用户名: 密码: 验证码:
催化转化生物质基乙酰丙酸制备高附加值化学品研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为应对日益严峻的能源危机,世界各国近年来高度重视生物质资源的开发利用。木质纤维素是地球上最丰富的可再生生物质资源,与淀粉、油脂等其它生物质资源相比,木质纤维素具有不与人争粮、不与粮争地的独特优势。采用直观易行的“加氢/脱氧”策略将纤维素分解为简单的平台化合物分子,再将平台化合物转化为所需产品是当前生物质利用的有效路径之一。通过便捷的酸催化水解,纤维素可转化为乙酰丙酸(Levulinic acid, LA),同时副产等摩尔量甲酸(Formic acid, FA)。LA早在2004年被美国能源部认定为最具竞争力的12种生物质基平台化合物之一,在这12种平台化合物中也仅有LA可通过纤维素水解制得。
     以LA为原料可合成多类有用化学品,其中γ-戊内酯(γ-valerolactone, GVL)用途最为广泛,可作溶剂、食品添加剂和燃油添加剂使用。另外GVL还可进-步氢解为1,4-戊二醇(1,4-PDO)或2-甲基四氢呋喃(2-MTHF),这两种产物均为需求量很大的基础化工原料。最近有关GVL的研究引起了世界各国科学家的广泛关注,但在GVL制备及利用方面仍然存在一些急需解决的技术障碍。在GVL制备方面,尤以从纤维素出发制备GVL仍存在一定的问题,特别是如何实现甲酸原位还原LA制备GVL或其他高值化学品以及如何回收水解纤维素制取LA后残余硫酸等。此外在GVL氢解制备1,4-PDO或2-MTHF方面,由于目前主要使用的是均相或非均相贵金属催化剂。鉴于均相催化剂制备过程繁琐,且很难重复使用,因此有必要研发一种廉价可重复使用的多相催化剂弥补均相催化剂的不足。基于以上基础科学问题,本论文主要开展了以下工作:
     -、温和条件下LA催化加氢制备GVL的研究
     采用浸渍法制备了一系列负载型贵金属铱(Ir)基催化剂用于LA加氢制备GVL。研究发现碳纳米管负载铱(Ir/CNT)催化剂表现出了优异的催化性能。在50℃,2MPa的氢气压力下可以实现LA的完全转化,GVL选择性大于99%。TEM结果显示Ir/CNT催化剂中铱颗粒很小且粒径分布较窄,平均粒径约1.6nm。XPS分析表明300℃还原得到的Ir/CNT催化剂中金属铱主要以元素态存在。通过H2-TPD实验发现Ir/CNT催化剂的H2脱附峰最强,且脱附温度最低,说明Ir/CNT催化剂具有最强的活化氢气能力,因此表现出了最高的LA加氢活性。鉴于Ir/CNT的高催化活性,研究了更温和条件下LA加氢。当在50℃,1atm的氢气的条件下反应时,发现有一定量的中间体羟基戊酸生成。由于羟基戊酸很不稳定,容易脱水、关环生成GVL。随着反应的进行,最终LA可完全转化且GVL选择性可达98%以上。
     考虑到在LA制备过程中副产等摩尔量FA,考察了甲酸对该反应的影响。当使用含有等摩尔量FA的LA溶液进行加氢时,LA的转化率明显降低。随着反应温度的升高,LA转化率进一步降低。研究发现高温下Ir/CNT可催化FA分解产生少量的CO使催化剂“自中毒”而失去活性。鉴于在初步研究中发现FA在低温下几乎不分解,可通过增加催化剂用量、降低反应温度和延长反应时间的办法实现FA存在情况下LA的高效转化。由于FA最近被认为是一种重要的氢载体,在分解制氢方面成为了研究热点,未反应的FA则可通过提纯、富集的方法有效分离并予以合理地利用。
     二、催化FA原位分解还原LA制备GVL研究
     在纤维素水解后有等量LA和FA生成,如能将副产FA用作为还原LA的氢源,不但符合原子经济的可持续合成理念,且可避免LA和FA分离从而降低了GVL生产成本。研究发现负载型Au/ZrO2催化剂可将摩尔比1:1的LA和FA高效转化为GVL,产物收率可高达99%。在反应过程中可观察到高压釜内气体压力在初始半小时内迅速升至6MPa以上。说明FA先分解为氢气和二氧化碳,然后再催化加氢至GVL而非以原设想的氢转移反应将LA还原为GVL。通过独立的FA分解和有CO存在情形况下LA加氢对照实验进一步验证了Au/ZrO2对上述体系的优异催化活性,而其它铂族贵金属催化剂,如Ru、Rh、Pd、Ir、Pt等在上述反应中几乎无活性。考虑到少量CO会引起Pt电极催化剂中毒,推测认为铂族贵金属在催化FA分解时会产生的少量的CO,由于CO对铂族贵金属有强吸附作用,从而导致催化剂“自中毒”而失去活性。直接以纤维素为原料,通过硫酸水解生成等物质量的LA和FA,使用生石灰将残余的硫酸中和后,得到只有LA和FA的水溶液。以Au/ZrO2为催化剂在150℃的条件下反应8小时后,GVL收率为97%(基于生物质基LA的转化)。
     三、还原胺化法制备5-甲基-2-吡咯烷酮及“反应萃取法”制备GVL
     在第二部分工作的基础上,以等物质量的LA、FA和伯胺或氨水为反应物,使用Au/ZrO2催化剂在130℃,5atm氮气保护情形下,利用一锅还原胺化法制备出系列5-甲基-2-吡咯烷酮高值化学品。在反应的过程中检测到有甲酰胺中间产物生成,随着反应的进行中间产物逐渐减少而产物5-甲基-2-吡咯烷酮选择性逐渐升高。研究发现当反应在较高的温度下进行时,有大量而副产物GVL产生。在低浓度的体系下反应时也会生成大量副产物GVL。相同反应条件下当直接以GVL和伯胺反应时却未发现5-甲基-2-吡咯烷酮的生成。由于其特殊的分子结构,GVL是非常稳定的,如果实现GVL开环反应必须使用异常苛刻的反应条件。基于以上结果可以推测FA中介的还原胺化法制备5-甲基-2-吡咯烷酮时未经过GVL中间体,所以反应条件温和,目标产物选择性高。
     在前期工作中虽然成功实现了FA还原LA制备GVL,但由于纤维素水解时使用的是稀硫酸水溶液,在实施FA还原LA工艺之前需对残余硫酸进行中和,不但耗费酸碱,且大大增加了过程的复杂性和GVL整体生产成本。为解决硫酸重复使用问题,提出了以生物基丁醇为工作介质的“反应萃取法”制备GVL。首先使用稀硫酸将纤维素水解为LA和FA,然后加入正丁醇作酯化剂以及溶剂,将LA和FA转化为疏水的乙酰丙酸丁酯和甲酸丁酯。硫酸水溶液和疏水有机物会自动分相,下层硫酸水溶液可回收重新水解纤维素;然后以甲酸丁酯为氢源还原乙酰丙酸丁酯制GVL。研究发现,Au/ZrO2催化剂可高效将甲酸丁酯分解为氢气,并进一步将乙酰丙酸丁酯还原为GVL。
     四、GVL选择氢解制1,4-PDO或2-MTHF
     最新文献报道的均相钌基催化剂在氢解GVL制备1,4-PDO或2-MTHF时显示了较好的活性与产物可调控性,但催化剂制备繁琐、需加入大量配体和助剂等不足大大限制了其实用性。研究发现使用草酸胶态共沉淀法制备的Cu/ZrO2催化剂可将GVL选择性氢解为1,4-PDO或2-MTHF。在制备1,4-PDO时使用的是高温焙烧(600℃)制备的催化剂(Cu/ZrO2-600)。首先研究了铜负载量对反应活性的影响,发现随着铜负载量升高,1,4-PDO收率也随之升高;当负载量为30%时,产物收率最高,当铜的负载量进一步升高到40%时,产物收率有所下降。通过系列结构表征发现,催化剂铜表面越大其催化活性越高。研究反应温度影响时发现,当反应温度升高到240℃时,有13%左右的2-MTHF生成。但进一步升高反应温度时,2-MTHF收率没有明显增加。
     根据相关文献可知,催化剂的表面酸性对GVL氢解制备2-MTHF起到关键的作用。为进一步提高2-MTHF产率,通过改变催化剂制备过程中的焙烧温度对催化剂表面酸碱性进行了系统调变。研究发现使用低温焙烧(400℃)制备的催化剂(Cu/ZrO2-400)可高选择性生成2-MTHF;在240℃,6MPa氢气压力下反应6小时后2-MTHF的收率为91%。为探索反应机理,以Cu/ZrO2-400催化剂直接氢解1,4-PDO时也可得到2-甲基四氢呋喃,但反应速度明显低于以GVL为原料时的氢解速度。NH3-TPD结果显示Cu/ZrO2-400催化剂在270℃左右有明显的NH3脱附峰,而Cu/ZrO2-600催化剂几乎无NH3脱附峰出现。据此推断低温焙烧制备的Cu/ZrO2-400催化剂促进了GVL分子内羰基的还原而且表面的酸性位使少量的1,4-PDO进一步脱水生成2-MTHF。
