用户名: 密码: 验证码:
轻质高强高阻尼Ni-Ti形状记忆合金与复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiTi形状记忆合金因其独特的形状记忆效应、超弹性和优良的力学性能而广泛应用于航空航天、机械工程、生物医学工程和仪器仪表等领域;但在面向造价和运行成本均相对昂贵的航天航空结构和部件及高速回转机械等领域的应用时,面临着苛刻的材料性能和部件轻量化要求。近年来利用不同方法制备的多孔NiTi形状记忆合金因具有小于致密合金的密度但比强度高,有望实现结构轻量化和节省材料以期获得商业化应用。然而,目前制备的多孔NiTi形状记忆合金由于强度相对较低、存储模量低和阻尼能力不高,在航天航空和土木工程等领域的应用仍受到限制;因此,从材料设计和制备方面改善多孔NiTi合金的力学性能和阻尼能力已成为工程应用中的迫切需要。
     本研究以纳米尺度SiC颗粒为增强相并结合NH_4HCO_3低温分解造孔技术,运用粉末冶金梯级烧结法成功制备出轻质高强SiC颗粒增强NiTi合金基形状记忆复合材料(SiC/NiTi),有效地解决了多孔NiTi合金压缩强度低和存储模量小的问题。研究结果表明,制备的多孔SiC/NiTi复合材料孔隙率在25.4~49.7%之间,主要相组成为B19′马氏体相、B2奥氏体相以及NiTi_2、Ni_2Ti和Ni_4Ti_3等微量析出相,采用NH_4HCO_3颗粒造孔剂对多孔SiC/NiTi复合材料的物相组成没有影响,而纳米SiC颗粒对合金相组成有一定影响;多孔SiC/NiTi复合材料在经过若干次压缩训练后可获得稳定的线性超弹性,其形状回复率随SiC颗粒体积分数的增加而减小;纳米SiC颗粒的引入使NiTi合金基复合材料具有较高的压缩强度和等效压缩强度,且强度随SiC体积分数的增加而提高。研究结果还表明,多孔SiC/NiTi复合材料仍具有NiTi合金的马氏体转变特征,并保持多孔NiTi合金的高阻尼特性及较高的存储模量;多孔SiC/NiTi复合材料的内耗值(阻尼能力)随SiC颗粒体积分数的增加的而降低,当SiC颗粒体积分数较小时(3wt.%),多孔SiC/NiTi复合材料仍能具有较高的内耗值或等效内耗值及较高的存储模量。
     采用粉末冶金梯级烧结法成功制备出具有高阻尼能力的多孔TiNiCu形状记忆合金,有效地解决了多孔NiTi二元合金阻尼能力不高的问题。研究结果表明:多孔TiNiCu合金孔隙率在35~40%之间,其孔隙率和孔隙尺寸均随Cu含量的增加而增大,但表观密度则呈降低趋势,其中多孔Ti50Ni30Cu20合金的密度比同类致密Ti50Ni30Cu20合金低38%;多孔TiNiCu合金的压缩强度随Cu含量的增加而下降,在经过若干次循环压缩后多孔TiNiCu合金具有稳定的超弹性。加入Cu元素后TiNi合金的物相组成发生了改变,但Cu含量变化及时效时间的改变对合金的物相组成性质没有影响;在降温和加热过程中,Ti_(50)Ni_(40)Cu_(10)合金中由于出现B2-B19′和B2-B19-B19′两种类型相变的滞后,使合金的相变温度区间较宽,形状回复率下降;而多孔Ti_(50)Ni_(30)Cu_(20)合金仅发生B2-B19相变,使得合金具有较高的形状回复率。研究结果还表明,多孔TiNiCu合金的内耗值(阻尼能力)随Cu含量的增加而增大;多孔Ti_(50)Ni_(30)Cu_(20)合金具有较高的内耗值和等效内耗值,其最大内耗值是多孔Ti_(50)Ni_(50)合金的五倍,而等效内耗值比同类致密TiNiCu合金高37%。随时效时间的延长,多孔TiNiCu合金的压缩强度、形状恢复率和阻尼性能均呈现先增加后下降的趋势。
     采用真空熔炼和水冷吸铸铜模的快速凝固工艺制备出近等原子比NiTi形状记忆合金,并对其显微组织、相变行为、力学性能和阻尼性能进行了研究。研究结果表明:与常规铸态NiTi合金相比较,快速凝固(吸铸)NiTi合金具有小的晶粒尺寸,均匀分布的组织,尤其是具有均匀分布的各种细小析出相;在差热分析(DSC)时降温和加热过程中,快速凝固NiTi合金呈现出较强的相变峰和较窄的相变温度区间;快速凝固NiTi合金的最大内耗值比常规铸态NiTi合金高20%,其在8%应变水平下的形状回复率明显高于常规铸态NiTi合金,而压缩强度则比常规铸态NiTi合金高4%。
NiTi shape memory alloys (SMAs) have attracted significant interests in applications dueto their unique shape memory effect, superelasticity and excellent mechanical performance.These outstanding properties allow commercial applications of NiTi SMAs in the fields ofaerospace, mechanical engineering, biomedical engineering and instrumentation engineeringetc. However, for the materials used to make aerospace/aeronautical structures andcomponents as well as high-speed rotating machines, in which both manufacturing andoperating costs are very high, there is a rigorous requirement for them to be of lightweightand high-performance. In recent decades, porous NiTi SMAs have been extensivelydeveloped through several methods, and they have advantages of low density (or lightweight)and high specific strength, thus show great potential for commercial applications. Thus far,the strength, storage modulus and damping capacity of porous NiTi SMAs fabricated byconventional methods are not satisfactory, and their applications in aerospace/aeronautical andcivil engineering fields have been limited. Therefore, aiming at the above engineeingapplications, there is a great demand in development of porous NiTi shape memory alloyswith enhanced mechanical properties and damping capacity.
