27(1):1~5
    [21] Norma E. Marcovich; Marcelo A. Villar. Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites[J]. Journal of applied polymer science, 2003, 90(10): 2775-2784
    [22] S.N. Maiti; R. Subbarao; Mohd. Nordin Ibrahim. Effect of wood fibers on the theological properties of i-PP/wood fiber composites[J]. Journal of applied polymer science,2004, 91(1): 644~650
    [23] Marek Gnatowski. Water Absorption by Wood-Plastic Composites in Exterior Exposure: proceedings of 8th international conference on woodfiber-plastic composites. Madison, May 23-25, 2005[C]
    [24] Chow, Poo; Bowers, Tait C.; Bajwa, Dilpreet S.etc. Dimensional stability of composites from plastics and cornstalk fibers: proceedings of 5th international conference on woodfiber-plastic composites.Madison, May 26-27, 2000[C]
    [25] Stark, Nicole M.; Matuana, Laurent M. Photostabilization of wood flour filled HDPE composites:proceedings of ANTEC annual technical conference society of plastics engineers; San Francisco, May 5-9, 2002[C]
    [26] Falk, Robert H.; Felton, Colin; Lundin, Thomas. Effects of weathering on color loss of natural fiber-thermoplastic composites[C]//proceedings of 3rd international symposium on natural polymers and composites- ISNaPOL/2000; Sao Pedro,May 14-17, 2000. Sao Carlos: Embrapa-Empresa Brasileria de Pesquisa Agropecuaria- Embrapa Instrumentacao agropecuaria: 382~385.
    [27] David E. Pendleton; Theresa A. Hoffard; Tim Adcock etc. Durability of an extruded HDPE/wood composite[J]. Forest product journal, 2002, 52(6):21~27
    [28] Rebecca E. Ibach; Craig M. Clemons; Nicole M. Stark. Combined UV and water exposure as a preconditioning method in laboratory fungai durability testing: proceedings of 7th international conference on woodfiber-plastic composites. Madison, May 19-20, 2003 [C]
    [29] Steven A Verhey; Peter E Laks; Dana L Richter etc. Use of field stakes to evaluate the decay resistance of woodfiber-thermoplastic composites[J].Forest products.journal, 2003, 53(5):67~74
    [30] Marc Thometschek. The advanced protection against algae, fungi, and termites created by the use of biocides in WPC, and the difference between metal and metal-free formulations: proceedings of 8th international conference on woodfiber-plastic composites. Madison, May 23-25, 2005 [C]
    [31] Principia partners. Specialty additives in natural fiber and wood composites North America—2001.[C]. Exton: Principia partners, 2001
    [32] G, Guo; C.B. Park; Y.H. Lee and etc. Flame retarding effects of nanoclay on wood-fiber composites[J].Polymer engineering & science, 2007, 47(3):330~336
    [33] Ivan Lerner. Phenomenal growth projected for wood plastic additives[J]. Chemical market reporter,2003,263(3): 10
    [34] 贺金梅.木纤维增强线性低密度聚乙烯复合材料界面改性与阻燃的研究[D].东北林业大学硕士论文,2003
