用户名: 密码: 验证码:
太阳能温差发电及传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源需求的不断增长,全球性的能源危机和环境恶化问题日益突出。倡导低碳经济运行,加大对新能源及绿色环保技术的开发利用已成为社会的强烈要求。太阳能作为可再生绿色能源,具有储量大、清洁环保、利用经济等优点,被普遍认为是理想的新能源。太阳能发电及相关技术研究是目前各国关注的焦点。温差发电是利用热电转换材料将热能直接转化为电能的一种能量转化技术,在利用太阳能等低品位热源上有着明显优势。太阳能温差发电把太阳辐射热能直接转换为电能,具有无运动部件、无噪音、无磨损、无污染物排放、体积小、重量轻、可靠性高等特点,是绿色环保的发电方式。
     利用太阳能发电,人们的研究多集中于太阳能光伏发电,基于温差发电技术的太阳能发电方式的研究则比较少。本文以温差发电理论及热传递机理为基础,采用理论分析、数学建模和实验测试相结合的方法,对一种新型太阳能温差发电系统的性能进行了研究。主要研究工作包括以下几个方面:
     1、在对温差发电基本原理基础上,推导出温差发电的性能参数及其计算公式,探讨了影响温差发电性能的因素,分析了电偶臂的几何尺寸、接触效应、模块内阻对温差发电性能的影响机理,为太阳能温差发电的结构设计和优化提供理论依据。
     2、搭建了温差发电的性能测试平台,通过实验对商用温差发电组件进行了测试,深入研究了单个温差发电组件的输出特性,并以此为基础对其串、并联的输出特性作了进一步探讨。实验结果表明,该温差发电组件的开路电压随着冷热端温差的增大近似呈线性增大趋势,当负载电阻接近发电器总内阻时可获得相应的最大输出功率。温差发电组件作为电源,其串、并联性能和普通直流电源的串、并联基本相同,为实现温差发电系统的大功率输出提供了有益的结论。
     3、对于选定的温差发电组件,外部传热的不可逆性对温差发电系统的性能有显著的影响。本文根据传热学理论,采用热网络分析法对温差发电的传热特性进行了理论分析与实验研究。研究结果表明,温差发电组件冷端散热热阻是整个温差发电器的关键热阻,当热源热流量恒定,与空气自然对流相比,采用强制风冷和水冷散热方式能明显降低发电器冷端的热阻和温度,发电器的输出功率可提高20%~30%,随着热源热流量的增大,这种改善的效果越明显。
     4、根据复合抛物面聚光器的光学原理,设计并搭建了复合抛物面太阳能温差发电装置。对该装置的聚光性能与电输出性能进行了实验研究,结果表明该集热器集热温度均匀,集热板最高温度与最低温度之差不超过3℃。该温差发电装置的开路电压随着冷热端温差的增大而增大,当负载电阻与发电模块总内阻相匹配时输出功率最大。当热端平均温度基本稳定在80℃,冷却水流量为340 L/h时,当负载电阻接近130 ?时获得36个温差发电组件串联后的最大输出功率为7.1 W。
With the high-speed develoment of industrialization, global environmental deterioration and energy have become increasingly prominent. Governments of all countries have paid attention to research and usage of green environmental protection technology. The solar energy, as a renewable energy, has advantages such as abundance, economy and non-pollution, and attracts lots of attention. Thermoelectric generation can directly conver the solar power to electricity power. It has the advantages of high reliability, non-pollution and peaceful operations with immovable parts. It is a green and environmentally friendly technology and has a distinct advantage in the use of solar energy.
     Solar photovoltaic and solar thermal power have been discussed for a long time. The research on solar thermoelectric generation is few. So it is necessary to conduct a much further study on it. Based on the TEG theory, the electricity generating and heat transer performance are investigated by the means of theoretical analysis, mathematical modeling and experimental testing in this paper. The main works and conclusions include the following:
     (1) The performance parameters and their calculation formulas were given based on the theoretical derivation. The working performance of thermoelectric generator is analyzed on the base of size of TE couple, contact effect and internal resistance. This relationship provides a foundation for optimizating output power and conversion efficiency.