     In this thesis study, the pore pre-forming technique by using low-temperature-decomposable NH_4HCO_3powder and the nano-sized SiC reinforcement particle were used tofabricate the porous SiC/NiTi composites by means of the step powder-sintering method. Thefabricated porous SiC/NiTi composites show unique characteristics of lightweight and highstrength, yet still exhibiting the shape memory effect and a steady superelasticity, this hasmade a big step forward in solving the problem of low compressive strength and storagemodulus of porous NiTi alloys. The results show that the porous SiC/NiTi composites exhibitthe porosity ratio in the range of25.4~49.7%and consist of B19′and B2as the main phasestogether with some minor phases such as NiTi_2, Ni_2Ti and Ni_4Ti_3. Use of NH_4HCO_3powderas the space-holder has no effect on phase constituents of porous SiC/NiTi composites, but theaddition of nano-sized SiC particles has some influence on phase constituents of thecomposites. The porous SiC/NiTi composites show steady linear superelasticity after several pre-strain training compression cycles, the shape recovery rate of the composites decreaseswith increasing the fraction of SiC particles. The porous SiC/NiTi composites show highcompressive strength and equivalent compression strength, which increase with increasing thefraction of SiC particles. Moreover, it has been shown that the porous SiC/NiTi compositesstill have martensitic transformation characteristics, yet exhibiting high damping capacity andstorage modulus on a par with that of porous NiTi alloys. The internal friction (or dampingcapacity) of the porous SiC/NiTi composites decreases with increasing the fraction of SiCparticles; in particular the composite with SiC fraction of3wt.%still shows high values ofinternal friction and equivalent internal friction as well storage modulus.
     Furthermore, porous TiNiCu shape memory alloys were successfully fabricated bymeans of the step powder-sintering method, which exhibit much higher damping capcity overthe porous NiTi binary alloys. The results clearly manifest that the porous TiNiCu alloys showthe porosity ratio in the range of35%to40%, and both the porosity and pore-size of thealloys increase while the alloys’ apparent density decreases with increasing Cu content; inparticular, the apparent density of porous Ti_(50)Ni_(30)Cu_(20)alloy is38%lower than that of thedense Ti_(50)Ni_(30)Cu_(20)alloy. The compressiver strength of porous TiNiCu alloys decreases withincreasing Cu content, the alloys’ residual deformation increases with increasing Cu content,the alloys show steady linear superelasticity after several pre-strain training compressioncycles. After adding Cu element into NiTi alloy, the phase constituents of TiNi alloy changedsignificantly, but the addition amount of Cu element in TiNi alloys and the aging time have noinfluence on phase constituents of the alloys. Both on cooling and heating, the porousTi_(50)Ni_(40)Cu_(10)alloy has a wide temperature range of martensitic transformation raised from thehysteresis of both B2-B19′and B2-B19-B19′phase transformations, leading to a decrease inthe shape recovery rate, while the porous Ti_(50)Ni_(30)Cu_(20)alloy shows high shape recovery ratecorresponding to a narrow temperature range of martensitic transformation which is B2-B19one-step transformation. It has also been shown that the internal friction of porous TiNiCualloys increases with increasing Cu content. The porous Ti_(50)Ni_(30)Cu_(20)alloy shows highinternal friction and equivalent internal friction, with the maximum internal friction valuebeing five times higher than that of porous Ti_(50)Ni_(50)alloy and the maximum equivalentinternal friction value being37%higher than that of the dense TiNiCu alloy. Moreover, it has been shown that with increasing thermal aging time, the compressive strength, shape recoveryrate and internal friction value of porous TiNiCu alloys increase initially and then decreasegradually.
     In addition, the near-equiatomic NiTi shape memory alloy was fabricated by rapidsolidification process through vacuum arc melting followed by vacuum suction casting inwater cooled thick copper-mould. The alloy’s microstructure, martensitic transformationbehavior, mechanical properties and damping performance were characterized systematically.The results show that the rapidly solidified (or suction cast) NiTi alloy shows much finergrains and homogeneous microstructure, in particular a uniform distribution of various fineprecipitates, compared to the conventional cast one. In the differential scanning calorimetry(DSC) curves both on cooling and heating, the rapidly solidified NiTi alloy exhibits muchstronger and narrower endothermic and exothermic peaks during the martensitic transformation.Moreover, under a strain level of8%the suction cast NiTi alloy shows a significantimprovement over the conventional cast one, in terms of possessing higher deformationrecovery rates and displaying the increased compressive strength and damping capacity by4%and20%respectively.