To address the crirical issues of the looming energy crisis, tremendous global efforts have been devoted to the utilization of biomass resources. Lignocellulosic biomass is currently the major component of renewable resources, which is readily available and does not compete with the food supply. An effective strategy for utilization of biomass is to first partially remove oxygen to produce reactive intermediates, denoted as platform molecules, followed by conversion of these molecules into desired products. The production of equimolar quantities of levulinic acid (LA) and formic acids (FA) can be achieved, in good yields, from cellulose through hydrolysis with dilute sulfuric acid. LA has been identified as one of the most attractive12platform molecules by US Department of Energy in2004. Among the top12value-added chemicals available from biomass, only LA can be produced using exclusively acid-catalyzed chemical processing, e.g., dehydration.
     Among the many useful chemicals can be produced from LA, γ-valerolactone (GVL) has been identified as one of the most important renewable intermediate. GVL may be used as a solvent, food additive and as a biofuel, for instance as a substitute of ethanol in gasoline-ethanol blends. In addition GVL can be converted to1,4-pentanediol (1,4-PDO) or2-methyltetrahydrofuran (2-MTHF) which are important raw materials. Despite the considerable efforts dedicated to the syntheis of GVL, some technical barriers remained to be resolved. For example, during the production of GVL from direct cellulose hydrolysis, it is not yet possible to recover and resue the residual sulfuric acid after cellulose hydrolysis. Morevoer, it is highly challenging to use the co-produced formic acid during cellulose hydrolysis as sole in situ hydrogen source for reduction of LA. In addition, there is still a great need to new readily available, and nobel-metal-free catalyst systems that can allow flexible or tunable transformation of bio-derived LA into1,4-PDO or2-MTHF via intermediate formation of GVL. Aiming to address above key issues in the field of LA utilizaiton, the following work was carried out in the present dissertation:
     1. Hydrogenation of LA to GVL under mild conditions
     A series of supported iridium catalysts prepared by conventional impregnation have been applied for the hydrogenation of LA to GVL. Among the various supported catalysts, CNT supported iridium (Ir/CNT) catalyst has the best LA hydrogenation activity. Thus, at50℃and2MPa hydrogen pressure, an excellent GVL yield of99%can be obtained after1hour reaction. Transmission electron microscopy (TEM) analysis of the Ir/CNT catalyst reveals that the particles corresponded to metallic Ir0with an average diameter of about1.6nm. X-ray photoelectron spectroscopy (XPS) of the Ir4f7/2core level showed a main contribution from metallic Ir0after reduction at300℃with5vol.%H2/Ar. To clarify the origin of the enhanced LA conversion activity achieved by using Ir/CNT, H2temperature-programmed desorption (H2-TPD) measurements for Ir nanoparticles deposited on different supports were conducted. It is revealed that the H2desorption from the Ir/CNT occurred from lower temperatures and higher amounts than that from other catalysts, which implies that the adsorbed hydrogen species on the CNT surface could be more active for an reductive transformation. In view of the high activity of Ir/CNT catalyst, the reaction was conducted under very mild conditions. Amounts of intermediate hydroxyvaleric acid (HA) was produced when the reaction was conducted at50℃and1atm H2. However the intermediate HA is rather unstable and intra-molecular lactonization to GVL occurs easily as the reaction proceeded.