    [35] 王正.木塑复合材料界面特性及其影响因子的研究[D].中国林业科学研究院博士论文,2001
    [36] Jingshen Wu; Demei Yu; Chi-Ming Chan etc. Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites[J]. Journal of applied polymer science,2000,76(7): 1000~1010
    [37] Fernanda M.B.Coutinho; Thais H.S.Costa; Daisy L.Carvalho. Polypropylene-wood fiber composites:effect of treatment and mixing conditions on mechanical properties[J]. Journal of applied polymer science, 1997,65:1227~1235
    [38] Wichman, I S; Oladipo, A B; Hermann, I; Selke, S. The influence of moisture on fiber/matrix adhesion for wood/HDPE-composites[C]//proceedings of the 9th annual ASM/ESD advanced composites conference, Ann Arbor, November, 8-11,1993.MI: ESD, the engineering society: 265~276
    [39] N Sombatsompop; K Chaochanchaikul. Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites[J].polymer international, 2004, 53(9):1210~1218
    [40] M. N. Belgacem; P. Bataille; S. Sapieha. Effect of corona modification on the mechanical properties of polypropylene/cellulose composites[J]. Journal of Applied Polymer Science, 1994, 53(4): 379~385 Jayamol George; M S Sreekaia; Sabu Thomas.A review of interface modification and characterization of natural fiber reinforced composites[J]. Polymer Engineering and Science, 2001, 41(9): 1471~1485
    [42] 秦特夫,阎吴鹏.木材酯化处理及接枝共聚处理对木材表面自由能影响的研究[J].林业科学,2001,37(2):97~100
    [43] 秦特夫,阎昊鹏.木材表面非极性化原理的研究I.木材乙酰化过程中化学官能团的变化[J].木材工业,1999,13(4):17~20,23
    [44] R.Mahlberg; I.Paajanen; A.Nurmi; A.Kivisto; K.Koskela. Effect of chemical modification of wood on the mechanical and adhesion properties of wood fiber/polypmpylene fiber and polypmpylene/veneer composite[J]. Holz als rohund werkstoff, 2001,59:319~326
    [45] N.E.Marcovich; M.M.Reboredo; M.I.Aranguren. Sawdust modification: maleic anhydride chemical treatment[J]. Holz als rohund werkstof, 1996,54:189~193
    [46] L.K.Bledzki; S.Reihmane; J.Oassan. Properties and modification methods for vegetable fibers for natural fiber composite[J]. Journal of applied polymer science, 1996,59:1329~1336
    [47] G Canche-Escamilla, O. Rodriguez-Trujillo, P. J. Herrera-Franoo. Preparation and characterization of benequen cellulose grafted with methyl methacrylate and its application in composites[J]. Journal of applied polymer science, 1997,66(2): 339~346
    [48] 廖兵,黄玉惠.接枝改性木纤维对聚氯乙烯/木纤维复合材料力学性能的影响[J].应用化学,1996,13(5):64~66
    [49] 王建军,郭文静,王正木纤维-聚乙烯复合过程中聚乙烯改性的研究[J].木材工业,1995,9(2):10~13
    [50] 许瑞,徐闻,程赫鹏.亚麻~LDPE复合材料力学性能的研究[J].复合材料学报.2002,19:14~21
    [51] A. A. Parker; J.Mac Lachlan. The relationship between silane hydrolysis and polymer adhesion to glass as studied by 13C solid state NMR [M]//Mittal K L. Silanes and other coupling agents, Vol. 2. VSP, 2000
    [52] 丁筠,薛平,武志怡等.纤维表面处理对PVC/木纤维复合材料性能的影响[J].工程塑料应用,2004,32(9):29~31
