用户名: 密码: 验证码:
太阳能有机朗肯循环中低温热发电系统的数值优化及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合太阳辐照分散性强、能流密度低、易于转化为中低温热源的物理特性,本文提出低倍聚焦集热与有机朗肯循环(organic Rankine cycle, ORC)相结合的太阳能中低温热发电系统。与大规模、高聚焦比的太阳能高温热发电方式相比,太阳能中低温热发电通过无须复杂跟踪装置的低倍聚焦复合抛物面集热器(compound parabolic concentrator, CPC)获取热能,集热效率高且可有效利用漫射辐照。ORC循环由于工质低沸点的特性,在中低温条件下可以获得较高的蒸汽压力,推动膨胀机做功,其中低温热功转换性能优于水蒸气朗肯循环。ORC与CPC集热器相结合将是实现低成本、规模化太阳能热发电利用的有效途径之一。系统初投资少,建设周期短,风险小,加上易模块化的特点,其技术容易成熟。同时太阳能ORC热发电系统的冷凝端可实现热水及暖气输出,100-250℃的集热温度可实现热能驱动的制冷循环,中低温相变蓄热技术易于实现系统的稳定持续运行。这些特点有利于形成基于太阳能的冷热电综合供能系统。
     目前ORC主要与工业余热、地热等热源相结合,在工业余热、地热领域的应用已具备一定基础。许多学者也对ORC的重要部件膨胀机进行了研究,但是采用的膨胀机通常为螺杆膨胀机或涡旋膨胀机。这些膨胀机大多是在压缩机的基础上进行结构改造,绝热等熵效率不高,且缺乏小型有机工质膨胀机内部流动及热功转换等基础问题的深入研究。在太阳能集热方面,过去很长一段时期相关研究主要在高温(300℃以上)和低温(100℃以下)集热领域,太阳能中温光热利用(100-250℃)只在最近几年时间才引起较为广泛的重视,并得到了快速发展。尽管太阳能中温集热技术具有很强的应用前景,但相关的应用基础问题研究相对滞后。
     本文围绕100-250℃温度范围内太阳能ORC热发电应用基础问题开展研究。拟解决的问题主要包括:
     1)传统太阳能热发电系统正常运行时,换热介质从集热器获得热量并通过蒸发器把热量传递给有机工质。蒸发器中存在巨大的传热不可逆损失,是ORC效率低于卡诺循环效率的重要原因。蒸发器中可用能的损失占整个ORC可用能总损失的比例达70%以上。巨大的传热不可逆损失导致了高的换热介质平均工作温度,与之相应的是较低的太阳能集热效率。
     2)膨胀机是太阳能ORC热发电的关键部件之一,目前商业化膨胀机大多为MW级,且采用的做功介质通常为水蒸气或空气,因此已有的膨胀机流动及热功转换关系式是基于水蒸气或空气物性的。相同温度条件下,有机工质不论是粘度、密度、压力、绝热指数还是声速等都与水蒸气或空气有着巨大差异,在新的物性参数作用下,传统大功率膨胀机热功转换效率的经验关系式有可能不具备适用性。工质泵的加压也存在新的科学问题,泵机械运动的不可逆损失将导致有机工质流入泵时温度上升,有机工质常温下高汽化压力容易产生气蚀现象,并导致泵机械效率下降或断液等问题。
     为此,本文建立了系统的辐照集热-相变蓄热-热力循环三者之间的参量耦合及能量匹配数学模型,对系统结构及运行方式、有机工质、光热光电性能等方面进行了数值优化,并利用初步搭建的实验平台对kW级小型有机工质膨胀机、工质泵及ORC循环进行了测试和性能验证。论文的主要创新点为:
     1)设计了两级集热结构,集热器传热介质与有机工质通过双循环进行换热,有效降低了蒸发器内可用能的损失。
     2)在两级集热的基础上,提出了平板集热器与CPC集热器联合工作的思想,提出了平板集热器比例的优化方法,设计了系统优化运行方案。
     3)设计了内蓄热结构,在维持太阳能ORC热发电稳定性的同时减少了传热介质与相变材料之间的二次换热。并进一步设计了两级蓄热结构,减少蓄热及放热过程的可用能损失。
     4)将太阳能ORC热发电与光伏发电相结合,设计太阳热发电/光伏发电复合系统,并对其性能进行了研究。
     5)依靠课题组自主设计与搭建的实验平台,基于高效kW级小型涡轮膨胀机,创新性对小型ORC系统进行了实验研究。
The organic Rankine cycle (ORC) is combined with a compound parabolic concentrator (CPC) of small concentration ratio in this study. Solar heat is collected at temperatures below 250°C and converted into work by the ORC. Compared with high-temperature solar power generation on using high-concentration collectors for heat collection and steam Rankine cycle for power conversion, low-medium solar thermal electric generation offers many advantages, including the following:
     (1) The ORC is one of the most favorable and promising techniques in low-temperature applications. The ORC demonstrates higher efficiencies during cooler ambient temperatures, immunity from freezing at cold winter nighttime temperatures, and the adaptability to semi-attended or unattended operations. In the case of a dry fluid, the ORC can be used at lower temperatures and does not require superheat. The ORC can be easily modularized and used in conjunction with various heat sources. The feasibility of ORC technology is reinforced by the high technological maturity of most of its components; this maturity stems from their extensive use in refrigeration applications. The advantage of the ORC for low-temperature heat sources is obvious because of the more limited (in comparison to steam) volume ratio of the working fluid at the turbine outlet and inlet. This ratio can be further downsized to an order of magnitude for organic fluids than for water; hence, it enables the use of simpler and cheaper turbines.