     Given the fact that an equimolar amount of FA apart from LA is also produced during the lignocellulosic biomass hydrolysis process, we studied the effect of FA on the catalytic conversion of LA. When we deliberately added an equimolar amount of FA to the hydrogenation system, a significantly retarded LA hydrogenation was observed. The yield of GVL further reduced with the increase of reaction temperature. Bearing in mind the notorious low CO tolerance of the platinum-group metals (PGM) toward LA hydrogenation, we suspect that the CO produced during FA decomposition at high reaction temperature is responsible for this phenomena. We then turn our attention to carrying out the reaction at lower temperatures but with elevated hydrogen pressures, enhanced catalysts amounts and prolonged reaction time to improve the reaction kinetics. To our delight the yield of GVL can be improved significantly by increasing the amount of catalyst or hydrogen pressure. FA has attracted much recent interest in the area of green and sustainable chemistry because of its potential as a safe and convenient hydrogen carrier. So the above mentioned art is benefit for producing biomass-derived FA.
     2. Reduction of LA to GVL with H2derived from catalytic decomposition of FA
     Given the fact that an equimolar amount of FA apart from LA is also produced during the lignocellulosic biomass hydrolysis process, the development of new efficient methods for GVL production using formic acid as an in situ source of hydrogen is much needed. The success of this new route not only improves the atom economy of the process, but also avoids the energy-costly separation of LA from the mixture of LA and FA in aqueous solution. By using the Au/ZrO2catalyst the1:1aqueous mixture of LA and FA can be quantitatively converted to GVL. A phenomenon worthy of mention during the LA reduction over Au/ZrO2is the rapid pressure increase in the interior of the autoclave reactor from0.5MPa to a maximum value of approximately6MPa in the first half hour of the reaction. A significant FA decomposition leading to H2/CO2formation can be responsible for such an effect. Compared to palladium, platinum or ruthenium nanoparticles supported on zirconia as reference catalysts, gold is far superior to other noble metals for the reduction of LA with FA. These results can be confirmed with sole FA decomposition and LA hydrogenation with hydrogen in the presence of little CO. Bearing in mind the notorious low CO-tolerance of platinum group metals toward formic acid electro-oxidation, it is considered that the CO produced during FA decomposition may severely poison the Pt, Ru or Pd-catalyzed LA reduction using FA as the hydrogen source. Through acidic hydrolysis (catalyzed by0.5M H2SO4) of cellulose, we obtained an aqueous solution containing LA and FA. After partial neutralization with CaO and removal of insoluble solid by filtration, the aqueous mixture was transferred into an autoclave containing Au/ZrO2. Performing the reaction at150℃for8h produced GVL in97%yield (based on the conversion of LA).
     3. Conversion of LA, FA, amine into5-methyl-2-pyrrolidone on the basis of reductive amination methodology and reactive extraction of LA and FA into GVL
     Based on above results, we reported a one-pot conversion of LA and ammonia or primary amines into valuable and useful5-methyl-2-pyrrolidones that are currently based on fossil resources by using the Au/ZrO2-HCOOH-mediated reductive amination methodology. We found the formation of formamide during the reaction, however, the intermediate could be further converted into5-methyl-2-pyrrolidone with extension of the reaction time. A lot of GVL byproduct produced at high reaction temperature or diluted solution. A control experiment was conducted with GVL and amine in the presence of Au/ZO2catalyst, but no5-methyl-2-pyrrolidone was produced in the similar reaction condition. Based on the above results, we concluded the direct formation of5-methyl-2-pyrrolidone was a main route and didn't pass through the formation of GVL.
     In the previous work, we have demonstrated that a highly active and robust catalyst based on gold deposited on acid-tolerant ZrO2can be used to convert an equimolar aqueous mixture of LA and FA into GVL in excellent yields. However, the production of GVL is complicated by the need to separate LA and FA from sulfuric acid with cost neutralization, as residual sulfur leads to low catalytic activity and deactivation with time-on-stream. The production of GVL with an efficient alcohol-mediated reactive extraction protocol has been proposed in order to facilitate the recovery of sulfuric acid. First, through an acidic hydrolysis (catalyzed by0.5M H2SO4) of cellulose, a mixture of LA and FA can be obtained. Then LA and FA can be converted to hydrophobic n-butyl levulinate (BL) and formate (BF) which separate spontaneously from sulfuric acid aqueous solution after n-butanol was added. The mixture of levulinic and formic esters can be directly converted to an aqueous solution of GVL and n-butanol over a single Au/ZrO2catalyst, in which H2in situ generated from BF is used for the reduction of BL to GVL.
     4. Hydrogenolysis of GVL to1,4-PDO or2-MTHF
     Recently, Ru-based molecular catalyst system can selectively convert bio-derived LA into1,4-PDO or2-MTHF via intermediate formation of GVL, but the catalyst preparation process is complex, and need to add plenty of ligands and additives. We found the direct conversion of GVL into1,4-PDO or2-MTHF was realized by chemoselective hydrogenolysis catalyzed by a simple yet versatile copper-zirconia catalyst system. The Cu/ZrO2catalyst obtained by600℃-calcination (Cu/ZrO2-600) was used for hydrogenolysis of GVL to1,4-PDO. Firstly we studied the effect of copper loadings on the activity of GVL hydrogenolysis. An increase in Cu loading cause a significant improvement in the yield of1,4-PDO. The highest product yield was achieved when Cu loading was increased to30wt%. However, a further increase in the Cu loading to40wt%leads to a slight decrease in the desired product yield. By a careful correlation of the metallic Cu surface area data, it could be found that there is a good relationship between the metallic copper surface areas and the performance of the Cu/ZrO2-600catalysts with various Cu loadings. Studies on the effect of the reaction temperature at the same hydrogen pressure revealed that an obvious increase in the yield of the2-MTHF (ca.13%) when the reaction was conducted at240℃. However, the2-MTHF yield remained constant with further increasing the reaction temperature.