     (2) The platform for testing the performance of thermoelectric generator has been built. Further study was done through experiments on the output characteristics of single thermoelectric generation module. When the load resistance is close to the total resistance of TEG, the maximum output is obtained. Based on the output characteristics of single power module, futher study was done on two modules with series connection and parallel connection. The result shows that the characteristics of two modules with series and parallel connection are the same as DC power supply. Some useful conclusions about high-power output is obtained.
     (3) For the selected thermoelectric generator, the external heat transfer has a significant impact on the performance of the TEG. Based on heat transfer theory, the heat transfer characteristics of the TEG was theoretical and experimental researched by the means of thermal network analysis. The results inducat that the thermal resistance on the cold side is the key thermal resistance. When the heat flux of heating source is constant, forced air cooling and water cooling can significantly reduce the thermal resistance or temperature of cold side, and the output power can be increased by 20% to 30% compared with the air natural convection. The larger heat flux of heating power is, the more significant the improvement is.
     (4) The Compound Parabolic Concentrator (CPC) was designed based on the optical principle. The performance of the solar collecting and the power output performance of the TEG were experimental investigated. The results show that the temperature of the collector is uniform. The maximum temperature difference is no more than 3℃. The open circuit voltage of the device increased with the temperature difference between the cold side and hot side. When the load resistance matches the total internal resistance, the maximum output power can be obtained. When the average temperature of hot side reaches 80℃, and the cooling water flow is 340 L/h, we can obtain the maximum output power of 7.1 W with the matching load resistor of 130 ?.
引文
[1]梁荣光,简弃非,翁仪壁等.能源的开发利用与节能[J].内燃机, 2001(6): 32-36
    [2]钱伯章.节能减排[M].北京:科学出版社. 2008: 1-104
    [3]李文彦. 21世纪前期我国能源战略的若干问题[J].经济地理, 2000, 20(1):7-12
    [4]徐仁武.中国能源形势与节能技术发展动态[R].北京:国家电网公司动力经济研究中心, 2008
    [5]徐国想,许兴友,邓先和等.我国能源利用及能源战略的思考[J].化工生产与技术. 2006, 13(3): 62-64
    [6]高敏,张景韶, D. M. ROWE.温差电转换及其应用[M].北京:兵器工业出版社, 1996
    [7] S. B. Riffat, Xiao Li Ma. Thermoelectric:a review of present and potential application[J]. Applied thermal engineering, 2003, 23:913-935
    [8]黄飞.太阳能利用前景广阔[J].能源技术. 2002, 2: 9-11
    [9]中国投资咨询网. 2006年中国太阳能光伏发电产业分析及投资咨询报告[R].深圳:中国投资咨询网, 2006
    [10]刘世锦.中国2020年能源面临的挑战和发展目标.中国发展高层论坛. 2003