引文
[1] lander A. An electrochemical investigation of solid cadmium-gold alloy [J]. Journal ofthe American Chemical Society,1932,54(10):3819-3833
    [2] Greninger A.B., Mooradian V.G. Strain transformation in metastable beta Copper-Zinc andbeta Copper-Ti alloys [J]. Transaction of AIME,1938,128:337-369
    [3]舟久保,熙康编,千东范译.形状记忆合金[M].北京:机械工业出版社,1992
    [4] Chang L.C., Read T.A. Plastic deformation and diffusionless phase changes in metals-thegold-cadmium beta phase [J]. Journal of Metals,1951,189:47-52
    [5] Burkard M.W., Read T.A. Diffusionless phase change in the indium-thallium system [J].Transactions of AIME,1953,197:1516-1523
    [6] Buehler W.J., Gilfrich J.V., Wiley R.C. Effect of low temperature phase changes on themechanical properties of alloys near composition TiNi [J]. Journal of Applied Physics,1963,34(5):1475-1477
    [7]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993
    [8] Otsuka K, Wayman C.M. Shape memory materials [M]. Cambridge: CambridgeUniversity Press,1998
    [9]徐祖耀.形状记忆材料[M].上海:上海交通大学出版社,2000
    [10] Liu Y.N., Mccormick P.G. Factors influencing the development of two-way shapememory in NiTi [J]. Acta Metallurgica et Materialia,1990,38(7):1321-1326
    [11] Ortin J., Planes A. Thermodynamics of thermoelastic martensitic transformations [J].Acta Metallurgica,1989,37(5):1433-1441
    [12] Khalil-Allafi J., Ren X., Eggeler G. The mechanism of multistage martensitictransformations in aged Ni-rich NiTi shape memory alloys [J]. Acta Materialia,2002,50(4):793-803
    [13]郑玉峰,赵连城.生物医用镍钛合金[M].北京:科学出版社,2004
    [14] Nishida M., Wayman M., Honma T. Precipitation Processes in Near-Equiatomic TiNiShape Memory Alloys [J]. Metallurgical transaction,1986, A17(9):1505-1515
    [15] Saburi T., Nenno S., Fukuda T. Crystal-structure, composition and morphology of aprecipitate in an aged Ti-51at.%Ni shape memory alloy [J]. Journal of the Less CommonMetals,1986,125(3):157-161
    [16] Nishida M., Wayman C.M. Phase transformations in Ti2Ni3precipitates formed in agedTi-52at.%Ni [J]. Metallurgical Transactions,1987,18(6):785-799
    [17] Myers E.J., Davies F.C. Adirect graphical method for the precise determination of latticeparameters of tetragonal or hexagonal crystals [J]. Acta Crystallographica,1961,14(6):194-197
    [18] Liang C, Rogers C.A. Design of shape memory alloy actuators [J]. Journal of IntelligentMaterial Systems and Structures,1997,8(4):303-313
    [19]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002
    [20] Lin H.C., Wu S.K., Yeh M.T., et al. Damping characteristics of TiNi shape memoryalloys [J]. Metallurgical and Materials Transactions,1993,24(10):2189-2194
    [21] Aiken I.D., Nims K.D., Whittaker A.S., et al. Testing of passive energy dissipationsystems [J]. Earthquake Spectra,1993,9(3):335-370
    [22] Van Humbeeck J. Damping capacity of thermoelastic martensite in shape memory alloys[J]. Journal of Alloys and Compounds,2003,355(1-2):58-64
    [23] Miyazaki S., Otsuka K. Development of shape memory alloys [J]. ISIJ International,1989,29(5):353-377
    [24] Li B.Y., Rong L.J., Li Y.Y. Porous NiTi alloy prepared from elemental powder sintering[J]. Journal of Materials Research,1998,13(10):2847-2851
    [25] Li Y.H., Rong L.J., Li Y.Y. Pore characteristics of porous NiTi alloy fabricated bycombustion synthesis [J]. Journal of Alloys and Compounds,2001,325(1-2):259-262
    [26] Zhang Y.P., Li D.S., Zhang X.P. Gradient porosity and large pore size NiTi shapememory alloys, Scripta Materialia,2007,57(11):1020-1023
    [27] Li D.S., Zhang Y.P., Eggeler G, et al. High porosity and high-strength porous NiTi shapememory alloys with controllable pore characteristics [J]. Journal of Alloys andCompounds,2009,470(1-2):1-5
    [28] Abkowitz S., Slerglej J.M., Regan R.R. Titanium-Nickel alloy manufacturing methods
    [P]. United States:3700434,1969
    [29] Itin V.I., Gjunter V.E., Shabalovskaya S.A., et al. Mechanical properties and shapememory of porous nitinol [J]. Materials Characterization,1994,32(3):179-187
    [30]张新平,张宇鹏.多孔NiTi形状记忆合金研究进展[J].材料研究学报,2007,21(6):561-569
    [31]李丙运,戎利建,李依依.多孔NiTi合金的微观结构及超弹性能[J].中国科学,1999, E29(1):11-15
    [32] Li B.Y., Rong L.J., Luo X.H., et al. Transformation behavior of sintered porous NiTialloys [J]. Metallurgival and Materials Transactions,1999, A30(11):2753-2756
