用户名: 密码: 验证码:
新型环保用耐高温复合滤料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步和人们环保意识的增强,对冶金、钢铁、发电、碳黑、水泥等行业高温烟尘过滤越来越重视。目前用于空气和气体过滤的材料以针刺布用量最大,这类材料多呈三维结构,其孔隙小而孔隙率大,过滤效率高,因此在近年来得到越来越广泛的应用。国外研究开发耐高温合成纤维较早,随着耐高温合成纤维的开发利用,新品种滤料不断涌现。而国内由于受化纤工业的影响,目前国产的中高温合成纤维较少,国产的中高温过滤以玻璃纤维材料为主,玻璃滤料虽价格较低,但耐磨、耐折性能差,不能满足环境复杂的高温粉尘过滤要求,其应用受到限制。因此引进高性能的耐高温纤维,研制出优质的耐高温滤料,满足日益增长的高温烟尘过滤的要求是一个重要的课题。
     本课题主要研究了一种新型的环保用耐高温复合过滤材料,首先研究了P84、Basofil、PPS、Conex四种进口耐高温纤维的特性,对四种耐高温纤维进行差热分析,讨论了热处理对纤维力学与化学性能的影响,以及纤维结构包括纤维直径和截面形状对过滤性能的影响。其次主要探讨了六种不同混合比P84/玻纤型复合滤料,对相关的机械和过滤性能进行测试(主要测试指标为:拉伸断裂性能、顶破强力、耐磨性、过滤效率、过滤阻力、透气性),并对过滤材料的性能与混合比之间的关系进行研究。经对测试数据的分析表明,滤料的拉伸断裂性能、顶破强力、耐磨性、过滤效率、过滤阻力与两种纤维组分的含量有显著的相关关系,而透气量与混合比之间没有明显的规律性,并在滤料的各单项性能与混合比之间建立了回归模型。此外,讨论了复合分层结构对滤料性能的影响,及滤料后整理工艺对滤料性能的影响。在上述基础上,确定优化的新型环保用耐高温复合过滤材料的生产工艺,根据现场使用要求选用合适品种进口耐高温纤维与玻纤按70/30混合,采用复合层状结构,并对滤料进行烧毛、轧光、涂层、热定型等后整理工艺。最后,本文对新型耐高温复合非织造过滤材料的综合效益进行了评估,结果表明此种新型环保用耐高温滤料与传统玻纤滤料相比,具有较高的社会、经济和环境效益。
With the development of technology and the enhancement of environmental protection consciousness, people pay more attention to high temperature gas flltration in the areas of metallurgical industry, power making, carbon black manufacture etal. At present needle nonwoven is the most widely used as air and gas flltration media for its three dimensions construction and high porosity and high flltration efficiency. So there is wide prospective market for needle nonwoven. High temperature resistant synthetic fiber is researched earlier abroad than in china. With the development of high temperature resistant synthetic fibers, more and more new kinds of flltration material made by these fibers are coming out. Hovvever, there is few high temperature resistant svnthetic fiber in China today. Then the high temperature gas flltration media are mainly used of glass fiber. Although the glass fiber is cheap, it's abrasion resistance and broken resistance are poor and it can't conform to demand of high temperature gas flltration completely. So the usage of glass fiber is limited. In a word, it is very important to import high performance and high temperature resistant synthetic fiber to produce high property and high temperature resistant filtration media.
    A new kind of high temperature resistant composite filtration media used for environmental protection is investigated in this paper. First, features of four imported high temperature resistant synthetic fibers, P84, Basofil, PPS and Conex are studied. The effect of heat treatment on the mechanical and chemical properties of these fibers is evaluated by differential thermal analysis and other methods. The influence of fiber's diameter and cross-section shape on the flltration property of the flltration media is also researched. Second, Six high temperature resistant filtration media blended with different ratio of P84 to Glass are measured. The main measurement items are listed below: tensile propertv, bursting strength, abrasion resistance, air permeability and flltration efficiency. The relationship betvveen using characteristics and blending ratio of blended filter are also investigated. Analysis of measured data indicates that tensile property, bursting strength, abrasion resistance and filtration efficiency are significantly
    
    
    
    proportional to the blending ratio of two kinds of fibers; obvious regularity is not be found between air permeability and blending ratio. Additionally, regression model of relationship between each item of filter characteristics and the blending ratio is established. Thirdly, the effects of filter surface finishing technology on the properties of the filer media are also discussed. Based on the above study, the optimum produce process of the new high temperature resistant composite filtration medium is ascertained. According to the demand of usage it's necessary to adopt the optimum blending ratio?70/30(P84/Glass). The delamination structure and proper surface finishing processes are necessary. The benefit of the new kind of high temperature resistant composite filtration media is evaluated. Experiments show that this new industrial product has better social, economic and environmental value than traditional glass filtration media.
引文
[1]张济忠.分形[M].北京:清华大学出版社,1995.
    [2]邵启祥译.过滤理论与实践[M].北京:国防工业出版社,1982.
    [3]S.阿达纳主编,徐朴等译.产业用纺织品手册[M].北京:中国纺织出版社,2000.
    [4]刘书平.新型耐高温滤料的研制与发展[J].中国环保产业,2000,(2):32~33.
    [5]张浩圣.新型环保用耐高温过滤材料的研究[A].上海国际产业用纺织品和非织造布展览会及研讨会论文集[C].1999.98~102.
    [6]王曙中.有机耐热纤维的发展及其在非织造布上的应用[A].上海国际产业用纺织品和非织造布展览会及研讨会论文集[C].1999.130~135.
    [7]吴温池.应用于高温干态过滤的三聚氰胺纤维滤材的研制[J].产业用纺织品.2000,(8):19.
    [8]干式粉尘过滤与袋式过滤用纤维手册.豪祥宝业有限公司资料.
    [9]吴宏仁.纺织纤维的结构和性能.北京:纺织工业出版社,1983.
    [10]陈运能.新型纺织原料[M].北京:中国纺织出版社,1998
    [11]H,Griesser.P84聚酰亚胺纤维在非织造业中的应用[J].产业用纺织品.2000
    [12]王延熹.非织造布生产技术[M].北京:纺织工业出版社,1997
    [13]黄齐模主编.纺织品过滤材料[M].北京:纺织工业出版社,1990
    [14]马建伟.非织造布实用教程[M].北京:纺织工业出版社,1994
    [15]GB12625-90.袋式除尘器用滤料及滤袋技术条件[S]
    [16]李明达.工业除尘用过滤材料的开发与性能研究[D].天津:1997.
    [17]徐新阳.气压过滤的成饼动力学及其滤饼的分形结构[J].化工学报,1995,46(1):9~14.
    [18]高安秀树[日].分维数[M].沈步明译.北京:地震出版社,1989.7~25.
    [19]胡事民,金以东等.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993.310~313.
    