     (2) CPC collectors with smaller concentration ratios can accept a large proportion of incident diffuse radiation on their apertures, and direct it without tracking the sun. Therefore, the cost of collectors can be reduced.
     (3) Low-medium solar thermal electric generation enables scaling to smaller unit sizes. The interest for small-scale ORC is now growing. Small-scale production of electricity at or near customers' homes and businesses could improve the reliability of power supply. And heat demand can be fulfilled by domestic heating, which results in an increase in the overall energy conversion efficiency of ORC. The size of the ORC plant is limited by the low energy density of heat sources. And the size of the ORC plant is also limited by the availability of energy consumers. Many applications in residential areas only require several to tens of kWe for pumping, refrigerator and air conditioning.
     (4) The technology of heat storage in the temperature range of 100–250°C is much easier to realize compared with high-temperature heat storage. Many kinds of phase change materials (PCMs) can be used for the proposed system; these include paraffin, magnesium chloride hexahydrate, erythritol and galactitol.
     The ORC has been successfully applied in general low-grade heat utilization. And substantial improvements have been made in ORC technology in the past decade. However, this technology is primarily applied in waste heat recovery, geothermal plants, and biomass power plants. The integration of ORC and solar collectors has attracted limited attention. Meanwhile research on CPC collectors for medium temperature applications is currently expanding because solar heat ranging from 100–250°C can be utilized directly for industrial processes, desalination, solar cooling, solar thermal power, and so on. Although the CPC have large market potential, basic research should be carried out to explore the application of low-medium temperature solar thermal electric generation.
     The specific scientific issues that the study aims to address are as follows:
     (1) The application and performance of the ORC have been investigated by previous researchers; however, most of the investigations were focused on the ORC with a basic configuration, wherein a large sum of exergy is lost in the evaporator because of the unmatched temperature between the organic fluid and the conduction oil.
     (2) Although small-scale ORC units in power ranges below 100 kW exhibit significant potential for electricity and heat supply produced at or near the site of consumption, the feasibility of small-scale expanders has yet to be demonstrated. The scroll expander appears to be a good candidate for the expansion device of small-scale ORC systems but most of the employed scroll expanders are obtained by modifying existing compressors. A turbo-expander may offer advantages such as its compact structure, small size, light weight, and stability. However, there is little thorough and comprehensive investigation on the performance of small-scale expanders, especially turbo-expanders.
     (3) The choice of working fluid for the ORC is critical because the fluid must have not only thermophysical properties that match the application, but also adequate chemical stability at the desired working temperature. Particularly, the collector efficiency will be influenced directly by the thermophysical properties of the working fluid. The working fluid selection for the proposed system differs from that for the ORC applied in waste heat recovery, biomass, or geothermal power generation.
     This paper focuses on the basic scientific issues related to the low-medium temperature solar thermal electric generation using the ORC and the CPC. The identification of the performance advantages and disadvantages of small-scale expanders and pumps with organic working fluids , the optimization of the thermodynamic cycle and working fluid selection at a range of 100–250°C are conducted. The paper has the following innovative features:
     1. The proposed system combines the advantages of the ORC, non-tracking CPC, and heat storage of PCMs.
     2. Two-stage collectors with two thermal oil cycles are proposed to reduce the heat transfer irreversibility between the organic fluid and oil.