     In an attempt to improve the yield toward2-MTHF synthesis, subsequent studies were focused on the hydrogenolysis of GVL at240℃over a series of Cu/ZrO2catalysts with significantly modified acidic properties of the catalyst surface obtained by calcination in air at different temperatures in the range of300-700℃for4h. It was found that the Cu/ZrO2-400catalyst obtained by400℃-calcination can deliver a remarkable conversion of GVL to give2-MTHF in an excellent yield of ca.91%at240℃,6MPa H2within6h. In order to explore the reaction mechanism, the dehydrative cyclization of1,4-PDO to2-MTHF over the Cu/ZrO2-400catalyst under identical reaction conditions was possible, albeit at a slower rate than in direct carbonyl reduction. The Cu/ZrO2-400catalyst exhibits a higher abundance of weakly acid sites, as reflected from the significant desorption features appeared in the temperature region of200-400℃as seen in NH3-TPD experiment. This finding indicates that a synergistic cooperation between dispersed Cu and the acid sites of the catalyst surface is essential to facilitate the direct reduction of the carbonyl group in the GVL molecule or accelerating the subsequent dehydration of intermediate1,4-PDO to afford2-MTHF.
引文
[1]http://baike.baidu.com/view/40397.htm.
    [2]J. B. Binder, R. T. Raines, Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals [J]. J. Am. Chem. Soc,2009,131: 1979-1985.
    [3]闫智培,林鹿,葡萄糖转化为2,5-二甲基呋喃和γ-戊内酯的研究[D].华南理工大学硕士论文,2009.
    [4]D. M. Alonso, J. Q. Bond, J. A. Dumesic, Catalytic conversion of biomass to biofuels [J]. Green Chem.,2010,12:1493-1513.
    [5]J. C. Serrano-Ruiz, R. M. West, J. A. Dumesic, Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals [J]. Annu. Rev. Chem. Biomol. Eng.,2010,1:79-100.
    [6]E. Iglesia, S. C. Reyes, R. J. Madon, S. L. Soled, Fischer-Tropsch Synthesis Over Mo/Zeolite Catalysts [J]. Adv. Catal.,1993,39:221-302.
    [7]G. A. Olah, A. Goeppert, G. K. S. Prakash, Beyond Oil and Gas:The Methanol Economy [M], WILEY-VCH,2nd edn,2009, pp 179-288.
    [8]D. Mohan, C. U. Pittman, P. H. Steele, Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review [J]. Energy Fuels,2006,20:848-889.
    [9]D. C. Elliott, Historical Developments in Hydroprocessing Bio-oils [J]. Energy Fuels,2007,21:1792-1815.
    [10]T. P. Vispute, H. Y. Zhang, A. Sanna, R. Xiao, G. W. Huber, Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils [J]. Science,2010,330:1222-1227.
    [11]W. P. Deng, M. Liu, X. S. Tan, Q. H. Zhang, Y. Wang, Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts [J]. J. Catal.,2010,271:22-32.
    [12]A. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals [J]. Chem. Rev.,2007,107:2411-2502.
    [13]R. Kumar, G. Mago, V. Balan, C. E. Wyman, Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies [J]. Bioresour. Technol,2009,100:3948-3962.
    [14]T. Werpy, G. Petersen, Top Value Added Chemicals From Biomass Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas [M]. 2004.
    [15]J. J. Bozell, G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "Top 10" revisited [J]. Green Chem.,2010,12:539-554.
    [16]L. R. Lynd, J. H. Cushman, R. J. Nichols, C. E. Wyman, Fuel Ethanol from Cellulosic Biomass [J]. Science,1991,251:1318-1323.
    [17]M. Mascal, E. Nikitin, Direct, High-Yield Conversion of Cellulose into Biofuel [J]. Angew. Chem. Int. Ed.,2008,47:7924-7926.
    [18]S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups [J]. J. Am. Chem. Soc.,2008,130:12787-12793.
    [19]A. Onda, T. Ochi, K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts [J]. Green Chem.,2008,10:1033-1037.
    [20]J. F. Pang, A. Q. Wang, M. Y. Zheng, T. Zhang, Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures [J]. Chem. Commu.,2010, 46:6935-6937.
    [21]A. Fukuoka, P. L. Dhepe, Catalytic Conversion of Cellulose into Sugar Alcohols [J]. Angew. Chem. Int. Ed.,2006,45:5161-5163.
    [22]C. Luo, S. Wang, H. C. Liu, Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water [J]. Angew. Chem. Int. Ed.,2007,46:7636-7639.
    [23]N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, J. G. G. Chen, Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts [J]. Angew. Chem. Int. Ed.,2008,47: 8510-8513.
    [24]Y. H. Zhang, A. Q. Wang, T. Zhang, A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol [J]. Chem. Commun.,2010,46:862-864.
    [25]C. Z. Li, M. Y. Zheng, A. Q. Wang, T. Zhang, One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:simultaneous conversion of cellulose, hemicellulose and lignin [J]. Energy Environ. Sci.,2012,5: 6383-6390.
    [26]Y. Liu, C. Luo, H. C. Liu, Tungsten Trioxide Promoted Selective Conversion of Cellulose into Propylene Glycol and Ethylene Glycol on a Ruthenium Catalyst [J]. Angew. Chem. Int. Ed.2012,51:3249-3253.
    [27]Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic, Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose [J]. Science,2006,312: 1933-1937.
    [28]Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature,2007, 447:982-985.
    [29]H. B. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural [J]. Science,2007,316: 1597-1600.
    [30]J. Horvat, B. Klaic, B. Metelko, V. Sunjic, Mechanism of levulinic acid formation [J]. Tetrahedron Lett.,1985,26:2111-2114.
    [31]A. P. Dunlop, P. A. Wells, Process for producing levulinic acid [P]. U.S. Patent, 2813900,1957.
    [32]V. M. Ghorpade, M. A. Hanna, Method and apparatus for production of levulinic acid via reactive extrusion [P], U.S. Patent,5859263,1999.