    [33] Igharo M., Wood J.V. Compaction and sintering phenomena in titanium-nickel shapememory alloys [J]. Powder Metallurgy,1985,28(3):131-139
    [34] Igharo M., Wood J.V. Consolidation of rapidly solidified Ti-Ni intermetallics [J]. PowderMetallurgy,1986,1(29):37-41
    [35] Li B.Y., Rong L.J., Gjunter V.E., et al. Porous Ni-Ti shape memory alloys produced bytwo different methods [J]. Zeitschrift fur Metallkunde,2000,91(4):291-295
    [36] Greiner C., Oppenheimer S.M., Dunand D.C. High strength, low stiffness, porous NiTiwith superelastic properties [J]. Acta Biomaterialia,2005,1(6):705-716
    [37] Martynova I., Skorohod V., Solonin S., et al. Shape memory and superelasticitybehaviour of porous Ti-Ni material [J]. Journal de Physique Archives,1991,1(C4):421-426
    [38]李丙运,戎利建,李依依.多孔形状记忆合金的变形特性及热机械循环对形状记忆性能的影响[J].金属学报,1999,35(4):362-364
    [39]王天民.环境材料[M].北京:化学工业出版社,1997
    [40]李丙运,戎利建,李依依.生物医用多孔Ti-Ni形状记忆合金的研究进展[J].材料研究学报,2000,14(6):561-567
    [41]胡飞.元素粉末烧结法制备医用多孔TiNi合金的研究[D].天津:天津大学,2002
    [42] Hey J.C., Jardine A.P. Shape memory TiNi synthesis from elemental powders [J].Materials Science and Engineering,1994, A188(1-2):291-300
    [43] McNeese M.D., Lagoudas D.C., Pollock T.C. Processing of TiNi from elemental powdersby hot isostatic pressing [J]. Materials Science and Engineering,2000, A280(2):334-348
    [44] Chu C.L., Chung C.Y., Lin P.H., et al. Fabrication of porous NiTi shape memory alloy forhard tissue implants by combustion synthesis [J]. Materials Science and Engineering,2004, A366(1):114-119
    [45]张宇鹏.低温分解造孔剂法制备多孔NiTi合金及其超弹性和阻尼性能研究[D].广州:华南理工大学博士学位论文,2008
    [46]陆荣林,孙庆平,方如华.多孔NiTi形状记忆合金的力学性能的实验研究[J].力学季刊,2001,22(2):270-272
    [47] Becker B.S., Bolton J.D., Youseffi M. Production of porous sintered Co-Cr-Mo alloys forpossible surgical implant applications [J]. Powder metallurgy,1995,38(12):201-208
    [48] Davies G.J., Zhen S. Metallic foams: their production, properties and applications [J].Journal of Materials Science,1983,18(7):1899-1911
    [49] Li Y.H., Rong L.J., Li Y.Y. Compressive property of porous NiTi alloy synthesized bycombustion synthesis [J]. Journal of Alloys and Compounds,2002,345(1-2):271-274
    [50] Yuan B., Zhang X.P., Chung C.Y., et al. A comparative study of the porous TiNi shapememoery alloys fabricated by three different processes, Metallurgical and MaterialsTransactions,2006, A37:755-761
    [51] Zhang N., Babayan Khosrovabadi P., Lindenhovius J.H., et al. NiTi shape memeoryalloys prepared by normal sintering [J]. Materials Science and Engineering,1992,A150(2):263-270
    [52] Drozdov I.A. Formation of intermetallics in a porous powder titanium-Nickel diffusioncouple [J]. Powder Metallurgy and Metal Ceramics,1995,34(5-6):282-287
    [53] Green S.M., Grant D.M., Kelly N.R. Powder metallurgical processing of Ni-Ti shapememeory alloy [J]. Powder Metallurgy,1997,40(1):43-47
    [54] Bram M., Ahmad-Khanlou A., Heckmann A, et al. Powder metallurgical fabricationprocesses for NiTi shape memory alloy parts [J]. Materials Science and Engineering,2002, A337(1-2):254-263
    [55] Yuan B., Chung C.Y., Zhang X.P., et al. Control of porosity and superelasticity of porousNiTi shape memory alloys prepared by hot isostatic pressing [J]. Smart Materials andStructures,2005,14(5):201-204
    [56] Biswas A. Porous NiTi by the thermal explosion mode of SHS: processing, mechanismand generation of single phase microstructure [J]. Acta Materialia,2005,53(5):1415-1425
    [57] Li T.C., Qui Y.B., Liu J.T., et al. Explosive consolidation of titanium-nickel shapememory alloy from pure titanium powder and pure nickel powder [J]. Journal ofMaterials Science Letters,1992,11(12):845-847
    [58] Otaguchi M., Kaieda Y., Oguro N., et al. Possibility of manufacturing of NiTiintermetallic compound by combustion synthesis [J]. Japan Institute of Metals,1990,54(2):214-223
    [59] Nassera S.N., Su Y., Guo W.G., et al. Experimental characterization and micromechanicalmodeling of superelastic response of a porous NiTi shape-memory alloy [J]. Journal ofthe Mechanics and Physics of Solids,2005,53(10):2320-2346
    [60] Zhao Y., Taya M., Kang Y.S., et al. Compression behavior of porous NiTi shape memoryalloy [J]. Acta Materialia,2005,53(2):337-343
    [61] Hong S.I., Hill M.A. Microstructure and conductivity of Cu-Nb microcompositesfabricated by the bundling and drawing process [J]. Scripta Materialia,2001,44(10):2509-2515