     3. Preheat on use of the non-concentrated collector is proposed. And the preheat temperature is optimized.
     4. Two-stage heat storage units with different PCMs are adopted to improve the heat collection efficiency.
     5. A novel hybrid solar electricity system with ORC and PV cells is designed and performance simulation is carried out.
     6. A specially designed and manufactured turbine is innovatively applied to the solar ORC system. Preliminary testing of the ORC performance is conducted. The performance advantages and disadvantages of small-scale expander and pumps with R123 are identified.
引文
[1] Matteo Bosi, Claudio Pelosi. The potential of III-V Semiconductors as terrestrial Photovoltaic devices, Res.Appl,15(2007)51-68.
    [2]常丽君.聚热与光伏——太阳能光电产业技术引领未来.科技日报, 2007.10.8.
    [3]张忠霞.太阳能热发电在全球迎来复苏.经贸实践, 9(2008)16-16.
    [4]张耀明,王军,张文进,孙利国,刘晓辉,太阳能热发电系列文章_2_塔式与槽式太阳能热发电,太阳能,2(2006)29-32.
    [5]王军,张耀明,王俊毅,陈勇,安翠翠,太阳能热发电系列文章_11_太阳能热发电系列文章_11_槽式太阳能热发电中的真空集热管,太阳能,5(2007)24-28.
    [6] Solel Lands Record Deal for Solar Powered Receivers, for Spain, http://newsgroups.derkeiler.com/Archive/Soc/soc.culture.israel/2008?07/msg00210.html.
    [7]郭苏,刘德有,张耀明,王军,太阳能热发电系列文章_5_太阳能热发电系列文章_5_塔式太阳能热发电的定日镜,太阳能,5(2006)34-37.
    [8]王军,刘德有,张文进,孙利国,刘晓辉,张耀明,太阳能热发电系列文章_3_太阳能热发电系列文章_5_碟式太阳能热发电,太阳能,3(2006)31-32.
    [9] http://www.chinamil.com.cn/site1/xwpdxw/2008-07/23/content_1376129.htm.
    [10] 2008太阳能热发电技术三亚国际论坛召开,高科技与产业化,9(2008)43-44.
    [11] 863太阳能发电示范计划拟3年内实现并网发电.电子工业专用设备, 37(2008)60-60.
    [12]张耀明,王军,张文进,孙利国,刘晓辉.聚光类太阳能热发电概述.太阳能,1(2006)39-41
    [13] http://www.tynw.net.cn/News/3/8963.html,2011-3-21.
    [14] http://www.most.gov.cn/kjbgz/201101/t20110114_84255.htm,2011-3-21.
    [15]袁建丽,林汝谋,金红光,韩巍,洪慧.太阳能热发电系统与分类(1),太阳能,4(2007)30-33.
    [16] E.Prabhu, Solar trough ORC, Subcontract report NREL/SR-550-39433, 2006.
    [17] Gaia M. 1 MWel organic Rankine cycle power plant powered by low temperature geothermal water, Geothermische Energie, 36(2002)3-4.
    [18] Enrico Barbier. Geothermal energy technology and current status: an overview, Renewable and Sustainable Energy Reviews, 6(2002)3–65.
    [19] Takahisa Yamamoto , Tomohiko Furuhata , Norio Arai , Koichi Mori, Design and testing of the Organic Rankine Cycle. Energy, 26(2001)239–251.
    [20] Tzu-Chen Hung. Waste heat recovery of organic Rankine cycle using dry fluids, Energy conversion & management, 42(2001)539-553.
    [21] Rogers G and Mayhew Y. Engineering thermodynamics, work and heat transfer, 4th ed. Harlow:Longman Scientific & Technical, (1992)239–243.
    [22] http://www.ormat.com/news.php?did=167&aid=7eb7abef12303269cc5bf1 76492 311b9
    [23] 1 MWel organic Rankine cycle power plant powered by low temperature geothermal water, 2004, http://www.geothermie.de/wissenswelt/archiv/englisch/ the- altheim-rankine- cycle -turbogenerator.html.
    [24] http://www.infinityturbine.com/ORC/ORC_Waste_Heat_Turbine.html.
    [25] http://www.freepower.co.uk/FP%20CoInfo%2010%20pager.pdf.
    [26] N. Cuenot, J.P. Faucher, D. Fritsch, A. Genter, D. Szablinski, Pfalzwerke AG, The European EGS project at Soultz-sous-Forêts:from extensive exploration to power production,2008 IEEE.
    [27] James A.M, Jon R.J, Jiming Cao, Douglas K.P, Richard N.C, Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an Organic Rankine Cycle, Journal of Energy Resources Technology, 131(2009) 201-208.