    [33]S. W. Fitzpatrick, Production of levulinic acid from carbohydrate-containing materials [P]. U.S. Patent,5608105,1997.
    [34]S. W. Fitzpatrick, Lignocellulose degradation to furfural and levulinic acid [P] World Patent,8910362,1990.
    [35]B. Girisuta, L. P. B. M. Janssen, H. J. Heeres, Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid [J]. Ind. Eng. Chem. Res. 2007,46:1696-1708.
    [36]R. Leonard, Levulinic acid as a basic chemical raw material [J]. Ind. Eng. Chem. 1956,48:1330-41.
    [37]A. F. William, E. C. John, Method for the production of levulinic acid [P], US Patent,6054611,2000.
    [38]G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering [J], Chem. Rev.,2006,106:4044-4098.
    [39]X. Hu, C. Z. Li, Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery [J]. Green Chem.,2011,13:1676-1679.
    [40]K. J. Zeitsch, The Chemistry and Technology of Furfural and its Many By-Products [M], Elsevier Science, Amsterdam,2000.
    [41]H. E. Lance, R. O. Mich, Carbonator [P]. US Patent,2735665,1965.
    [42]C. C. Hsu, D. W. Chasar, Process for the manufacture of levulinic acid and esters [P]. US Patent,4236021,1980.
    [43]B. Capai, G. Lartigau (Soc, Francaise d'Organo-Synthese), US-5175385,1992.
    [44]J. P. Lange, W. D. V. D. Graaf, R. J. Haan, Conversion of Furfuryl Alcohol into Ethyl Levulinate using Solid Acid Catalyst [J]. ChemSusChem.,2009,2:437-441.
    [45]Z. H. Zhang, K. Dong, Z. B. Zhao, Efficient Conversion of Furfuryl Alcohol into Alkyl Levulinates Catalyzed by an Organic-Inorganic Hybrid Solid Acid Catalyst [J], ChemSusChem.,2011,4:112-118.
    [46]E. I. Gurbuz, S. G. Wettstein, J. A. Dumesic, Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkyphenol Solvents [J]. ChemSusChem.,2012,5:383-387.
    [47]蔡磊,吕秀阳等新平台化合物乙酞丙酸制备方法研究进展[J].现代化工,2003,23:14-16.
    [48]常春,岑沛霖,马晓建,生物质制备新型平台化合物乙酰丙酸的研究[D].浙江大学博士学位论文,2006.
    [49]R. H. Fischer, R. Pinkos, M. Rosch, F. Stein, Method for Producing Pyrrolidenes [P]. US Patent,20040158078 A1,2004.
    [50]L. E. Manzer, Production of 5-Methyl-N-Aryl-2-Pyrrolidone and 5-Methyl-N-Cycloalkyl-2-Pyrrolidone by Reductive Amination of Levulinic Acid with Aryl Amines [P]. US Patent,6743819 B1,2004.
    [51]L. E. Manzer, Production of 5-Methyl-N-Aryl-2-Pyrrolidone and 5-Methyl-N-Alkyl-2-Pyrrolidone by Reductive Amination of Levulinic Acid with Nitro Compounds [P]. US Patent,6818593 B2,2004.
    [52]L. E. Manzer, Production of 5-Methyl-N-(Methyl Aryl)-2-Pyrrolidone, 5-Methyl-N-(Methyl Cycloalkyl)-2-Pyrrolidone and 5-Methyl-N-Alkyl-2-Pyrrolidone by Reductive Amination of Levulinic Acid with Cyano Compounds [P]. US Patent, 6841520 B2,2005.
    [53]G. Budroni, A. Corma, Gold and gold-platinum as active and selective catalyst for biomass conversion:Synthesis of y-butyrolactone and one-pot synthesis of pyrrolidone [J]. J. Catal.,2008,257:403-408.
    [54]J. C. Serrano-Ruiz, D. Wang, J. A. Dumesic, Catalytic upgrading of levulinic acid to 5-nonanone [J]. Green Chem.,2010,12:574-577.
    [55]P. J. Fagan, E. Korovessi, L. E. Manzer, R. Mehta, S. M. Thomas, Preparation of levulinic acid esters and formic acid esters from biomass and olefins [P]. US Patent, 7153996,2003.
    [56]K. I. Tominaga, A. Mori, Y. Fukushima, S. Shimada, K. Sato, Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose [J]. Green Chem.,2011,13:810-812.
    [57]A. P. Dunlop, S. Smith, Preparation of succinic acid [P]. US Patent,2676186, 1955.
    [58]N. Sonoda, S. Tsutssumi, Oxidation of levulinic acid to succinic acid [J]. Bull. Chem. Soc. Jpn.,1963,36:1311-1317.
    [59]I. T. Horvath, H. Mehdi, V. Fabos, L. Boda, L. T. Mika, γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals [J]. Green Chem.,2008,10: 238-242.
    [60]A. P. Dunlop, J. W. Madden, Process of preparing gamma-valerolactone [P], U.S. Patent,2786852,1957.
    [61]P. P. Upare, J. M. Lee, D. W. Hwang, S. B. Halligudi, Y. K. Hwang, J. S. Chang, Selective hydrogenation of levulinic acid to y-valerolactone over carbon-supported noble metal catalysts [J]. J. End. Eng. Chem.,2011,17:287-292.
    [62]P. P. Upare, J. M. Lee, Y. K. Hwang, D. W. Hwang, J. H. Lee, S. B. Halligudi, J. S. Hwang, J. S. Chang, Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts [J]. ChemSusChem.,2011,4:1749-1752.
    [63]H. A. Schuette, R. W. Thomas, Normal valerolactone.Ⅲ. Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinum oxide [J]. J. Am. Chem. Soc,1930,52:3010-3012.
    [64]R. V. Christian, H. D. Brown, R. M. Hixon, Derivatives of y-valerolactone, 1,4-pentanediol and 1,4-di-(β-cyanoethoxy)-pentane [J]. J. Am. Chem. Soc.,1947,69: 1961-1963.
    [65]L. E. Manzer, Production of 5-methylbutyrolactone from levulinic acid [P]. US Patent,6617464 B2,2003.