    [62] Yeh C.L., Sung W.Y. Synthesis of NiTi intermetallics by self-propagaing combustion [J].Journal of Alloys and Compounds,2004,376(1-2):79-88
    [63] Li B.Y., Rong L.J., Li Y.Y., et al. Fabrication of cellular NiTi intermetallic compounds [J].Journal of Materials Research,2000,15(1):10-13
    [64] Wiley J.B., Kaner R.B. Rapid solid-state precursor synthesis of materials [J]. Science,1992,255(5048):1093-1097
    [65] Zhang Y.P., Yuan B., Zhang X.P., et al. High porosity and large pore size shape memoryalloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostaticpressing [J]. Journal of Materials Processing Technology,2007,192-193:439-442
    [66]李惠,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究[J].振动工程学报,2002,15(1):25-30
    [67]孙宝臣,杜彦良,马立明,等. NiTi智能传力垫的研究及应用[J].中国有色金属学报,1999,9(4):852-855
    [68]孙宝臣,杜彦良,马立明,等. NiTi合金在内燃机车缸盖螺栓上的应用研究[J].内燃机学报,2000,18(1):74-76
    [69]张学仁,杜彦良. SMA智能复合构件控制裂纹的数值与试验研究[J].航空动力学报,1998,13(4):357-360
    [70]张学仁,聂景旭,杜彦良.主动控制裂纹智能复合构件的有限元分析[J].复合材料学报,1999,16(2):147-150
    [71]商泽进,王忠民,冯振宇.含形状记忆合金的智能材料的应用[J].稀有金属材料与工程,2007,36(3):163-167
    [72] Van Humbeeck J. Non-medical applications of shape memory alloys [J]. MaterialsScience and Engineering,1999, A273-275:134-148
    [73] Li D.S., Zhang X.P., Xiong Z.P., et al. Lightweight NiTi shape memory alloy basedcomposites with high damping capacity and high strength [J]. Journal of Alloys andCompounds,2010,490(1-2): L15-L19
    [74] Fu Y.Q., Du H.J., Huang W.M., et al. TiNi-based thin films in MEMS applications: areview [J]. Sensors and Actuators,2004, A112(2-3):395-408
    [75] Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys [J]. Progressin Materials Science,2005,50(5):511-678
    [76] Brandes E.A., Brook G.B. Smithells metals reference book [M]. London: ButteworthHeineman Ltd,1992
    [77]尹燕,徐仰涛,沈婕,等.三元Ni-Ti基形状记忆合金的研究现状[J].材料导报,2006,20(12):70-73
    [78]孟祥龙,蔡伟. TiNi基形状记忆材料及应用研究进展[J].中国材料进展,2011,30(9):13-20
    [79] Khachin V.N., Pushin V.G., Sivokha V.P. Structure and properties of B2Titaniumcompounds. III. martensite transformations [J]. Fizika Metallov i Metallovedenie,1989,67(4):756-766
    [80] Monastyrsky G.E., Odnosum V., Van Humbeeck J. Powder metallurgical processing ofNi-Ti-Zr alloys undergoing martensitic transformation: part I [J]. Intermetallics,2002,10(1):95-103
    [81] Meng X.L., Zheng Y.F., Cai W. Two-way shape memory effect of a TiNiHf hightemperature shape memory alloy [J]. Journal of Alloys and Compounds,2004,372(1-2):180-186
    [82] Zhang C.S., Zhao L.C., Duerig T.W. Effects of deformation on the transformationhysteresis and shape memory effect in a Ni47Ti44Nb9alloy [J]. Scripta Metallurgica etMaterialia,1990,24(6):1807-1812
    [83]李大圣.优化造孔剂法烧结制备多孔NiTi合金与复合材料及其相关性能研究[D].广州:华南理工大学博士学位论文,2009
    [84] Qiu D.L., Wang A.P., Yin Y.S. Characterization and corrosion behavior ofhydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemicaldeposition [J]. Applied Surface Science,2010,257(5):1774-1778
    [85] Ahmadi H., Nouri M. Effects of yttrium addition on microstructure, hardness andresistance to wear and corrosive wear of TiNi alloy [J]. Journal of Materials Science andTechnology,2011,27(9):851-855
    [86] Lin H.C., Wu S.K., Chang Y.C. Damping characteristics of Ti50Ni49.5Fe0.5andTi50Ni40Cu10ternary shape memory alloys [J]. Metallurgical and Materials Transactions,1995, A26(4):851-858
    [87] Johansen K., Voggenreiter H., Eggeler G. On the effect of TiC particles on the tensileproperties and on the intrinsic two way effect of NiTi shape memory alloys produced bypowder metallurgy [J]. Materials Science and Engineering,1999, A273-275:410-414
    [88]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1988
    [89] Cho K., Guarland J. The law of mixtures applied to the plastic deformation of two-phasealloys of coarse microstructures [J]. Metallurgical and Materials Transactions,1988,A19(8):2027-2040
    [90]王治海.碳化硅颗粒增强铝合金复合材料特性[J].中国有色金属学报,1995,5(3):123-125
    [91]康国政,高庆,刘世楷,等.界面对短纤维增强金属基复合材料力学行为的影响[J].复合材料学报,1999,16(1):35-40
    [92] Whitney M., Corbin S.F., Gorbet R.B. Investigation of the mechanisms of reactivesintering and combustion synthesis of NiTi using differential scanning calorimetry andmicrostructural analysis [J]. Acta Materialia,2008,56(3):559-570
    [93]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006
    [94] GB/T63421996,泡沫塑料与橡胶:线性尺寸的测定[S].中华人民共和国国家标准,1996