    [28] Vincent Lemort, Sylvain Quoilin, Cristian Cuevas Jean Lebrun, Testing and modeling a scroll expander integrated into an Organic Rankine Cycle, Applied thermal engineering, 29 (2009) 3094–3102
    [29] Yari M, Exergetic analysis of various type geothermal power plants, Renewable Energy, 35(2010)112-121.
    [30] A.S. Nafey, M.A. Sharafa. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations, Renewable Energy, 35(2010) 2571-2580
    [31] Sylvain Quoilin , Vincent Lemort and Jean Lebrun, Experimental study and modeling of an Organic Rankine Cycle using scroll expander, Applied Energy 87 (2010)1260–1268
    [32] Yari M, Mahmoudi S M, Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles, Applied Thermal Engineering, 30(2010) 366-375.
    [33] Huijuan Chen,D.YogiGoswami, EliasK.Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renewable and Sustainable Energy Reviews,14 (2010) 3059–3067
    [34] http://www.ecocalc.com/manufacturer_col/0?ep=1&prid
    [35] Ritter Solar product catalog 2004, http://www.zeussolar.si/images/soncni_kolektorji/SONCNI_KOLEKTORJI_KATALOG_2004_nem.pdf
    [36] http://www.linuo-paradigma.com/xinwenzhongxin/meitijujiao/0942465.html
    [37]马光柏,倪超,周玲,太阳能集热器中温应用的热性能试验初探,太阳能学报,5(2010)588-591.
    [38] T.C. Hung a, S.K. Wang, C.H. Kuo, B.S. Pei, K.F. Tsai, A study of organic working fluids onsystem efficiency of an ORC using low-grade energy sources, Energy, 35 (2010) 1403–1411
    [39]王辉涛,王华,低温太阳能热力发电有机朗肯循环工质的选择,动力工程,3(2009)287-291
    [40] Huang TC, Shai TY, Wang SK, A review of Organic Rankine Cycles (ORCs) for the recovery of low-grade waste heat. Energy, 22(1997)661-667
    [41] Hung TC, Waste heat recovery of organic Rankine cycle using dry fluids. Energy conversion and management, 42 (2001)539-553
    [42]郑浩,汤珂,金滔,王金波,徐立俊,项靖麒,有机朗肯循环工质研究进展,能源工程,(2008)5-11
    [43] Bo-Tau Liu, Kuo-Hsiang Chien, Chi-Chuan Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery, Energy, 29(2004)1207-1217.
    [44] Bahaa Saleh, Gerald Koglbauer, Martin Wendland, Johann Fischer, Working fluids for low-temperature organic Rankine cycles, Energy, 32 (2007)1210-1221.
    [45] H.D.Madhawa Hettiarachchi, Mihajlo Golubovic, William M.Worek, Yasuyuki Ikegami, Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources, Energy, 32 (2007)1698-1706.
    [46]顾伟,翁一武,王艳杰,翁史烈.低温热能有机物发电系统热力分析.太阳能学报,29(2008)608-612.
    [47] G.Angelno, Piero C.Paliano. Organic Rankine cycles (ORCs) for energy recovery from molten carbonate fuel cells. Energy Conversion Engineering Conference and Exhibit, (2000) 1400-1409.
    [48] U. Desideri,G. Bidini. Study of possible optimization criteria for geothermal power plants [J]. Energy Conversation Management, 38(1997)1681-1691.
    [49] V. Maizza, A. Maizza, Unconventional working fluids in organic Rankine-cycles forwaste energy recovery systems, Applied thermal engineering, 21(2001)381-390.
    [50] W.C. Andersen, T.J. Bruno,Rapid Screening of Fluids for Chemical Stability in Organic Rankine Cycle Applications,Ind. Eng. Chem. Res. 44(2005)5560-5566
    [51] D. Manolakosa, G. Papadakis, Essam Sh. Mohamed, S. Kyritsis,K. Bouzianas, Design of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination ,Desalination, 183 (2005) 73–80
    [52] B.F. Tchanche, Gr. Lambrinos, A. Frangoudakis, G. Papadakis,Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system, Applied Energy, 87 (2010) 1295–1306.
