用户名: 密码: 验证码:
袋式除尘器含尘气体流动能耗的数值模拟分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环保要求的提高和大气污染问题的日益突显,提高了对除尘技术的要求。大量燃煤机组静电除尘器面临即将改造为袋式除尘器,而改造项目中风机特性和系统可靠性对袋式除尘器的能耗提出了较高的要求。同时实际工程中存在部分袋式除尘器的运行能耗高或滤袋使用寿命短的问题,进而制约了袋式除尘器的迅速推广。袋式除尘器的除尘机理为滤料对颗粒物的过滤捕集,滤料作为核心构件对除尘器的影响体现在过滤阻力和失效性两个方面。过滤阻力相关研究集中在滤料捕集颗粒物后的阻力特性变化,而对运行能耗高的解释仍需完善,形成的机理仍需更加深入的分析。本课题以袋式除尘器内“气流流动—颗粒物运动—能耗”三者间的相互作用为研究对象,从含尘气体流动的角度分析了高能耗形成的原因,建立了相应评价方法并用于对结构设计和工程案例的应用。主要的研究工作如下:
     (1)建立了袋式除尘器能耗基本模型,分析了高能耗形成原因。通过对含尘气体流动过程中颗粒物运动的分析表明,袋式除尘器中过滤浓度升高是含尘气体流动影响能耗的主要方式,是高能耗形成的主要原因。
     (2)建立了袋式除尘器气体流动的数值计算模型。通过对袋式除尘器内气流流动状态的分析,得到其内部同时存在三种状态气流流动区域,并以此为依据对比分析了试验测试结果与模拟计算结果,确定了模拟方法的合理边界层设置、简化方式及计算模型选择等,使模拟方法满足工程应用的要求。
     (3)分析了气流组织对袋式除尘器能耗的影响,建立了相应的评价方法。通过对袋式除尘器结构运行参数的因子分析及交互作用分析,确定了袋式除尘器直接能耗的评价指标为除尘器计算阻力、返混流量比和滤料结构特性,间接能耗的评价指标为滤袋冲刷和滤料处理负荷。
     (4)分析了滤料对袋式除尘器能耗影响,建立了相应的评价方法。通过对12种滤料过滤阻力试验结果的拟合分析,从能耗角度建立了滤料选择的评价方法,并简单分析了滤料结构特性对能耗的影响。
     (5)应用评价方法分析了设备结构参数对能耗的影响。通过对袋式除尘器结构参数的因子分析,得到了影响袋式除尘器能耗的显著性因子及其影响规律。
     (6)应用评价方法实现了对工程改造项目方案预测分析。通过工程改造项目4种方案的评价指标对比,得到了各设计方案中存在的问题及相互间的差异,该结果符合工程改造后的运行状况。
With government's requirement to environmental protection getting stricter and air pollution problem is becaming more and more highlighted, which improve the technical requirement for dedusting. A number of electrostatic dust collectors for coal-fired unitsare are confronted with transforming into bag filter. In addition, fan performance and system reliability improve the technical requirement for bag filter. High operation energy consumption and working life are the main problems which limit promotion of bag filter. The mechanism of bag filter is removal particls by filtration trap with filter materials which is kernel component and effect on filtration resistance and failure. The research of filtration resistance focuses on resistance changing after trapping particles by filter materials, but there is barely researches on operation energy consumption. The formation mechanism of operation energy consumption should be analyzed further more. In this project, we analyzed forming reason from perspective of airflow containing dust and built evaluation methodology which has been applied to structure design and project cases base on the relations with airflow-particles removing-energy consumption. The main works have been done as follows:
     (1) Established energy loss model of bag filter and analyzed the causes of high-energy loss. The investigation by analysis of movement for particles containing in air-flow found that the increasing concentration of particles in filter bag is major cause of formation of high-energy loss and is main way of effect on energy loss.
     (2) Build mathematical model of gas flow of bag filter. It can be divided into3areas by analysis of air-flow states in bag filter. We confirmed mathematical model, reasonable boundary layer and simplifications of simulation method by comparative analysis of experimental and simulation result to meet demands of industry.
     (3) Established evaluation methodology of energy loss by analysis of effect of air distribution on energy loss of bag filter. We determined the evaluation index of direct energy loss of bag filter including calculated resistance, ratio of backmixing and characteristics of filter material structure. The evaluation index of indirect energy loss of bag filter are erosion and treatment load of filter bag.
     (4) Established evaluation methodology of energy loss by analysis of effect of filter materials on energy loss of bag filter. Build evaluation methodology of filter materials chosen by fitting analysis of experimental results of12filter materials resistance from the point of energy loss. Meanwhile, we analyze of effect of filter material structure on energy loss.