    [95] Francus P. An image-analysis technique to measure grain-size variation in thin sectionsof soft clastic sediments [J]. Sedimentary Geology,1998,121(3-4):289-298
    [96] ASTM E9-89a, Standard test methods of compression testing of metallic materials atroom temperature [S]. US: ASTM International,100Barr Harbor Drive,2000
    [97] Miyazaki S., Otsuka K. The shape memory mechanism associated with the martensitictransformation in TiNi alloys [J]. Acta Metallurgica,1989,37(7):1873-1884
    [98]李大圣,张宇鹏,熊志鹏,等.轻质高强NiTi形状记忆合金的制备及其超弹性行为[J].金属学报,2008,44(8):995-1000
    [99]张宇鹏,赵四勇,马骁,等.高线性超弹性多孔NiTi合金的压缩力学行为[J].中国有色金属报,2009,19(12):2167-2172
    [100] Li D.S., Zhang Y.P., Ma X., et al. Space-holder engineered porous NiTi shape memoryalloys with improved pore characteristics and mechanical properties [J]. Journal ofAlloys and Compounds,2009,474(1-2): L1-L5
    [101] Maruyama B., Hunt W. Discontinuously reinforced aluminium: current status and futuredirection [J]. Journal of the minerals, metals and materials society,1999,51(11):59-61
    [102]吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1):78-84
    [103]曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiC/Al复合材料的组织与性能[J].复合材料学报,2003,20(3):69-74
    [104] Contreras A., Angeles-Chávez C., Flores O., et al. Structural, morphological andinterfacial characterization of Al-Mg/TiC composites [J]. Materials Characterization,2007,58(8-9):685-693
    [105] Jackson M.R., Mehan R.L., Davis A.M., et al. Solid state SiC/Ni alloy reaction [J].Metallurgical Transactions,1983, A14(2):355-364
    [106] Touanen M., Teyssandier F. Theoretical approach to chemical vapour deposition in theatomic system Ti-Si-C-Cl-H [J]. Journal of materials science letters,1989,8(1):98-101
    [107] Gu Z.W., Han Y.F., Pan F.S., et al. Effect of Si content on the synthesis of Ti3SiC2bulkmaterial by pressureless sintering [J]. Materials Science Forum,2009,610-613:1263-1267
    [108]毛小南. TiC颗粒增强钛基复合材料的内应力对材料机械性能的影响[D].西安:西北工业大学,2004
    [109]柯常波,马骁,张新平.孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J].金属学报,2011,47(2):129-139
    [110]饶光斌,王俭秋,韩恩厚,等.应力诱发马氏体相变对TiNi形状记忆合金疲劳过程影响的原位实验观察[J].金属学报,2002,38(6):575-580
    [111] Zhang X.P., Liu H.Y., Yuan B., et al. Superelasticity decay of porous NiTi shapememory alloys under cyclic strain-controlled fatigue conditions [J]. Materials Scienceand Engineering,2008, A481:170-173
    [112] Fisher J.C., Hart E.W., Pry R.H. The hardening of metal crystals by precipitate particles[J]. Acta Metallurgica,1953,1(3):336-339
    [113] Ashby M.F. The deformation of plastically non-homogeneous materials [J].Philosophical Magazine,1970,21(170):399-424
    [114]赵敬世.位错理论基础[M].北京:国防工业出版社,1989
    [115] Nishiyama K., Yamanaka M., Omori M., et al. High-temperature dependence of theinternal friction and modulus change of tetragonal ZrO2, Si3N4and SiC [J]. Journal ofmaterials science letters,1990,9(5):526-528
    [116] Gao M. X., Oliveira F. J., Pan Y., et al. Strength improvement and fracture mechanismin Fe40Al/TiC composites with high content of TiC [J]. Intermetallics,2005,13(5):460-466
    [117] Wang H.M., Wang C.M., Cai L.X. Wear and corrosion resistance of laser cladNi2Si/NiSi composite coatings [J]. Surface and Coatings Technology,2003,168(2-3):202-208
    [118] Cai W., Lu X.L., Zhao L.C. Damping behavior of TiNi-based shape memory alloys [J].Materials Science and Engineering,2005, A394(1-2):78-82
    [119] Jiang H.J., Cao S., Zhang X.P. Nano-sized SiC particle reinforced NiTi alloy matrixshape memory composite [J]. Materials Letters,2013,100:74-71
    [120] Arsenault R.J., Shi N. Dislocation generation due to differences between the coefficientsof thermal expansion [J]. Materials Science and Engineering,1986,81(2):175-187
    [121] Miller W.S., Humphrey F.J. Strengthening mechanisms in particulate metal matrixcomposites [J]. Scripta Metallurgica et Materialia,1991,25(1):33-38
    [122] Li B.Y., Rong L.J., Li Y.Y. The influence of addition of TiH2in elemental powder111sintering porous Ni-Ti alloys [J]. Materials Science and Engineering,2000, A281(1-2):169-175
    [123] Barrabés M., Sevilla P., Planell J.A., et al. Mechanical properties of nickel-titaniumfoams for reconstructive orthopaedics [J]. Materials Science and Engineering,2008,C28(1):23-27
    [124] Nam T.H., Saburi T., Shimizu K. Cu-content dependence of shape memorycharacteristics in Ti-Ni-Cu alloys [J]. Materials Transactions,1990,31(11):959-967