    [53] A.Borsukiewicz-Gozdur, W.Nowak Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle. Energy, 32(2007) 344-352
    [54] Yanagisawa, T., M. Fukuta, Y. Ogi, T. Hikichi, Performance of an oil-free scroll-type airexpander. Proc. Of the ImechE Conf. Trans. On compressors and their systems, (2001)167-174
    [55] Zanelli R., D. Favrat, Experimental Investigation of a Hermetic Scroll Expander-Generator, Proceedings 12th Internnational Compressor Engineering Conference at Purdue: (1994)459-464
    [56] Badr O., Probert D., O’Callaghan P. Multi-Vane Expanders as Prime Movers in Low-Grade Energy Engines, Proc. Inst. Mech. Eng., Part A, 200(1986)117–125.
    [57] Yamamoto T, Furuhara T, Arai N, Mori K. Design and testing of the Organic Rankine cycle, Energy, 26(2001)239–51.
    [58] James A.M, Jon R.J, Jiming Cao, Douglas K.P, Richard N.C. Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an Organic Rankine Cycle, Journal of Energy Resources Technology, 131(2009),012201-8
    [59]黄翔超,有机工质双循环螺杆膨胀机系统研究,天津大学硕士学位论文,2006, pp:2-3
    [60] R.S.Sprankle. Electrical power generating systems. US Pat. 3,751,673, August 1973.
    [61] Elliott, D.G. Theory and tests of two-phase turbines. Publication 81-105, Jet Propulsion Laboratory, May 1982
    [62] R.F.Steid,Jr.H.Weiss,J.E.Flower,Performance Characteristics of the Lysholm Engine as Tested for Geothermal Power Applications in the Imperial Valley, Journal of Engineering for Power, 104(1982) 34~38
    [63] Swearingen, J. S. Flashing fluid runs turboexander. Oil and Gas J, 74(27), 70-71, 5 July 1976.
    [64] Taniguchi, H, Giedt, W. H, Kudo, K, Kasahara, K, Ohta, J and Kawamura, K. Energyconserving heat pump-boiler systems for district heating. Proceedings of Eighteenth Intersociety Energy Conversion Conference, 4(1983)1862-1868.
    [65] Taniguchi, H, Kudo, K, Giedt, W. H, Park, I and Kumazawa, S. Analytical and experimental investigation of two-phase flow screw expanders for power generation. Trans ASME, J. Engng for Gas Turbines and Power, 110, 1988.
    [66] T.Kaneko, N.Hirayama, Study on Fundamental Performance of Helical Screw Expander, Bulletin of JSME, 28(1985)243~245
    [67] http://www.opcon.se/web/Opcons_ORC-system_2.aspx
    [68]胡亮光,吕灿仁.用全流发电系统开发我国藏滇地热资源.新能源, 4(1994)10-11
    [69]柯文,基于有机朗肯循环的铝电解槽烟气余热发电技术研究,中南大学硕士学位论文,2009, pp:4-5.
    [70] www.jxhdep.com
    [71]葛新石叶宏,复合抛物聚光器(CPC)特性,太阳能,4(2001)20-21
    [72] Winston R. Solar concentrators of novel design. Solar Energy, 16(1974)89–95.
    [73] Rabl A., O’Gallagher J, Winston R. Design and test of non evacuated solar collectors withcompound parabolic concentrators, Solar Energy, 25(1980)335–351
    [74] Eames P C,Norton B.Detailed parameric analyses of heat transfer in CPC solar energy collectors, Solar Energy, 50(1993)321—338.
    [75] Eames P C,Norton B.Validated,unified model for optics and heat transfer in line-axis concentrating solar energy collectors, Solar Energy, 50(1993)339—355.
    [76] Eames P C,Norton B, Thermal and optical consequences of the introduction of baffles into compound parabolic concentrating solar energy collector cavities, Solar Energy, 55(1995)139—150.
    [77] R Oommen ,S J ayaraman. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses - oversized reflector, Energy Conversion and Management , 42(2001) 1379-1399.
    [78] R.Oommen , S J ayaraman, Development and performance analysis of compound parabolic solar concentrators with reduced gap losses -’V’groove reflector, Renewable Energy, 27(2002)259-275.
    [79]袁胜利,杨从明.用于发电的太阳能聚光热管集热器.节能, 8(2002)14-17.
    [80]赵玉兰,张红,战栋栋,庄骏,CPC热管式真空管集热器开发及其传热分析,石油化工设备,4(2006)28-31
    [81] T.S.Saitoh. Proposed solar rankine cycle system with phase change steam accumulator and CPC solar collector, 2002 37th Intersociety Energy Conversion Engineering Conference (IECEC), Paper No. 20150
    [82] T.S Saitoh, Kato, J, Yamada, N. Advanced 3-D CPC solar collector for thermal electric system, Heat Transfer-Asian Research , 35(2006)323-35
    [83] Frank Buttinger, Thomas Beikircher, Markus Proll, Wolfgang Scholkopf, Development of a new flat stationary evacuated CPC-collector for process heat applications, Solar Energy, 84 (2010) 1166-1174.