     (5) Applied evaluation methodology to analyze effect of Structural parameters of equipment on energy loss. Significant factors and influencing rule which effect on energy loss of bag filter were obtained by factor analysis of Structural parameters of equipment.
     (6) Applied evaluation methodology to predictive analysis of engineering reform projects. We found the problems and differences among the projects by comparing of evaluation index of4reform projects. Finally, we demonstrate the forecasted results of evaluation methodology corresponded to running station of reform projects.
引文
[1]国务院办公厅.关于推进大气污染联防联控工作改善区域空气质量的指导意见[EB/OL], http://zfs.mep.gov.cn/fg/gwyw/201005/t20100514_189497.htm, (2010).
    [2]中国环境保护产业协会袋式除尘委员会,我国袋式除尘行业2009年发展综述[J],中国环保产业,(2010)11-17.
    [3]中国环境保护产业协会袋式除尘委员会,我国袋式除尘行业2010年发展综述[J],中国环保产业,(2011)21-27+34.
    [4]中国环境保护产业协会袋式除尘委员会,我国袋式除尘行业2011年发展综述[J],中国环保产业,(2012)13-26.
    [5]高晖,郭烈锦,除尘器袋室结构改进及内部气固两相流动特征分析[J],西安交通大学学报,(2000)50-54.
    [6]高晖,郭烈锦,下进风袋式除尘器内部气固两相流动数值模拟[J],化学工程,(2001)35-38+33.
    [7]C. Chi-Jen, C. Man-Ting, Effect of flow distributors on uniformity of velocity profile in a baghouse[J], Air& Waste Management Association,55 (2005) 7.
    [8]胡满银,郁金星,孙喜娟,杨勇,外滤式袋式除尘器滤袋内流场的数值模拟,[J],电力科学与工程,(2007)37-40.
    [9]王冠,脉冲袋式除尘器内部流场的研究[M],中冶集团建筑研究总院,2007.
    [10]汪家琼,刘根凡,过滤粉尘层净化氟化氢的优化分析[J],化工机械,(2009)445-448.
    [11]汪家琼,氧化铝在布袋上沉积和吸附HF规律研究[D],华中科技大学,2009.
    [12]李萌萌,基于CFD对袋式除尘器流场的数值模拟分析[D],武汉科技大学,2010.
    [13]郑辉,火电厂袋式除尘设备的机理分析与总体方案设计[D],华北电力大学(北京),2005.
    [14]匡志芳,燃煤电厂分室反吹袋式除尘设备的研究与设计[D],华北电力大学(北京),2006.
    [15]党小庆,大型电除尘器和袋式除尘器气流分布数值模拟与应用研究[D],西安建筑科技大学,2008.
    [16]刘婷,数值模拟方法在燃煤电厂300MW机组电改袋式除尘器气流组织优化 中的应用研究[D],西安建筑科技大学,2010.
    [17]连平,大型燃煤电厂袋式除尘器气流分布设计及优化研究[D],南京信息工程大学,2011.
    [18]陈强,袋式除尘器内气流均匀性的数值模拟研究[D],东华大学,2005.
    [19]胡峰,进风方式对袋式除尘器内气流组织的影响[D],东华大学,2007.
    [20]赵友军,袋式除尘器内部流场分布试验测试及数值模拟研究[D],东华大学,2008.
    [21]张景霞,袋式除尘器内流场的模拟实验研究[D],东华大学,2008.
    [22]邓晓飞,循环流化床锅炉电袋组合式除尘器的设计计算[D],东华大学,2009.
    [23]王以飞,大型袋式除尘器流场的模拟分析与应用[D],东华大学,2010.
    [24]陈红超,袋式除尘器除尘空间气流组织和浓度场的研究[D],东华大学,2011.
    [25]张相亮,灰斗进风袋式除尘器气流均匀性的模拟实验研究及应用[D],东华大学,2012.
    [26]S.C. J.Juda, Staub, (1970) 30,196.
    [27]W.e.a. Bergman, in 15th DOE Nuclear air cleaning conference proceedings, CONF-760822(1979).
    [28]S.N. Rudnick, Fundamental factors governing specific resistance of filter dust cakes[J], Harvard School of Public Health, (1978).
    [29]R.H. Spaite, and Walsh, G. W, Effect of Fabric Structure on Filter Performance [J], Amer. Ind. Hyg. Assoc. J., (1963) 24:357-355.