    [11]董慧芹,蒋栋,孟亚君等.我国节能减排与清洁发展机制研究[J].节能技术. 2009, 27(6):546-549
    [12] Rowe D. M. Thermoelectrics, an environmentally- friendly source of electrical power[J]. Renewable Energy, 1999, 16: 1251 - 1256
    [13]陈德明,徐刚.太阳能热利用技术概况[J].物理, 2007 (11): 840-845
    [14] Paul. H. Egli. Thermoelectricity [M]. London, 1956
    [15] HEIKES-URE. Thermoelectricity: Science and Engineering [M]. London Press, 1995
    [16]钟广学.半导体制冷器件及其应用[M].北京:科学出版社, 1989
    [17]王凤跃.温差电——一门占老而又年轻的科学[J].电子文摘报, 2002, (5): 274-276
    [18]武桂玲,郁济敏.温差发电器热电材料的研究进展[J].电源技术, 2009, 33(8): 740-710
    [19]张建中编著.温差电技术[M].中国电子科技集团公司第十八研究所. 2008
    [20]屈建,李茂德,乐伟等.半导体温差发电器的工作性能优化[J].低温工程, 2005,(02): 20-23
    [21]褚泽.废热半导体温差发电技术的研究与开发[D].重庆:重庆大学, 2008
    [22]顾伟,翁一武,曹广益,等.低温热能发电的研究现状和发展趋势[J].热能动力工程, 2007, 22(2): 115-119
    [23]郑艺华,马永志.温差发电技术及其在节能领域的应用[J].节能技术, 2006, 24(2): 142-146
    [24] Rida Y Nuwayhid, Alan Shihadeh, Nesreen Ghaddar. Development and testing of a domestic woodstove thermoelectric generator with natural convectioncooling [J]. Energy Conversion and Management, 2005, 46: 1631-1643
    [25] Rinehart G. H. Design characteristics and fabrication of radioisotope heat source for space missions [J]. Progress in nuclear energy, 2001,39:305-319
    [26] Min. G, D. M. Rowe, Kontostavlakis K. Thermoelectric figure-of-merit under large temperature differences [J]. Appl. Phys, 2004, 37(8): 1301-1304
    [27] J. Esarte, G. Min, D. M. Rowe. Modelling heat exchangers for thermoelectric generator [J]. Power Sorces, 2001, 93:72-76
    [28] Astrain D, Vian J G, Martinez A, Rodriguez A. Study of the in?uence of heat exchangers’thermal resistances on a thermoelectric generation system [J]. Energy, 2010, 35: 602-610
    [29] Douglas T. Crand, Gregory S, Jackson. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery [J]. Energy Conversion & Mansgement, 2004,45: 4565-1582
    [30]刘宏,王继扬.半导体热电材料研究进展[J].功能材料, 2000, 21 (2): 345-350
    [31]陈金灿,严子俊.半导体温差发电器性能的优化分析[J].半导体学报, 1994, 15(2): 123-129
    [32]吴金清,陈金灿,严子俊.半导体温差发电器的输出功率[J].厦门大学学报, 1996, 35(2) : 210-213
    [33]潘玉灼,林比宏.结构参数与不可逆性对热电发电器性能的影响[J].泉州师范学院学报(自然科), 2006, 24(6) : 13-18
    [34]林比宏.太阳能半导体温差发电器的输出功率[J].泉州师范学院学报, 2002, 20(6) : 20-25
    [35]林比宏,陈晓航,陈金灿.太阳能驱动半导体温差发电器性能参数的优化设计[J].太阳能学报, 2006, 27(10) : 1021-1026
    [36]周颖慧.新型半导体温差发电器的优化设计[J].厦门大学学报(自然科学版), 2001, 40 (4) : 882-887
    [37]贾磊,陈则韶,胡凡,孙炜.半导体温差发电器件的热力学分析[J].中国科学技术大学学报, 2004, 34(6): 684-687
    [38]潘玉灼,林比宏.太阳能驱动多单元半导体温差发电器的性能分析[J].泉州师范学院学报(自然科学), 2004, 22(4): 21-25
    [39]贾磊,胡凡,陈则韶,孙炜.低温下半导体热电材料发电性能的初步研究[J].太阳能学报, 2004,25 (4) : 443 - 447
    [40] Gao Min, D. M. Rowe. Improved model for calculation the coefficient of performance of a Peltier module [J]. Energy Conversion & Management, 2000, 41: 163-171