    [84] Ulf Herrmann, Bruce Kelly, Henry Price, Two-tank molten salt storage for parabolic trough solar power plants, Energy, 29(2004)883-893.
    [85] Mohammed M.Farid, Amar M.Khudhair, Siddique Ali K.Razack, Said Al-Hallaj. A review on phase change energy storage: materials and applications. Energy Conversion and Management, 45(2004)1597-1615
    [86] H.Kaikiuchi, M.Yamazaki, M.Yabe, S.Chinhara, Y.Terunuma, Y.Sakata, T.Usami, A study of erythritol as phase change material, IEA Annex10-PCMs and Chemical Reactions for Thermal Energy Storage 2nd Workshop, November 11-13,1998, Sofia, Bulgaria.
    [87] Murat Kenisarin, Khamid Mahkamov, Solar energy storage using phase change materials, Renewable & Substainable energy reviews, 11 (2007)1913-1965.
    [88] Nordquist, Josh.Use of small, sub 1 MW Organic Rankine Cycle power systems and lowtemperature resources.Geothermal Resources Council Annual Meeting 2009, Geothermal 2009
    [89] Marco Astolfi,Luca Xodo,Matteo C.Romano, Ennio Macchi,Technical and economical analysis of a solar–geothermal hybrid plant based on an Organic Rankine Cycle, Geothermics,doi:10.1016/j.geothermics.2010.09.009
    [90] ElectraTherm Inc, www.enerji.com.au/pdf/Twin_Screw_Compressors.pdf
    [91]钱梅林,付文杰,李淑芳,李光祥,河北南网排灌用电调查,电力需求侧管理,4(2007)177-178
    [92] T.S.Saitoh, Proposed solar rankine cycle system with phase change steam accumulator and CPC solar collector, 2002, 37th Intersociety Energy Conversion Engineering Conference (IECEC), Paper No. 20150
    [93] A.Der Minassians, K.H.Aschenbach, S.R.Sanders, Low-cost distributed solar-thermal-electric power generation. Proceedings of SPIC, 5158(2004)89-98
    [94] Lourdes Garcia-Rodriguez, Julian Blanco-Galvez, Solar-heated Rankine cycles for water and electricity production: POWERSOL project, Desalination, 212(2007)311-318
    [95] S.B. Riffat, X. Zhao. A novel hybrid heat pipe solar collector/CHP system—Part 1: System design and construction, Renewable Energy, 29 (2004) 2217–2233.
    [96] S.B.Riffat, X.Zhao, A novel hybrid heat-pipe solar collector/CHP system-Part II: theoretical and experimental investigations, Renewable Energy, 29(2004)1965-1990
    [97] W. Yagoub, P. Doherty , S.B. Riffat, Solar energy-gas driven micro-CHP system for an office building, Applied Thermal Engineering, 26(2006)1604-1610.
    [98] X.D. Wang, L. Zhao, J.L. Wang, W.Z. Zhang, X.Z. Zhao and W. Wu, Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa, Solar Energy, 84 (2010)353–364.
    [99] X.D. Wang, L. Zhao, J.L. Wang, Experimental investigation on the low-temperature solar Rankine cycle system using R245fa, Energy Conversion and Management, 52 (2011) 946–952.
    [100]张文征,赵力.太阳能低温热发电系统仿真.中国工程热物理学会工程热力学与能源利用学术会议.2008,天津.
    [101]顾伟翁一武王艳杰翁史烈,低温热能有机物发电系统热力分析,太阳能学报, 29(2008)608-612.
    [102] Gang Pei, Jing Li, Jie Ji, Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle. Applied Thermal Engineering, 30(2010) 998–1004.
    [103] Gang Pei, Jing Li, Jie Ji. Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units , Renewable Energy , 2011. doi:10.1016/j.renene.2011.02.008
    [104] Jing Li, Gang Pei, Jie Ji. Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas. Applied Energy, 87(2010) 3355–3365.
    [105] Gang Pei, Jing Li,Yunzhu Li, Dongyue Wang,Jie Ji. Construction and dynamic test of a small scale Organic Rankine Cycle, Energy, 2011, doi 10.1016/j.energy.2011.03.010.