    [53] B. Wang, S. Panigrahi, W. Crerar and L. Tabii. Application of pre-treated flax fibers in composites:proceedings of the Canadian society for engineering in agricultural, food, and biological systems,Montreal,Quebec, July 6-9,2003[C]
    [54] 廖兵,黄玉惠,陈鸣才.改性木纤维对LDPE和木纤维复合材料力学性能的影响[J].高分子材料科学与工程,1999,15(3):123~125
    [55] Godavarti, Shankar; Widliams; Rodney K etc. Polyolefln wood fiber composite: US 6,265,037[P].2001,7,2A
    [56] 宋永明.木粉,再生聚苯乙烯复合材料的增韧改性研究[D].东北林业大学硕士论文,2004
    [57] Velichko Hristov; Stefanka Vasileva. Dynamic mechanical and thermal properties of modified poly(propylene) wood fiber composites[J]. Macromolecular materials and engineering, 2003,288(10):798~806
    [58] P.K.Mallick. Fiber-reinforced composites: materials, manufacturing and design[M].New York:Marcel, Dekker, Inc, 1993
    [59] J.E. Winandy, N. M. Stark, C. M. Clemons. Considerations in recycling of wood-plastic composites:proceedings of 5 th Global Wood and Natural Fibre Composites Symposium, Kassel, April 27-28,2004[C]
    [60] Optimat Ltd and MERL Ltd. Wood plastic composites study-technologies and UK market opportunities[R]. The Waste and Resources Action Programme. Banbury, Oxon, 2003
    [61] 侯秀英.木塑复合强化地板基材及其复合机理研究[D].福建农林大学硕士论文,2005
    [62] 戴东花.木塑复合相容稳定性性与挤出流变性的研究[D].华南农业大学硕士论文,2005
    [63] 谢大勇.竹/塑复合建筑模板材料的研究[D].福建农林大学硕士论文,2004
    [64] 李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业,2003,31(11):22~24
    [65] David Paul Harper. A thermodynamic, spectroscopic, and mechanical characterization of the wood-polypropylene interphase[D]. Ph.D of Washington state university, 2003
    [66] N. Sombatsompop; C. Phromchirasuk. Effects of acrylic-based processing aids on proeessibility,rheology, thermal and structural stability, and mechanical properties of PVC/wood-sawdust composites[J]. Journal of applied polymer science,2004,92(2): 782~790
    [67] David Harper, Michael Wolcott. Interaction between coupling agent and lubricants in wood-polypropylene composites. [C/OL] 2002 [2006-5-10] http://wolcott.wsu.edu/ee546/graphics/Harper Wolcott 2003. pdf
    [68] Nicole Stark. Effect of species and particle size on properties of wood-flour-filled polypropylene composites:proceedings of functional fillers for thermoplastics & thermosets, San Diego, December 8-10, 1997[C]
    [69] Nicole M. Stark, Robert E. Rowlands. Effects of wood fiber and characteristics on mechanical properties of wood/polypropylene composites[J]. Wood and fiber science, 2003, 35(2): 167~174
    [70] 秦特夫.木粉加入量对木/塑复合材料性能影响的研究[J].木材工业,2002,16(5):17~20
    [71] Sanadi, Anand R.; Hunt, J.F.; Caulfield, D.F. etc. 2002. High fiber-low matrix composites: kenaf fiber/polypropylene[C]//sixth international conference on woodfiber-plastic composites. May 15-16,2001. Madison:Forest Products Society,2002:121~124