    [125] Nam T.H., Saburi T., Nakata Y., et al. Shape memory characteristics and latticedeformation in Ti-Ni-Cu alloys [J]. Materials Transactions,1990,31:1050-1056
    [126] Shi P., Yang D.Z., Shen H.M., et al. Effects of aging on martensitic transformation ofTi50Ni25Cu25shape memory alloy [J]. Materials and Design,2000,21(6):521-524
    [127] Es-Souni M., Es-Souni M., Brandies H.F. On the transformation behaviour, mechanicalproperties and biocompatibility of two NiTi-based shape memory alloys: NiTi42andNiTi42Cu7[J]. Biomaterials,2001,22(15):2153-2161
    [128] Liu Y. Mechanical and thermomechanical properties of a Ti50Ni25Cu25melt spun ribbon[J]. Materials Science and Engineering,2003, A354(1-2):286-291
    [129] Goryczka T., Van Humbeeck J. Characterization of a NiTiCu shape memory alloyproduced by powder technology [J]. Journal of Achievements in Materials andManufacturing Engineering,2006,17(1-2):65-68
    [130] Santamarta R., Cesari E., Pons J., et al. Shape Memory Properties of Ni-Ti BasedMelt-Spun Ribbons [J]. Metallurgical and Materials Transactions,2004,35(3):761-770
    [131] Dalle F., Despert G., Vermaut P., et al. Ni49.8Ti42.2Hf8shape memory alloy stripsproduction by the twin roll casting technique [J]. Materials Science and Engineering,2003, A346(1-2):320-327
    [132] Goryczka T., Ochin P. Characterization of a Ni50Ti50shape memory strip produced bytwin roll casting technique [J]. Journal of Materials Processing Technology,2005,162-163:178-183
    [133] Biscarini A., Coluzzi B., Mazzolai G., et al. Mechanical spectroscopy of the H-free andH-doped Ni30Ti50Cu20shape memory alloy [J]. Journal of Alloys and Compounds,2003,356-357:669-672
    [134] Colombo S., Cannizzo C., Gariboldi F., et al. Electrical resistance and deformationduring the stress-assisted two-way memory effect in Ni45Ti50Cu5alloy [J]. Journal ofAlloys and Compounds,2006,422(1-2):313-320
    [135] Fukuda T., Kitayama M., Kakesita T., et al. Martensitic transformation behavior of ashape memory Ti-40.5Ni-10Cu alloy affected by the C11b-type precipitates [J].Materials Transactions,1996,37(10):1540-1546
    [136] Yoshida I., Monma D., Iino K., et al. Internal friction of Ti-Ni-Cu ternary shapememory alloys [J]. Materials Science and Engineering,2004, A370(1-2):444-448
    [137] He X.M., Rong L.J., Yan D.S., et al. Temperature memory effect of Ni47Ti44Nb9widehysteresis shape memory alloy [J]. Scripta Materialia,2005,53(12):1411-1415
    [138] Hsieh S.F., Wu S.K. A study on lattice parameters of martensite in Ti50.5-xNi49.5Zrxshape memory alloys [J]. Journal of Alloys and Compounds,1998,270(1-2):237-241
    [139] Gil F.J., Planell J.A. Effect of copper addition on the superelastic behavior of Ni-Tishape memory alloys for orthodontic applications [J]. Journal of Biomedical MaterialsResearch,1999,48(5):682-688
    [140] Biscarini A., Coluzzi B., Mazzolai G., et al. Extraordinary high damping ofhydrogen-doped NiTi and NiTiCu shape memory alloys [J]. Journal of Alloys andCompounds,2003,355(1-2):52-57
    [141] Valeanua M., Lucaci M., Crisan A.D., et al. Martensitic transformation of Ti50Ni30Cu20alloy prepared by powder metallurgy [J]. Journal of Alloys and Compounds,2011,509(13):4495-4498
    [142] Fukuda T., Kahesita T., Saburi T. Copper content dependence of the lattice parametersof Ti(NiCu)2[J]. Materials Transactions,2000,41:837-840.[143]李丙运,戎利建,李依依.多孔形状记忆合金的变形特性及热-机械循环对形状记忆性能的影响[J].金属学报,1999,35(4):362-364
    [144]葛庭燧.固体内耗理论基础-晶界弛豫与晶界结构[M].北京:科学出版社,2000
    [145] Liu Y., Van Humbeeck J., Stalmans R., et al. Some aspects of properties of the NiTishape memory alloy [J]. Journal of Alloys and Compounds,1997,247(1-2):115-121
    [146] Otsuka K., Ren X. Recent developments in the research of shape memory alloys [J].Intermetallics,1999,7(5):511-528
    [147] Adharapurapu R.R., Jiang F.C., Vecchio K.S. Aging effects on hardness and dynamiccompressive behavior of Ti-55Ni (at.%) alloy [J]. Materials Science and Engineering,2010, A527(7-8):1665-1676
    [148] Saadat S., Salichs J., Noori M., et al. An overview of vibration and seismic applicationsof NiTi shape memory alloy [J]. Smart Materials and Structures,2002,11(2):218-229
    [149]赵连城,郑玉峰.形状记忆与超弹性镍钛合金的发展和应用[J].中国有色金属学报,2004,14(1):323-326
    [150] Lammering R., Schmidt I. Experimental investigations on the damping capacity of NiTicomponents [J]. Smart Materials and Structures,2001,10(5):853-859