    [106] Jing Li, Gang Pei, Yunzhu Li, Jie Ji, Novel design and simulation of a hybrid solar electricity system with Organic Rankine Cycle and PV cells. International Journal of Low Carbon Technology, 5(2010)223-230.
    [107] Gang Pei, Li Yunzhu, Ji Jie, Performance evaluation of a micro turbo-expander for application in low-temperature solar electricity generation,Journal of Zhejiang University-SCIENCE A, 12(2011)207-213
    [108] Gang Pei, Jing Li, Jie Ji. Working Fluid Selection for Low Temperature Solar Thermal Power Generation with Two-Stage Collectors and Heat Storage Units, Solar Collectors and Panels, Theory and Applications, Reccab Manyala (Ed.), ISBN: 978-953-307-142-8, Sciyo, 2010.
    [109] Gang Pei, Yunzhu Li, Jing Li, Jie Ji. An experimental study of a micro high-speed turbine that applied in Organic Rankine Cycle, Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, 10.1109/APPEEC.2010.5449529
    [110] Jing Li, Gang Pei, Li Yunzhu, Ji Jie. Design and performance analysis of low temperature solar thermal electric generation integrated PV cells. Asia-Pacific Power and Energy Engineering Conference APPEEC, 2010, Chengdu.
    [111] Jing Li, Gang Pei, Li Yunzhu, Li Guiqiang, Ji Jie, Performance comparison of organic fluids for an innovative low temperature solar thermal electricity system. 9th International Conference on Sustainable Energy Technologies, 2010.
    [112]裴刚,李晶,季杰.有机工质对太阳能低温热发电效率的影响,太阳能学报, 31(2010)81-587.
    [113]李晶,裴刚,季杰.太阳能有机朗肯循环低温热发电关键因素分析,化工学报, 60(2009)825-831.
    [114]刘灵芝,李戬洪,复合抛物面聚光器(CPC)光学分析研究,能源技术,27(2006)52-57.
    [115]郑飞,李安定,一种新型复合抛物面聚光器,太阳能学报,25(2004)663-665.
    [116]张红,用低沸点工质的朗肯循环(ORC)方法回收低位工业余热,节能,11(2004)22-25
    [117]陈则韶,高等工程热力学,高等教育出版社, 2008, pp: 184-185.
    [118] P. J. Mago, K. K. Srinivasan, L. M. Chamra and C. Somayaji.An examination of exergy destruction in organic Rankine cycles,Int. J. Energy Res. 32(2008)926–938
    [119] Florian Heberle, Dieter Brüggemann.Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation, Applied Thermal Engineering, 30 (2010) 1326-1332.
    [120] William Stine, Michael Geyer. Power from the sun, Solar Energy Research Institute, Solar Technical Information Program (U.S.), http://www.powerfromthesun.net/Chapter6/Chapter6.htm
    [121]Pedro J. Mago, Louay M. Chamra, Kalyan Srinivasan, Chandramohan Somayaji. An examination of regenerative organic Rankine cycles using dry fluids. Applied Thermal Engineering, 28 (2008)998–1007
    [122] H.Ibrahim Acar, Second law analysis of the reheat-regenerative Rankine cycle, Energy conversion and management, 38(1997)647-657.
    [123] You Ying, Eric J. Hu. Thermodynamic advantages of using solar energy in the regenerative Rankine power plant. Applied thermal engineering, 19(1999)1173-1180
    [124] You Ying, Eric J. Hu. A medium-temperature solar thermal power system and its efficiency optimisation. Applied thermal engineering, 22(2002)357-364
    [125] F.P.Incropera: D.P.Dewitt; T.LBergman; A.S.Lavine. Fundamentals of Heat and Mass Transfer(传热和传质基本原理). Ge Xinshi(葛新石); Ye Hong(叶宏), trans.6th ed. Chemistry Industry Press(化学工业出版社),2007, pp:318-318
    [126] Wang H, Toubler S. Distributed and non-steady-state modeling of an air cooler[J]. International Journal of Refrigeration, 1994,14(2):98-111.
    [127] Mobil series, Lubricant properties calculator, www.xlrotor.com/Lubricant_properties_calculator.XLS
    [128] Murat Kenisarin, Khamid Mahkamov, Solar energy storage using phase change materials, Renewable & Sustainable Energy Reviews, 11(2007)1913-1965.
    [129] http://www.fiz-chemie.de/infotherm/servlet/infothermSearch
    [130] Incropera FP, Dewitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer. Ge Xinshi; Ye Hong, trans.6th ed. Chemistry Industry Press (Chinese).2007, pp:348-348.