    [72] Bei-Hong Liang; Laurence Mott; Stephen M. Shaler etc. Properties of transfer-molded wood-fiber/polystyrene composites[J]. Wood and fiber science ,1994, 26(3): 382~389
    [73] John A.Youngquist; Andrzej .M .Kraxysik; James .H.Mkehl etc. Mechanical and physical properties of air-formed wood-fiber/polymer-fiber composites[J]. Forest product journal, 1992, 42(6): 42~48
    [74] 中国林科院木材工业研究所木质材料专题组.聚丙烯纤维对木/塑纤维复合材料性能影响的初步研究[J].木材工业,1997,11(6):5~7
    [75] 中国林科院木工所木质纤维复合材料专题组.木/塑纤维复合工程材料工艺试验研究[J].木材工业,1998,12(4):15~17
    [76] John A. Youngquist; George E. Myers; James H. Muehl; Andrzej M. Krzysik; and Craig M. Clemens.Composites from recycled wood and plastics[R]. USDA Forest Service, forest products iaboratory, i 994
    [77] 中国林业科学研究院木材工业研究所.一种复合人造板的生产工艺:中国,95105921.1[P].1995-5-31
    [78] 中国林业科学研究院木材工业研究所.环保型胶合板生产工艺:中国,00134681.4[P].2003-3-19
    [79] Beihong Liang. Properties of recycled wood-fiber and polystyrene multiphase composites[D].University of Maine,Orono, 1995
    [80] Michael P.Wolcott. Formulation and process development of flat-pressed wood-polyethylene composites[J]. Forest products journal, 2003, 53(9):25-32
    [81] Byung-Dae Park; John J.Baiatinecz. A comparison of compounding processes for wood-fiber/thermoplastic composites[J]. Polymer composites, 1997,18(3) :425 - 431
    [82] 王雪梅.木材-回收塑料复合刨花板工艺研究[D].东北林业大学硕士论文,2002
    [83] 肖泽芳.木粉-再生聚苯乙烯复合材料[D].东北林业大学硕士论文,2003
    [84] 才智.木材纤维·废旧聚丙烯热压复合工艺的研究[D].东北林业大学硕士论文,2005
    [85] 王正,郭文静,王建军.木塑复合材料板制造工艺的因子研究[J].林产工业,1996,23(2):8~9
    [86] 赵行志。木材纤维回收塑料复合材料工艺及其性能的研究[D].北京林业大学硕士论文,2004
    [87] 王正,鲍甫成,郭文静.木塑复合工艺因子对复合材料性能的影响[J].林业科学,2003,39(5):87~84
    [88] 王正,郭文静,高黎、木塑复合刨花板性能、应用及发展趋旁势[J].人造板通讯,2005,12(5):12~15,33
    [89] 高黎,王正.木塑复合材料的研究、发展及展望[J].人造板通讯,2005,12(5):5~8,17
    [90] Omar Faruk; Andrzej K. Bledzki. Microcellular woodfiber-polypropylene composites in an injection molding process: dffect of fiber type and chemical foaming gents on physico-mechanical properties: proceedings of 7th international conference on woodfiber-plastic composites. Madison, May 19-20, 2003 [C]
    [91] 季春生,吕子安,连晨舟等.PVC燃烧时HCI的释放规律[J].高分子学报,2005,(5):674~677
    [92] Colomba Di Blasi. Modeling and simulation of combustion processes of charting and non-charring solid fuels[J]. Progress in energy and combustion science,1993, 19(1): 71~104
    [93] Nicole M. Stack; Robert H. White; Craig M. Clemons. Heat release rate of wood-plastic composites[J]. Sample journal, 1997, 33(5):26-31
    [94] L.Javier Malvar, Robert Tichy, David E.Pendleton. Fire issues in engineered wood composites for naval waterfront facilities[C]. 46th international SAMPE symposium and exhibition: a materials and processes odyssey, vol.46, Book 2, Long Beach, California, USA, May 6-10, 2001:1713~1722