    [66]Z. P. Yan, L. Lin, S. J. Liu, Synthesis of y-Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst [J]. Energy Fuels,2009,23: 3853-3858.
    [67]J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke, H. Gosselink, Valeric Biofuels:A Platform of Cellulosic Transportation Fuels [J]. Angew. Chem. Int. Ed.,2010,49:4479-4483.
    [68]P. M. Ayoub, J. Lange, Conversion of levulinic acid into pentanoic acid by contacting feedstock with levulinic acid under hydrogenating conditions with non-acidic catalyst including hydrogenation metal, and contacting part of effluent with acidic catalyst [P]. WO Patent,2008142127 Al,2008.
    [69]A. M. R. Galletti, C. Antonetti, V. D. Luise, M. Martinelli, A sustainable process for the production of y-valerolactone by hydrogenation of biomass-derived levulinic acid [J]. Green Chem.,2012,14:688-694.
    [70]A. M. Hengne, C. V. Rode, Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to y-valerolactone [J]. Green Chem., 2012,14:1064-1072.
    [71]L. E. Manzer, K. W. Hutchenson, Production of 5-methyl-dihydro-furan-2-one from levulinic acid in supercritical media [P]. US Patent,20040254384 A1,2004.
    [72]R. A. Bourne, J. G. Stevens, J. Ke, M. Poliakoff, Maximising opportunities in supercritical chemistry:the continuous conversion of levulinic acid to y-valerolactone in CO2 [J]. Chem. Commun.,2007,4632-4634.
    [73]C. Fellay, P. J. Dyson, G. Laurenczy, A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst [J]. Angew. Chem. Int. Ed.,2008,47:3966-3968.
    [74]B. Loges, A. Boddien, H. Junge, M. Beller, Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2 Fuel Cells [J]. Angew. Chem. Int. Ed.,2008,47:3962-3965.
    [75]H. Vazquez-Villa, S. Reber, M. A. Ariger, E. M. Carreira, Iridium Diamine Catalyst for the Asymmetric Transfer Hydrogenation of Ketones [J]. Angew. Chem. Int. Ed.,2011,50:8979-8981.
    [76]H. Mehdi, V. Fabos, R. Tuba, A. Bodor, L. T. Mika, I. T. Horvath, Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass:From Sucrose to Levulinic Acid, γ-Valerolactone,1,4-Pentanediol,2-Methyl-tetrahydrofuran, and Alkanes [J]. Top. Catal.,2008,48:49-54.
    [77]L. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo, Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply [J]. Angew. Chem. Int. Ed.,2009,48,6529-6532.
    [78]L. Deng, Y. Zhao, J. Li, Y. Fu, B. Liao, Q. X. Guo, Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts [J]. ChemSusChem.,2010,3:1172-1175.
    [79]D. Kopetzki, M. Antonietti, Transfer hydrogenation of levulinic acid under hydrothermal conditions catalyzed by sulfate as a temperature-switchable base [J]. Green Chem.,2010,12:656-660.
    [80]H. Heeres, R. Handana, D. Chunai, C. B. Rasrendra, B. Girisuta, H. J. Heeres, Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts [J]. Green Chem.,2009,11: 1247-1255.
    [81]D. J. Braden, C. A. Henao, J. Heltzel, C. C. Maravelias, J. A. Dumesic, Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid [J]. Green Chem.,2011,13:1755-1765.
    [82]D. M. Alonso, S. G Wettstein, J. Q. Bond, T. W. Root, J. A. Dumesic, Production of Biofuels from Cellulose and Corn Stover Using Alkylphenol Solvents [J]. ChemSusChem.,2011,4:1078-1081.
    [83]E. Giirbiiz, D. M. Alonso, J. Q. Bond, J. A. Dumesic, Reactive Extraction of Levulinate Esters and Conversion to y-Valerolactone for Production of Liquid Fuels [J]. ChemSusChem.,2011,4:357-361.
    [84]Jesse Q. Bond, David Martin Alonso, Dong Wang, Ryan M. West, James A. Dumesic, Integrated Catalytic Conversion of y-Valerolactone to Liquid Alkenes for Transportation Fuels [J]. Science,2010,327:1110-1114.
    [85]L. E. Manzer, Catalytic synthesis of a-methylene-y-valerolactone:a biomass-derived acrylic monomer [J]. Appl. Catal. A Gen.,2004,272:249-256.
    [86]J. P. Lange, J. Z. Vestering, R. J. Haan, Towards'bio-based'Nylon:conversion of y-valerolactone to methyl pentenoate under catalytic distillation conditions [J]. Chem. Commun.,2007,3488-3490.
    [87]D. C. Elliott, J. G Frye, Hydrogenated 5-Carbon Compound and Method of Making [P]. US Patent,5883266,1999.
    [88]F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer, W. Leitner, Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System [J]. Angew. Chem. Int. Ed.,2010, 49:5510-5514.
    [1]V. Datsyuk, M. Kalyva, K. Papagelis et al. Chemical oxidation of multiwalled carbon nanotubes [J]. Carbon,2008,46:833-840.
    [2]L. Prati, G. Martra, New Gold Catalysts for Liquid Phase Oxidation [J]. Gold Bulletin,1999,32:96-101.
    [3]Y. Ma, Q. Sun, D. Wu, W. H. Fan, Y. L. Zhang, J. F. Deng, A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation [J]. Appl. Catal. A:Gen.1998,171:45-55.
    [4]X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol [J]. Catal. Lett.,2005,102: 183-190.
    [1]B. Girisuta, L. P. B. M. Janssen, H. J. Heeres, Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid [J]. Ind. Eng. Chem. Res.,2007,46: 1696-1708.
    [2]T. Werpy, G. Petersen, Top Value Added Chemicals From Biomass Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas [M]. 2004.
    [3]J. J. Bozell, G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "Top 10" revisited [J]. Green Chem.,2010,12:539-554.
    [4]Jesse Q. Bond, David Martin Alonso, Dong Wang, Ryan M. West, James A. Dumesic, Integrated Catalytic Conversion of y-Valerolactone to Liquid Alkenes for Transportation Fuels [J]. Science,2010,327:1110-1114.