    [131] Murat Kenisarin, Khamid Mahkamov. Solar energy storage using phase change materials, Renewable & Sustainable Energy Reviews, 11(2007)1913-1965.
    [132] Kern J.E.C. Combined photovoltaic and thermal hybrid collector system. Proceedings of the13th IEEE Photovoltaic Specialists, Washington DC, USA, 1153-1157
    [133] Bergene .T, Lovvik.M. Model calculations on a flat-plat solar heat collector with integrated solar cells, Solar Energy, 55(1995)453-462.
    [134] D.Mills. Advances in solar thermal electric technology, Solar Energy, 76(2004)19–31.
    [135] David Meneses-Rodriguez, Paul P.Horley, Jesus Gonzilez-Hernhdez, Yuri V. Vorobiev, Sergey A. Kostylev, High Temperature Operation of Photovoltaic Solar Cells in One- and Two-Stage Systems. 2004 1st International Conference on Electrical and Electronics Engineering, 305-309
    [136] Dan Ton, Joe Tillerson, Thomas McMahon, Michael Quintana, Kenneth Zweibel, Accelerated Aging Tests in Photovoltaics Summary Report. U.S. Department of Energy Energy Efficiency and Renewable Energy, 2007.7
    [137]沈辉.太阳能电池封装技术的现状与发展建议.新材料产业, 5(2008)16-20.
    [138]徐雪青,沈辉,邓润坤,黎宪静,若干太阳电池封装用粘接剂的耐老化性能评价, 25(2004)438-442.
    [139] Incropera FP, Dewitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer. Ge Xinshi; Ye Hong, trans.6th ed. Chemistry Industry Press (Chinese), 2007, pp: 401-401.
    [140] F.Kreith, Principles of Heat Transfer, 3rd edition. Intext Educational, New York, 1973.
    [141] R.B. Peterson, H. Wang, T. Herron, Performance of small-scale regenerative Rankine power cycle employing a scroll expander, Proc. IMechE, Part A: J. Power Energy, 222(2008)271-282.
    [142] D. Manolakos, G. Kosmadakis, S. Kyritsis, G. Papadakis, Identification of behaviour and evaluation of performance of small scale, low-temperature Organic Rankine Cycle system coupled with a RO desalination unit, Energy, 34 (2009) 767–774.
    [143] H. Liu, G. Qiu, Y. Shao, F. Daminabo, S.B. Riffat, Preliminary experimental investigations of a biomass-fired micro-scale CHP with organic Rankine cycle, Int. J. Low-Carbon Tech.., 2 (2010) 81-87.
    [144] N.Yamada, T. Minami, M.A. Mohamad, Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery, Energy, 36 (2011) 1010-1017.
    [145] G. Liu, Y. Zhao, L. Li, P. Shu, Simulation and experiment research on wide ranging working process of scroll expander driven by compressed air, Appl. Therm. Eng.,30 (2010) 2073-2079
    [146] M. Kane, D. Larrain, D. Favrat, Y. Allani. Small hybrid solar power system, Energy, 28 (2003) 1427–1443.
    [147] Churchill S.W, H.H.S.Chu. Correlating equations for laminar and turbulent free convection from a horizontal cylinder, International Journal of Heat Mass Transfer, 18(1975) 1323-1329.
    [148]http://www.grundfos.dk/web/homevn.nsf/GrafikOpslag/IO_NB.NBG/$File/NB%20NBG.pdf
    [149] http://www.engineeringtoolbox.com/radiation-heat-emissivity-aluminum-d_433. html.
    [150] http://www.wjw.cn/companyprofile/mbr100105220451002234/aboutus.xhtml
    [151] Y. Ribaud. Overall thermodynamic model of an ultra micro turbine, J. Therm. Sci., 4 (2004) 297-301.
    [152] W.H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill Book Co., Inc., New York, USA, 1954.
    [153] H. Schlitchling, Boundary Laryer Theory, 6th ed., McGraw-Hill Book Co., Inc., New York, USA, 1968.
    [154] K. Jodlbauer, Temperature and velocity distribution over a heating cylinder, Engineering Research, 4 (1933) 157-172. (In German)
    [155] M.M. Yovanovich, Recent developments in thermal contact, gap and joint conductance theoriesand experiment, in C.L.Tien, V.P.Carey, and J.K.Ferrel, Eds., Heat Transfer, Hemisphere, New York, 1986, pp. 35-45
    [156] Shanghai Pengding Co.,Ltd, www.pengdingsy.com/cpzs.aspx,2011.02.27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700