    [30]R.H. Borgwardt, and Durham, J.F., Factors Affecting the Performance of Fabric Filters[C], the 60th Annual Meeting of the American Institute of Chemical Engineers, New York (1967) Nov.29.
    [31]R. Dennis, Dirgo, J. A., Comparison of Laboratory and Field Derived K2 Values for Dust Collected on Fabric Filters [J], Filtration and Separation, (1981) 18:394-417.
    [32]Y.-H. Cheng, C.-J. Tsai, Factors Influencing Pressure Drop through a Dust Cake during Filtration[J], Aerosol Science and Technology,29 (1998) 315-328.
    [33]W. Hoflinger, C. Stocklmayer, A. Hackl, Model calculation of the compression behaviour of dust filter cakes[J], Filtration & Separation,31 (1994) 807-806.
    [34]S. E, Experimental investigations into the compression of dust cakes deposited on filter media[J], Filtration & Separation,32 (1995) 789-793.
    [35]E. Schmidt, Theoretical investigations into the compression of dust cakes deposited on filter media[J], Filtration & Separation,34 (1997) 365-368.
    [36]D.P. Mortimer, L. Potts, T.H. Frost, Comparison of classical and contemporary methods for prediction of fibrous filter efficiency using Computational Fluid Dynamics (CFD) [J], Journal of Aerosol Science,27, Supplement 1 (1996) S625-S626.
    [37]C. Stocklmayer, W. Hoflinger, Simulation of the filtration behaviour of dust filters[J], Simulation Practice and Theory,6 (1998) 281-296.
    [38]C. Stocklmayer, W. Hoflinger, Simulation of the long-term behaviour of regenerateable dust filters[J], Filtration & Separation,35 (1998) 373-366.
    [39]K.-J. Jeon, Y.-W. Jung, A simulation study on the compression behavior of dust cakes[J], Powder Technology,141 (2004) 1-11.
    [40]M. V.H, Performance analysis of industrial bag filters to control particulate emissions[J], Energy,21 (1996) 9-14.
    [41]M.L. Aguiar, J.R. Coury, Cake formation in fabric filtration of gases[J], Industrial and Engineering Chemistry Research,35 (1996) 3673-3679.
    [42]Y. Endo, D.-R. Chen, D.Y.H. Pui, Effects of particle polydispersity and shape factor during dust cake loading on air filters[J], Powder Technology,98 (1998) 241-249.
    [43]C.R.N. Silva, V.S. Negrini, M.L. Aguiar, J.R. Coury, Influence of gas velocity on cake formation and detachment[J], Powder Technology,101 (1999) 165-172.
    [44]W. Hoeflinger, H. Rud, G. Mauschitz, Estimation of the particle penetration and the dust holding capacity of different surface-treated needle felts [J], Separation and Purification Technology,58 (2007) 256-261.
    [45]M. Saleem, G. Krammer, Effect of filtration velocity and dust concentration on cake formation and filter operation in a pilot scale jet pulsed bag filter[J], Journal of Hazardous Materials,144 (2007) 677-681.
    [46]M. Saleem, G. Krammer, Optical in-situ measurement of filter cake height during bag filter plant operation[J], Powder Technology,173 (2007) 93-106.
    [47]E.H. Tanabe, P.M. Barros, K.B. Rodrigues, M.L. Aguiar, Experimental investigation of deposition and removal of particles during gas filtration with various fabric filters[J], Separation and Purification Technology,80 (2011) 187-195.
    [48]M. Saleem, R.U. Khan, M.S. Tahir, G. Krammer, Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement[J], Powder Technology, (2011).
    [49]谭振祥,王金波,表面非稳态过滤的理论分析与实验研究[J],通风除尘,(1990)1-4.
    [50]荣伟东,张国权,纤维层非稳态过滤的理论分析与实验研究[J],通风除尘,(1992)8-12+29.
    [51]荣伟东,张国权,静电强化纤维层过滤性能的研究[J],环境工程,(1993)24-29.
    [52]荣伟东,张国权,静电-纤维层过滤的理论分析与实验研究[J],环境科学学报,(1993)372-378.
    [53]向晓东,陈宝智,张国权,粉尘分形几何特征及在除尘技术中的应用探讨[J],建筑热能通风空调,(1999)14-17+37.
    [54]向晓东,刘君侠,彭伟功,纤维层表面非稳态过滤研究[J],环境工程,(2002)31-34+33.
    [55]向晓东,朱东升,彭伟功,非稳态过滤除尘压力损失的研究[J],工业安全与环保,(2002)5-7.