    [95] 李迎旭.火场木材热解燃烧表观动力学研究[D].浙江大学硕士论文,2005,
    [96] 施海云.火灾可燃物热解表观动力学研究[D].浙江大学硕士论文,2004
    [97] 余玮,吴新华.八种原料及其主要成分热解的研究——木材热解机理初探[J].林产化学工业,1989,9(3):13~22
    [98] 胡云楚,刘元酚类阻燃剂处理杉木热解过程的热动力学研究[J].林业科学,2003,39(3):116~120
    [99] 阎昊鹏,陆熙娴,秦特夫.热重法研究木材热解反应动力学[J].木材工业,1997,11(2):14~18
    [100] Ramiah, MV. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose and lignin[J]. Journal of applied polymer science, 1970, 14:1323~1332
    [101] Kung H.C. A mathematical model of wood pyrolysis[J]. Combustion and flame, 1972,18:185~195
    [102] 李社锋,方梦祥,舒立福等.利用分布活化能模型研究木材的热解和燃烧机理[J].燃烧科学与技术,2006,12(6):535~539
    [103] Milosavljevic I.; Suuberg E. M.. Cellulose thermal decomposition kinetics: global mass loss kinetics[J]. Industrial & engineering chemistry research, 1995, 34:1081~1091
    [104] 余春江,骆仲泱,方梦祥等.一种改进的纤维素热解动力学模型[J].浙江大学学报(工学版),2002,36(5):509~515
    [105] Nai An Liu; Weicheng Fan etc. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere[J]. Journal of analytical and applied pyrolysis, 2002, 63: 303~325
    [106] 袁兵.可燃物热解与着火特性研究[D].浙江大学硕士论文,2004
    [107] 玉栋.木材点燃温度的测定[J].火灾科学,19921(10):25~30
    [108] Robert H. White; Mark A. Dietenberger. Cone calorimeter evaluation of wood products[C]. 15th Annual BCC conference on flame retardaney, 2004:331~342
    [109] R.H.White; M.A.Dietenberger. Wood products: thermal degradation and fire[M]// Encyclopedia of Materials: Science and Technology. Oxford: Elsevier Science Ltd,2001
    [110] F. L. Browne. Theories of the combustion of wood and its control, a survey of the literature[R].Report No. 2136, Forest products laboratory, 1958
    [111] F.C.Beall; H.W. Eickner. Thermal degradation of wood components: a review of the literature[R]. Research paper FPL 130, Forest products laboratory, 1970
    [112] Kollman F.. Occurrence ofexothermic reactions in wood[J]. Holz als rohund werkstoff, 1960,18:193~200
    [113] 王清文.新型木材阻燃剂FRW[D].东北林业大学博士论文,2001
    [114] 吴玉章,原田寿郎.人工林木材燃烧性能的研究[J].林业科学,2004,40(2):13l~135
    [115] Fredlund B. A model for heat and mass transfer in timber structures during fire[R]. Institute of science and technology, department of fire safety engineering, Lund university, Sweden, 1988
    [116] 陈晓军.季经纬,杨立中等.外界热辐射作用下木材热解和着火的预测模型[J].火灾科学,2002,11(3):147~151
    [117] Rafael Bilbao. A model for the prediction of the thermal degradation and ignition of wood under constant and variable heat flux [J]. Journal of analytical and applied pyrolysis, 2002,62:63~82
    [118] 俞自涛.着火前木材传热传质过程的试验和理论研究[D].浙江大学博士论文.2005
    [119] 钟世云.聚合物降解与稳定化[M].北京:化学工业出版社,2002
    [120] 张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005
    [121] 唐明黎,谷惠.塑料闪点和自燃点测试方法的研究[J].上海化工,1992,17(3):22~26
    [122] A William Coaker. Fire and flame retardants for PVC[J]. Journal of vinyl & additive technology.2003, 9(3): 108~115