    [151] Villa E., Tuissi A., Coluzzi B., et al. Dependence on composition of the internal frictionof Ni100-xTixalloys containing hydrogen [J]. Materials Science and Engineering,2009,A521-522:175-177
    [152] Yoshida I., Ono T., Asai M. Internal friction of Ti-Ni alloys [J]. Journal of Alloys andCompounds,2000,310(1-2):339-343
    [153] Fan G., Otsuka K., Ren X. Twofold role of dislocations in the relaxation behavior ofTi-Ni martensite [J]. Acta Materialia,2008,56(3):632-641
    [154] Yoshida I., Monma D., Iino K., et al. Damping properties of Ti50Ni50-xCuxalloysutilizing martensitic transformation [J]. Journal of Alloys and Compounds,2003,35(1-2):579-84
    [155]江鸿杰,柯常波,曹姗姗,等.纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J].金属学报,2011,47(9):1105-1111
    [156] Miller D.A., Lagoudas D.C. Influence of cold work and heat treatment on the shapememory effect and plastic strain development of NiTi [J]. Materials Science andEngineering,2001, A308(1-2):161-175
    [157] Khalil-Allafi J., Dlouhy A., Eggeler G. Ni4Ti3-precipitation during aging of NiTi shapememory alloys and its influence on martensitic phase transformations [J]. ActaMaterialia,2002,50(17):4255-4274
    [158] Liu J., Li J.G. Microstructure, shape memory effect and mechanical properties ofrapidly solidified Co-Ni-Al magnetic shape memory alloys [J]. Materials Science andEngineering,2007, A454-455:423-432
    [159] Jones H. A perspective on the development of rapid solidification and nonequilibriumprocessing and its future [J]. Materials Science and Engineering,2001, A304-306:11-19
    [160] Battezzati L., Fiore G., Massazza M. A shape memory gold alloy processed by rapidsolidification [J]. Journal of Alloys and Compounds,2007,434-435:264-267
    [161] Jardine A.P., Field Y., Herman H., et al. Shape memory effect in vacuum plasmasprayed NiTi [J]. Journal of Materials Science Letters,1991,10(16):943-945
    [162]石德珂.材料科学基础[M].北京:机械工业出版社,2003
    [163] Garay J.E., Anselmi-Tamburini U., Munir Z.A. Enhanced growth of intermetallicphases in the Ni-Ti system by current effects [J]. Acta Materialia,2003,51(15):4487-4495
    [164] Mentz J., Frenzel J., Wagner M.F.X., et al. Powder metallurgical processing of NiTishape memory alloys with elevated transformation temperatures [J]. Materials Scienceand Engineering,2008, A491(1-2):270-278
    [165] Brinson L.C., Schmidt I., Lammering R. Stress-induced transformation behavior of apolycrystalline NiTi shape memory alloy: micro and macromechanical investigationsvia in situ optical microscopy [J]. Journal of the Mechanics and Physics of Solids,2004,52(7):1549-1571
    [166] Ramirez A.G., Ni H., Lee H.J. Crystallization of amorphous sputtered NiTi thin films [J].Materials Science and Engineering,2006, A438-440:703-709
    [167]余永宁.材料科学基础[M].北京:高等教育出版社,2006
    [168] Bataillard L., Bidaux J.E., Gotthardt R. Interaction between microstructure andmultiple-step transformation in binary NiTi alloys using in-situ transmission electronmicroscopy observations [J]. Philosophical Magazine,1998, A78(2):327-344
    [169] Raju K.S.S., Bysakh S., Sumesh M.A., et al. The effect of ageing on microstructure andnanoindentation behaviour of dc magnetron sputter deposited nickel rich NiTi films [J].Materials Science and Engineering,2008, A476(1-2):267-273
    [170] Srivastava A.K., Schryvers D., Van Humbeeck J. Grain growth and precipitation in anannealed cold-rolled Ni50.2Ti49.8alloy [J]. Intermetallics,2007,15(12):1538-1547
    [171]Cao S., Nishida M., Schryvers D. Quantitative three-dimensional analysis ofNi4Ti3precipitate morphology and distribution in polycrystalline Ni-Ti [J]. ActaMaterialia,2011,59(4):1780-1789
    [172] Liu Y., Xie Z.L., Van Humbeeck J., et al. Effect of texture orientation on the martensitedeformation of NiTi shape memory alloy sheet [J]. Acta Materialia,1999,47(2):645-649
    [173] Gil F.J., Manero J.M., Planell J.A. Effect of grain size on the martensitic transformationin NiTi alloy [J]. Journal of Materials Science,1995,30(10):2526-2530
    [174] Coluzzi B., Biscarini A., Campanella R., et al. Effect of thermal cycling through themartensitic transition on the internal friction and Young’s modulus of a Ni50.8Ti49.2alloy[J]. Journal of Alloys and Compounds,2000,310(1-2):300-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700