    
    [20]周维真.高温高效玻璃纤维针刺毡滤材的特性及其应用[J].玻璃纤维,1995,2:11~17.
    [21]张映雪等.新型环保用耐高温过滤材料的研究[J].非织造布,1999,13(3):21~23.
    [22]A.Miller著 木洋译.碳黑工业用过滤材料的选择[J].碳黑工业,1998,6:9~12.
    [23]徐新阳.滤饼过滤过程的计算机模拟程序设计[J].过滤与分离,2000,10(4):15~18.
    [24]郭秉臣 刘亚文.非织造三维结构过滤材料加工工艺研究[J].产业用纺织品.1998,16(96):18~21.
    [25]康勇.机织过滤介质污染机理及微孔薄膜复合过滤介质的研究[D].沈阳:东北大学,1997
    [26]王金波 孙熙等.我国滤料工业的技术进步及展望[Z].东北大学
    [27]孙熙 孙家伟等,Ryton针刺毡滤料性能研究[Z].东北大学
    [28]王小兵 朱平.玻璃纤维滤材的发展及玻璃纤维针刺毡的加工技术[J].产业用纺织品.2000,18(114):1~4
    [29]陈焕祺.发展中国纺织过滤材料的探讨[J].产业用纺织品,2000
    [30]范松林.非织造过滤材料的开发和应用[J].非织造布
    [31]王曙中.垃圾焚烧炉、二恶英及耐高温袋式过滤材料[J].产业用纺织品,1998,8:5~8
    [32]李文萍.国内外过滤介质孔径测定方法的比较[A].第五届全国非均相分离学术会议论文集[C].上海:1997.167
    [33]张建设.滤布性能测定及其选用[M].北京:机械工业出版社,1997.43.
    [34]许莉等.滤饼结构的分形研究[J].过滤与分离,2000,10(4):22~24.
    [35]肖皖龙.袋式除尘器用滤料特性[J].四川水泥,1995,4:14~19
    [36]王同庆.过滤材料主要性能参数关系[J].过滤与分离,2000,10(1):30~32
    [37]李熙等.Conex耐高温针刺过滤毡的生产及应用[J].非织造布
    [38]程彦.杜邦公司的高性能纺织过滤材料[J].产业用纺织品,1994,10(4):38~42
    [39]焦晓宁.不同后整理手段对非织造布针刺过滤材料过滤性能的影响.产业用纺织品,1995,17(109):24~26
    
    
    [40]袋式除尘器滤料及配件手册.中国环保产业协会袋式除尘委员会[M].东北大学出版社,1997
    [41]Dr. Andrew G. Wilkes. A New Viscose Rayon Fibre For Nonwovens[A]. INDA. Association of the Nonwoven Fabrics Industry. Principles of Nonwovens[C]. American: 1997. 161~179.
    [42]C.R.Woodings, A.J.Bartholomew. The Manufacture Properties and Uses of Inflated Viscose Rayon Fibers[A]. A TAPPI PRESS Anthology. Fibers and Forming for Nonwovens[C]. American: 1992. 78~89
    [43]Thomas C.Allen, B.V.Hettich, J.W.Schapped, and Fred R.Smith. RAYON[A]. A TAPPI PRESS Anthology. Fibers and Forming for Nonwovens[C]. American: 1992. 71~77
    [44]Alan C.Handermann.. BASOFIL Filter Media in High Temperature Dry Filtration Applications[A]. The Collections of the Theses for the '98 China International Nonwovens/Techtextiles Conference[C]. 1998. 58~69
    [45]W. Hoflinger, Ch. Stocklmager and A. Hackl, Particle accumulation at the surface of a filter[J]. Filtration&Separation, Dec.1994.
    [46]KN Chtterjee, et al.. Air Permeability of Non-woven Filter Fabrics[J]. The Indian Textile Journal. April, 1992
    [47]N balasubramanian, et al.. Some Critical Manufacturing Parameters Affecting the Properties of Non-woven dust Research[J]. Vol.18,March, 1993
    [48]方开泰等.实用回归分析[M].北京:科学出版社,1988,第一版.
    [49]赵书经.纺织材料实验教程[M].北京:纺织工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700