    [5]J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke, H. Gosselink, Valeric Biofuels:A Platform of Cellulosic Transportation Fuels [J]. Angew. Chem. Int. Ed.,2010,49:4479-4483.
    [6]J. P. Lange, J. Z. Vestering, R. J. Haan, Towards'bio-based'Nylon:conversion of y-valerolactone to methyl pentenoate under catalytic distillation conditions [J]. Chem. Commun.,2007,3488-3490.
    [7]A. P. Dunlop, J. W. Madden, Process of preparing gamma-valerolactone [P]. U.S. Patent,2786852,1957.
    [8]P. P. Upare, J. M. Lee, Y. K. Hwang, D. W. Hwang, J. H. Lee, S. B. Halligudi, J. S. Hwang, J. S. Chang, Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts [J]. ChemSusChem.,2011,4:1749-1752.
    [9]P. P. Upare, J. M. Lee, D. W. Hwang, S. B. Halligudi, Y. K. Hwang, J. S. Chang, Selective hydrogenation of levulinic acid to y-valerolactone over carbon-supported noble metal catalysts [J]. J. End. Eng. Chem.,2011,17:287-292.
    [10]L. E. Manzer, Production of 5-methylbutyrolactone from levulinic acid [P]. US patent,6617464 B2,2003.
    [11]Z. P. Yan, L. Lin, S. J. Liu, Synthesis of y-Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst [J]. Energy Fuels,2009,23: 3853-3858.
    [12]A. M. R. Galletti, C. Antonetti, V. D. Luise, M. Martinelli, A sustainable process for the production of y-valerolactone by hydrogenation of biomass-derived levulinic acid [J]. Green Chem.,2012,14,688-694.
    [13]P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis [J]. Appl. Catal. A,2003,253:337-358.
    [14]H. Heeres, R. Handana, D. Chunai, C. B. Rasrendra, B. Girisuta, H. J. Heeres, Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts [J]. Green Chem.,2009,11: 1247-1255.
    [15]B. V. Timokhin, V. A. Baransky and G. D. Eliseeva, Levulinic acid in organic synthesis [J]. Russ. Chem. Rev.,1999,68:73-84.
    [16]M. Kitano, F. Tanimoto and M. Okabashi, Chem. Econ. Eng. Rev.1975,7: 25-29.
    [17]B. Loges, A. Boddien, H. Junge, M. Beller, Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2 Fuel Cells [J]. Angew. Chem. Int. Ed.,2008,47:3962-3965.
    [18]W. Reutemann, H. Kieczka, Formic Acid in Ullmann's Encyclopedia of Industrial Chemistry [M]. Wiley-VCH, Weinheim,2005.
    [19]S. Ha, R. Larsen, R. I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells [J]. J. Power Sources,2005,144:28-34.
    [1]D. Kopetzki, M. Antonietti, Transfer hydrogenation of levulinic acid under hydrothermal conditions catalyzed by sulfate as a temperature-switchable base [J]. Green Chem.,2010,12:656-660.
    [2]H. Heeres, R. Handana, D. Chunai, C. B. Rasrendra, B. Girisuta, H. J. Heeres, Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts [J]. Green Chem.,2009,11: 1247-1255.
    [3]L. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo, Catalytic Conversion of Biomass-Derived Carbohydrates into y-Valerolactone without Using an External H2 Supply [J]. Angew. Chem. Int. Ed.,2009,48:6529-6532.
    [4]M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃ [J]. Chem. Lett.,1987, 2:405-408.
    [5]G. Hutchings. New directions in gold catalysis [J]. Gold Bull.,2004,37:3-11.
    [6]G.C. Bond, C. Louis, D.T. Thompson, Catalysis by gold [M]. Imperial College Press:2006.
    [7]X. Zhang, H. Shi, B. Q. Xu, Catalysis by Gold:Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts [J]. Angew. Chem. Int. Ed.,2005,44:7132-7135.
    [8]A. Corma, P. Serna, H. Garcia, Gold Catalysts Open a New General Chemoselective Route to Synthesize Oximes by Hydrogenation of α,β-Unsaturated Nitrocompounds with H2 [J]. J. Am. Chem. Soc.,2007,129:6358-6359.
    [9]L. He, L. C. Wang, H. Sun, J. Ni, Y. Cao, H. Y. He, K. N. Fan, Efficient and Selective Room-Temperature Gold-Catalyzed Reduction of Nitro Compounds with CO and H2O as the Hydrogen Source [J]. Angew. Chem. Int. Ed.,2009,48: 9538-9541.
    [10]M. Comotti, C. D. Pina, R. Matarrese, M. Rossi, The Catalytic Activity of "Naked" Gold Particles [J]. Angew. Chem. Int. Ed.,2004,43:5812-5815.
    [11]O. Casanova, S. Iborra, A. Corma, Biomass into chemicals:One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria [J]. J. Catal.,2009,265:109-116.
    [12]M. Ojeda, E. Iglesia, Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures [J]. Angew. Chem. Int. Ed.,2009,48:4800-4803.
    [13]L. He, J. Ni, L. C. Wang, F. J. Yu, Y. Cao, H. Y. He, K. N. Fan, Aqueous Room-Temperature Gold-Catalyzed Chemoselective Transfer Hydrogenation of Aldehydes [J]. Chem. Eur. J.,2009,15:11833-11836.
    [14]G. C. Bond, D. T. Thompson, Catalysis by gold [J].Catal. Rev.-Sci. Eng.1999,41: 319-388.
    [15]X. Zhang, H. Shi, B. Q. Xu, Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1,3-butadiene hydrogenation [J]. J. Catal.,2011,279: 75-87.
    [16]M. Li, Z. Wu, Z. Ma, V. Schwartz, D. R. Mullins, S. Dai, S. H. Overbury, CO oxidation on Au/FePO4 catalyst:Reaction pathways and nature of Au sites [J]. J. Catal.,2009,266:98-105.
    [17]L. Deng, Y. Zhao, J. Li, Y. Fu, B. Liao, Q. X. Guo, Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts [J]. ChemSusChem.,2010,3:1172-1175.