    [41] X. C. Xuan. Inverstigation of thermal contact effect on thermoelectric coolers [J]. Energy Conversion and Management, 2003, 44(3): 399-410
    [42]屈健.低温差下半导体温差发电器设计与性能研究[D].上海:同济大学, 2006
    [43]宋瑞银,李伟,杨灿军等.微小型热电发电器建模及优化设计研究[J].太阳能学报,2006,27(6):554-558
    [44]郑文波,王禹,吴知非,黄志勇,周世新.温差发电器热电性能测试平台的搭建[J].实验技术与管理, 2006, 23(11): 62-65
    [45]栾伟玲,涂善东.温差电技术的研究进展[J].科学通报, 2004, 49(11): 1011-1019
    [46] Rinehart G H. Design characteristics and fabrication of radioisotope heat sources for space missions [J]. Progress in Nuclear Energy, 2001, 39: 305-319
    [47] Tibor S. Balint, Comparison of Power System Options Between Future Lunar and Mars Missions [C], International Lunar Conference, 2005: 1-8
    [48] CARNEY H C. Comparison of strontium-90 and plutonium-238 milliwatt thermoelectric generators [A]. 2nd International Symposium on Power from Radioisotopes [C]. Spain: Madrid 1972. 143-163
    [49] Jorge Vazquez, Miguel A. Sanz-Bobi, Rafael Palacios. State of the Art of Thermoelectric Generators Based on Heat Recovered from the Exhaust Gases of Automobiles [J]. Proceedings of ICT, 1999: 474-478
    [50] Kushch A S, Bass J C, Ghamaty Sand Elsener N B. Thermoelectric Develo Pmental Hi-Z Technology [J]. Proceedings of ICT, 2001,422-430
    [51]徐冰.铝电解槽壁余热温差发电的实验研究[D].长沙:中南大学, 2010
    [52] Kolay P K, Singh D N. Application of coal ash in fluidized thermal beds [J]. Mater in Civil Eng, 2002, 14:441-444
    [53] Toshinori Ota, Kouichi Fujita, Susumu Tokura,et al.Development of Thermoelectric Power Generation System for Industrial Furnaces [J].2006 International Conference on Thermoelectric
    [54]任红轩.热电材料在能源中的应用[J].新材料产业, 2006, (5) : 65 - 67
    [55]陈廷杰.温差电现象及其应用[J].物理, 1965 (9) : 393– 402
    [56] Moghaddas M H, Cobble M H. Experimental and theoretical analysis of a thermoelectric generator [A]. The1st European Conference on Thermoelectrics [C]. Rowe DM , London : Peter Peregrinus Ltd , 1988 : 370– 377
    [57] Maneewan S, Khedari J, Zeghmati B, et al. Investigation on generated power of thermoelectric roof solar collector [J]. Renewable Energy, 2004, 29 (1) : 743 - 752
    [58]张宁.太阳能热电-光电复合发电系统的发电功率与效率模型[D].武汉:武汉理工大学, 2007
    [59]张腾.车用内置式高强度温差发电系统研究[D].广州:华南理工大学, 2010
    [60]赵建云.热水器烟气余热温差发电及系统优化[D].广州:华南理工大学, 2010
    [61]范韬.基于汽车尾气温差发电和太阳能发电的新型车载电源系统.武汉:武汉理工大学. 2010
    [62] Vorobiev Yu, Gonzalez-Hernandez J, Vorobiev P, et al. Thermal-photovoltaic Solar Hybrid System for Efficient Solar Energy Conversion [J]. Solar Energy, 2006(80): 170-176
    [63] Kyono T, Suzuki R O, Ono K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser [J]. IEEE Transactions on Energy Conversion. 2003, 18(01): 330~334
    [64]张韬.铝电解槽侧壁散热温差发电装置设计与仿真油画[D].长沙:中南大学, 2010
    [65]陈允成.半导体温差发电器应用的研究[D].厦门:厦门大学, 2006
    [66] Mateeva N, Niculescu H, Schlenoff J, et al. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypynole[J]. Appl Phys, 1995, 83(6): 3111-3117