    [123] 欧育湘.实用阻燃技术[M].北京:化学工业出版社,2002
    [124] 于永忠,吴启鸿,葛世成.阻燃材料手册[M].北京:群众出版社,1997
    [125] 付强,贾文学.阻燃性聚丙烯纤维[J].非织造布,1995, (4):31~33
    [126] 陈伟鹏,刘宇雁,陈林等.聚丙烯热失重特性的研究[J].包头钢铁学院学报,2004,23(3):203~206
    [127] Zhang Jun; Shields T.J.; Silcock G. W. H. Fire hazard assessment of polypropylene wall linings subjected to small ignition sources[J]. Journal of fire sciences, 1996, 14:67~84
    [128] 崔永岩,揣成智.聚丙烯阻燃及其影响因素的研究[J].塑料工业,2000,28(2):48~50
    [129] 欧育湘,李昕,崔云鹏.聚丙烯阻燃系统中适宜的锑/卤比[J].化工新型材料,1999,27(12):26~29
    [130] 何淑琴,胡源,宋磊.阻燃聚丙烯/蒙脱土纳米复合材料的燃烧性能[J].中国科学技术大学学报,2006,36(4):408~412
    [131] 徐晓楠,张健,徐文毅.膨胀阻燃聚丙烯(PP)的燃烧、裂解及热化学性能研究[J].灭火剂与阻燃材料,2005,24(2):215~217
    [132] Donald Hopkins. Predicting the ignition time and burning rate of thermoplastic in the cone calorimeter[R].Department of fire protection engineering, university of Maryland, 1995
    [133] 吴民生,杨立,吴谷青.含溴阻燃聚丙烯纤维阻燃性能分析研究[J].江苏化工,1992, (4), 47~49
    [134] Zhang Jun; Wang Yong; Lu Xiaodong etc. Study on melting behavior of polymers during burning[J].Fire science and technology, 2006, 25(1):21~26
    [135] 欧育湘.国外阻燃剂发展动态及对我国阻燃剂工业之浅见[J].精细与专用化学品,2003,(2):3~6
    [136] 李晓欣,朱冬生.欧盟RollS指令的有害物质替代研究[J].电机电器技术,2005,(1):34~36
    [137] 骆介禹,骆希明.纤维素基质材料阻燃技术——织物、木材、涂料及纸制品的阻燃处理[M].北京:化学工业出版社,2003
    [138] 王正洲,范维澄,瞿保钧.聚合物材料阻燃性能试验方法相关性研究进展[J].合成橡胶工业,2001,24(3):178~181
    [139] GA 87-94.防火刨花板通用技术条件[S].北京:中国标准出版社,1995
    [140] GB/T1 1718-1999.中密度纤维板[S].北京:中国标准出版社,2000
    [141] 殷敬华,莫志深主编.现代高分子物理学(上册)[M].北京:科学出版社,2003
    [142] 华毓坤.人造板工艺学[M].北京:中国林业出版社,2002
    [143] 于文吉,梁京河等.异氰酸酯麦秸均质板的制造工艺[J].木材工业,2001,15(3):3~4,19
    [144] 华冬.异氰酸酯(MDI)胶在麦秸板制造中的作用研究[J].化学与粘合,2001,(5):208~209,212
    [145] 王志玲,王正.人造板用异氰酸酯胶粘剂研究现状及发展趋势[J].中国胶粘剂,2004,13(1):59~62
    [146] 王志玲.功能性聚合物增容的麦秸/聚乙烯复合材料制备及机理研究[D].中国林科院博士论文·2005
    [147] GB/T17657-1999.国家人造板及饰面人造板物化性能试验方法[S].北京:中国标准出版社,1999
    [148] 郭文静.塑料合金特性及其对木纤维复合材料性能影响的研究[D].中国林科院硕士论文,2003
    [149] ISO 5660-2002. Reaction-to-fire tests-Heat release, smoke production and mass loss rate [S].ISO:2002
    [150] GB/T 2406-1993.塑料燃烧性能试验方法—氧指数法[S].北京:中国标准出版社,1993
    [151] 邓代举,李圣峰,李桂英,胡常伟.聚丙烯和毛竹共热解的研究化学研究与应用[J].2006, 18(10):1245~1248
    [152] Sharypov V. I.; Matin N.; Beregovtsova N. G. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids liquids and gases[J]. Journal of analytical and applied pyrolysis, 2002, 64:15~28
    [153] 刘振海徐国华张洪林.热分析仪器[M].北京:化学工业出版社,2006
    [154] 岑可法.高等燃烧学[M].杭州:浙江大学出版社,2002
    [155] 冯新华,龙世刚,汪志全等.4种废塑料的燃烧动力学研究[J].安徽工业大学学报,2005,22(3):218~221
    [156]夏志远主编.木材工业实用大全:胶粘剂卷[M].北京:中国林业出版社,1996
    [157] GB/T9846-2004.胶合板[S].北京:标准出版社,2004
    [158] 顾惕人.表面化学[M].北京:科学出版社,1994
    [159] P.H.Solomon著,王绪明译.红外光谱分析100例[M].北京:科学出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700