    [18]A. Boddien, B. Loges, F. Gartner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, Iron-Catalyzed Hydrogen Production from Formic Acid [J]. J. Am. Chem. Soc.,2012,132:8924-8934.
    [1]R. H. Fischer, R. Pinkos, M. Rosch, F. Stein, Method for Producing Pyrrolidenes [P]. US patent,2004/0158078 Al,2004.
    [2]L. E. Manzer, Production of 5-Methyl-N-Aryl-2-Pyrrolidone and 5-Methyl-N-Cycloalkyl-2-Pyrrolidone by Reductive Amination of Levulinic Acid with Aryl Amines [P]. US Patent,6743819 B1,2004.
    [3]L. E. Manzer, Production of 5-Methyl-N-Aryl-2-Pyrrolidone and 5-Methyl-N-Alkyl-2-Pyrrolidone by Reductive Amination of Levulinic Acid with Nitro Compounds [P]. US Patent,6818593 B2,2004.
    [4]L. E. Manzer, Production of 5-Methyl-N-(Methyl Aryl)-2-Pyrrolidone, 5-Methyl-N-(Methyl Cycloalkyl)-2-Pyrrolidone and 5-Methyl-N-Alkyl-2-Pyrrolidone by Reductive Amination of Levulinic Acid with Cyano Compounds [J]. US Patent, 6841520 B2,2005.
    [5]Y. B. Huang, J. J. Dai, X. J. Deng, Y. C. Qu, Q. X. Guo, Y. Fu, Ruthenium-catalyzed conversion of levulinic acid to pyrrolidines by reductive amination [J]. ChemSusChem.,2011,4:1578-1581.
    [6]E. I. Gurbiiz, D. M. Alonso, J. Q. Bond, J. A. Dumesic, Reactive Extraction of Levulinate Esters and Conversion to γ-Valerolactone for Production of Liquid Fuels [J]. ChemSusChem.,2011,4:357-361.
    [7]P. M. Ayoub, Process for the reactive extractive extraction of levulinic acid [P]. US Patent 0047139A1,2006.
    [8]B. G. Harvey, H. A. Meylemans, The role of butanol in the development of sustainable fuel technologies [J]. J. Chem. Technol. Biotechnol.,2011,86:2-9.
    [9]G. budroni, A. Corma, Gold and gold-platinum as active and selective catalyst for biomass conversion:Synthesis of y-butyrolactone and one-pot synthesis of pyrrolidone [J]. J. Catal.,2008,257:403-408.
    [10]G. Jenner, Homogeneous catalytic reactions involving methyl formate [J]. Appl. Catal. A 1995,121:25-44.
    [11]G. Jenner, E. M. Nahmed, S. Libs-Konrath, J. Mol. Catal.1991,64:337-347.
    [1]J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke, H. Gosselink, Valeric Biofuels:A Platform of Cellulosic Transportation Fuels [J]. Angew. Chem. Int. Ed.,2010,49:4479-4483.
    [2]Jesse Q. Bond, David Martin Alonso, Dong Wang, Ryan M. West, James A. Dumesic, Integrated Catalytic Conversion of y-Valerolactone to Liquid Alkenes for Transportation Fuels [J]. Science,2010,327:1110-1114.
    [3]D. C. Elliott, J. G. Frye, Hydrogenated 5-Carbon Compound and Method of Making [P]. US Patent,5883266,1999.
    [4]F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer, W. Leitner, Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System [J]. Angew. Chem. Int. Ed.,2010, 49:5510-5514.
    [5]F. Radtke, R. A. Koeppel, E. G. Minardi and A. Baiker, Catalytic Reduction of Nitrogen Oxides by Olefins in the Presence of Oxygen over Copper/Alumina: Influence of Copper Loading and Formation of Byproducts [J]. J. Catal.,1997,167: 127-141.
    [6]H. Yahiro, K. Nakaya, T. Yamamoto, K. Saiki and H. Yamaura, Effect of calcination temperature on the catalytic activity of copper supported on y-alumina for the water-gas-shift reaction [J]. Catal. Commun.,2006,7:228-231.
    [7]L. C. Wang, Q. Liu, M. Chen, Y. M. Liu, Y. Cao, H. Y. He and K. N. Fan, Structural Evolution and Catalytic Properties of Nanostructured Cu/ZrO2 Catalysts Prepared by Oxalate Gel-Coprecipitation Technique [J]. J. Phys. Chem. C 2007,111: 16549-16557.
    [8]R. Rao, A. Dandekar, R. T. K. Baker and M. A. VAnnice, Properties of Copper Chromite Catalysts in Hydrogenation Reactions [J]. J. Catal.,1997,171:406-419.
    [9]H. Huang, S. H. Wang, S. J. Wang and G. P. Cao, Deactivation Mechanism of Cu/Zn Catalyst Poisoned by Organic Chlorides in Hydrogenation of Fatty Methyl Ester to Fatty Alcohol [J]. Catal. Lett.,2010,134:351-357.
    [10]S. Wang, Y. C. Zhang and H. C. Liu, Selective Hydrogenolysis of Glycerol to Propylene Glycol on Cu-ZnO Composite Catalysts:Structural Requirements and Reaction Mechanism [J]. Chem. Asian J.,2010,5:1100-1111.
    [11]P. H. Matter, D. J. Braden, U. S. Ozkan, Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts [J]. J. Catal.,2004,223:340-351.
    [12]L. A. Espinosa, R. M. Lago, M. A. Pena, J. L. G. Fierro, Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts [J]. Top. Catal.,2003,22:245-251.
    [13]A. Primo, P. Concepcion, A. Corma, Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2 [J]. Chem. Comn.,2011,47:3613-3615.
    [14]J. C. Serrano-Ruiz, R. M. West, J. A. Dumesic, Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals [J]. Annu. Rev. Chem. Biomol. Eng.,2010,1:79-100.
    [15]S.P. Muller, M. Kucher, C. Ohlinger and B. Kraushaar-Czarnetzki, Extrusion of Cu/ZnO catalysts for the single-stage gas-phase processing of dimethyl maleate to tetrahydrofuran [J]. J. Catal.,2003,218:419-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700