    [67] Chen. G, Dresselhaus. M. S, Dresselhaus. G, et al. Recent developments inthermoelectridc materials [J]. Inter. Mater. Rev., 2003, 48: 45-46
    [68]李伟江.低温差下半导体温差发电模块性能分析与实验研究[D].上海:同济大学, 2007
    [69] M. Strasser, R. Aigner, C. Lauterbach, et al., Micromachined CMOS thermoelectric generators as on-chip power supply [J]. Sensors and Actuators, 2004,114:362-370
    [70]龚科.热电发电器及其电源调理系统研究[D].南京:南京航空航天大学, 2007
    [71] Lingen Chen, Jun Li, Performance optimization of a two-stage semiconductor thermoelectric-generator [J]. Applied Energy, 2005, 82: 300-312
    [72]贾磊,胡凡,陈则韶.温差发电的热力过程研究及材料的塞贝克系数测定[J].中国工程科学, 2005, 7(12): 31-34
    [73]钱卫强.低品位热源半导体小温差发电器性能研究[D].大连:大连理工大学, 2006
    [74] Seifert W, Muller E, Snyder G J. Compatibility factor for the power output of a thermo generator [J]. Physical Status Solidi-rapid Research Letters, 2007, 1(6): 250-252
    [75] Redus D M, et al. Evaluation of thermoelectric modules for power generation [J]. Journal of Power Source, 1998: 73
    [76]李伟江,李玉东,腊冬等.低温差下半导体温差发电器(火用)分析[J],能源技术. 2006, 27(05) :198~201
    [77] Cao Y Q, Zhu T J, Zhao X B, et al. Nanostructuring and improved performance of ternary Bi–Sb–Te thermoelectric materials [J]. Appl. Phys. A. 2008, 92(01):321~324
    [78] Choi S.U.S., Zhang Z.G., Yu W., et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters [J], 2001, 79(14): 2252-2254
    [79]任德鹏,贾阳.温差发电器工作特性的数值研究[J].航天器工程, 2008,17(4): 56~61
    [80]潘玉灼.不可逆半导体制冷器和温差发电器性能特性的优化分析[D].厦门:厦门大学, 2007
    [81] M. Chen, S. Lu, B. Liao. On the figure of merit of thermoelectric generators [J]. J Energy Resources Technology, 2005, 127: 37-41
    [82]韩天鹤.小型热电制冷器及温差发电初步研究[D].长沙:湖南大学, 2009
    [83] Lingen Chen, Jianzheng Gong, Fengrui Sun, et al. Effect of heat transfer on the performance of thermoelectric generators [J]. International Journal Thermal Science, 2002, 41: 95-99
    [84] Astrain D, Vian J G, Martinez A, Rodriguez A. Study of the in?uence of heat exchangers’thermal resistances on a thermoelectric generation system [J]. Energy, 2010, 35: 602-610
    [85]张华俊,陈浩,王俊,等.冷、热端温度对半导体热电堆发电性能影响的初步研究[J].太阳能学报, 2001, 22(2): 148-152
    [86] Michael Freunek, Monika Mu Ller, Tolgay Ungan. New physical model for thermoelectric generators [J]. Journal of Electronic Materials, 2009, 38(7): 1214-1220
    [87]杨世铭.传热学(第二版)[M].北京:高等教育出版社, 1987
    [88]胡韩莹,朱冬生.热电制冷技术的研究进展与评述[J].制冷学报.2008,29(05):1-7
    [89]王科.复合抛物面聚光型太阳能电热连用系统性能实验[D].重庆:重庆大学, 2008
    [90]郝俊勇. CPC太阳能集热器的性能研究及凝结水辅助加热系统的分析[D].北京:北京交通大学, 2010
    [91]赵玉兰. CPC热管式真空管太阳能集热器传热特性的研究[D].南京:南京工业大学, 2006
    [92]张晓东.复合抛物面型集热器性能研究[D].西安:西北工业大学, 2006
    [93]刘灵芝,李戬洪,复合抛物面聚光器(CPC)光学分析研究[J].能源技术, 2006, 27(2): 53-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700