    [56]龙正伟,姚强,黄斌,宋蔷,中和颗粒可压缩性颗粒层模型[J],工程热物理学报,(2007)711-713.
    [57]黄斌,姚强,龙正伟,宋蔷,荷电颗粒可压缩性颗粒层模型[J],热能动力工程,(2007)427-430+469-470.
    [58]詹亮亮,卢锦奎,翁煜彬,荷电对粉尘过滤过程影响的研究[J],中国环保产业,(2011)41-43+48.
    [59]茅清希,黄继红,梅红生,黄斌香,微孔薄膜复合滤料的性能研究[J],建筑热能通风空调,(1999)1-5.
    [60]黄继红,茅清希,梅红生,黄斌香,微孔薄膜复合滤料运行阻力的研究[J],建筑热能通风空调,(2001)1-4.
    [61]黄继红,茅清希,黄斌香,茅卫东,覆膜滤料性能的综合评价及优化选择[J],建筑热能通风空调,(2001)1-3.
    [62]刘华,茅清希,黄继红,黄斌香,茅卫东,覆膜滤料清灰效果的分析研究[J],建筑热能通风空调,(2002)9-12.
    [63]葛亚勤,超声波雾化对微细粉尘过滤性能影响研究[D],北京化工大学,2010.
    [64]王文勇,陈楠,脉冲袋式除尘器过滤风速的确定[J],四川环境,(2010)32-34+51.
    [65]柳静献,毛宁,常德强,孙熙,高密面层结构对针刺毡滤料性能影响的实验研究[J],东北大学学报(自然科学版),(2011)129-132.
    [66]王冠,王海涛,张殿印,脉冲袋式除尘器的阻力分析[J],中国环保产业,(2011)31-34.
    [67]付海明,沈恒根,非稳定过滤捕集效率的理论计算研究[J],中国粉体技术,(2003)4-7.
    [68]付海明,袋式除尘设备用表面过滤材料净化性能的模拟与实验研究[J],in,东华大学,2006.
    [69]付海明,亢燕铭,粉尘沉积形成滤饼结构的分形研究[J],过滤与分离,(2008)4-7.
    [70]付海明,纤维过滤介质非稳态过滤压力损失的研究[J],纺织学报,(2009)15-18+23.
    [71]李华,燃煤锅炉烟气除尘用新型复合滤料过滤性能应用研究[D],东华大学,2005.
    [72]严长勇,燃煤电厂锅炉烟气净化用除尘过滤材料的试验研究[D],东华大学,2006.
    [73]张亮,垃圾焚烧炉烟气净化用袋式除尘滤料的试验研究[D],东华大学,2007.
    [74]杜柳柳,袋式除尘器用PTFE复合滤料性能的试验研究[D],东华大学,2008.
    [75]童志权,工业废气与净化(第2版)[M],高等教育出版社,北京,2001.
    [76]陈明绍,吴光兴,张大中等,除尘技术的基本理论与应用[M],中国建筑工业出版社,北京,1981.
    [77]井.刚一,除尘装置的性能[M],机械工业出版社,北京,1986.
    [78]孙一坚,工业通风(第4版)[M],中国建筑工业出版社,北京,2010.
    [79]F.U.s. guide, Chapter6:Boundary Conditions,1 (2003).
    [80]A.S. Jean-Noel Baleo, Pierre Le Cloirec, Numerical simulation of flows in air treatment devices using activated carbon cloths filters[J], Chemical Engineering Science,55 (2000).
    [81]陈广庭,沙害防治技术[M],化学工业出版社,北京,2004.
    [82]杨伦,谢一华,气力输送工程[M],机械工业出版社,北京,2007.
    [83]冶金工业部专家组,钢铁企业采暖通风设计手册[M],冶金工业出版社,北京,1996.
    [84]王福军,计算流体动力学分析-CFD软件原理与应用[M],清华大学出版社,北京,2004.
    [85]蔡增基,龙天渝,流体力学泵与风机(第五版)[M],中国建筑工业出版社,北京,2009.
    [86]郝黎人,Spss实用统计分析[M],中国水利水电出版社,北京,2003.
    [87]陈国矩,胡健民,除尘器测试技术[M],水利电利出版社,北京,1988.
    [88]付海明,沈恒根,空气过滤理论研究与发展[J],过滤与分离,(2003)20-24.
    [89]陈隆枢,陶晖,袋式除尘技术手册[M],机械工业出版社,北京,2010.
    [90]许钟麟,空气洁净技术原理(第3版)[M],科学出版社,北京,2003.
    [91]王明星,燃煤电厂“电改袋”袋式除尘器改造的技术研究及应用[D],东华大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700