用户名: 密码: 验证码:
基于高温含尘烟气净化用纤维滤料织物特性研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,雾霾引发的空气污染问题危害人们的健康和生活质量,成为社会关注的热点问题,在工业炉窑中如何更有效控制颗粒物的排放成为我国环保领域的研究热点。袋式除尘技术作为含尘烟气净化的重要途径之一,已经在除尘领域得到广泛应用。纤维滤料技术长期以来主要偏重于产品性能技术研究,在与重化工行业快速发展中实施相互匹配的功能化技术研究方面显得落后,滤料技术目前已逐渐表现为束缚袋式除尘技术进一步发展的瓶颈技术。对滤料技术进一步深化研究的根本在于将滤料的技术性研究转化到对滤料的功能化技术研究上,即:把滤料自身性能的研究与滤料应用的环境紧密结合起来,从行业应用的角度进一步深化认识纤维滤料的各种特性和织物构造,进一步提出正确使用滤料的方法和技术改进的途径。
     针对目前存在的问题,本文主要做了以下相关研究:
     (1)针对各种滤料主材的耐高温特性进行了试验研究,分别从热稳定性分析和阻燃性角度,尤其对进一步使用的芳砜纶进行了热反应动力学分析。热稳定性试验结果表明,PSA纤维滤料的高温稳定性优于PMIA、PI纤维滤料;玄武岩纱线及复合滤料的高温处理后力学性能优于玻璃纤维纱线及其滤料。高温对滤料表面的纤维结构有一定程度的损伤,纤维出现断裂、炭化、剥离等现象,这是导致纤维力学稳定性降低、滤料高温力学失效的重要原因。对芳砜纶进行的热降解动力学分析得到:采用不同升温速率时,随着升温速率的增大,PSA纤维的初始分解温度及热降解速率最大时的温度均升高;采用Kissinger法比用Flynn-Wall-Ozawa法和Friedman法所得到的活化能高,并得到芳砜纶的热降解动力学方程。
     (2)对耐高温纤维滤料的耐酸碱失效特性的试验表明:PPS纤维的耐酸和碱腐蚀性能最好,PI纤维的耐酸性优于PSA、PMIA纤维,而耐碱性最差;PSA纤维和PMIA纤维的耐酸稳定性接近,耐碱稳定性上后者好于前者;纤维成网后形成的针刺毡的变化趋势与纤维一致,有一定程度的提高;BAS/PSA复合滤料和GLA/PSA复合滤料的耐碱腐蚀稳定性接近,而前者的耐酸腐蚀稳定性优于后者。酸碱环境会使纤维的表面微观形态、分子官能团结构发生变化,这是导致滤料失效的重要原因。
     (3)对不同织物构造形式的袋式除尘滤料进行了过滤效率的试验研究,尤其是具有梯度构造的滤料。试验分析了织物构造中纤维细度、纤维比表面积、滤料单位面积质量对过滤效率的影响,同时还对比了不同过滤方式的滤料在试验设定的不同过滤风速、粉尘负荷下的过滤效率。试验结果表明,不论在清洁状态还是含尘状态下,梯度滤料(表层过滤)表面的超细纤维使得其分级效率较高,几乎可以与覆膜滤料的分级效率接近,对粒径大于1.0μm的颗粒物过滤效率接近100%,对颗粒物的分级效率明显优于深层过滤材料。在滤料构造中适当选用比表面积大的纤维(如细旦纤维、异形纤维等),可以有效增加滤料的过滤效率;对不同粒径颗粒物的过滤效率随滤料的克重(厚度)增加均呈上升趋势,且存在最佳克重(厚度);滤料的构造形式对分级过滤效率有很大影响。
     (4)将量纲分析理论用于滤料理论过滤效率的建模中,建立基于量纲分析理论的滤料过滤效率的无量纲表达式,提出了定性判定滤料过滤效率的无量纲量,填充率和颗粒物直径与纤维直径的相对尺度。基于量纲分析的结果得出在滤料的构造设计中需提高相对尺度和纤维层的填充率,在袋式除尘滤料的构造设计中采用有梯度的纤维层设计,并在滤料表面引入超细纤维层,为袋式除尘过滤材料的结构设计中采用梯度构造找到理论上的支撑点。
     (5)利用模糊灰色理论,提出了耐高温纤维性能和滤料织物构造形式的评价,结果表明:四种耐高温纤维性能优劣顺序依次为:聚酰亚胺纤维(PI)、聚苯硫醚纤维(PPS)、芳砜纶纤维(PSA)、芳纶纤维(PMIA),并且其中芳砜纶与聚苯硫醚的性能评价接近,优于芳纶。三种滤料构造形式的优劣顺序依次为:梯度滤料、覆膜滤料、深层滤料,因此在滤料的设计选用时优先采用梯度构造。应用灰色关联评价减少了评价的主观性和盲目性,保证了评价结果的准确可靠及较大的实用性,评价结果以量化形式显示,使不同种类的耐高温纤维和不同构造形式具有可比性,该方法的采用方便了对过滤材料的评价和选型设计。
     (6)对燃煤电厂电站锅炉采用燃煤掺烧高炉煤气,烟气排放温度接近200℃且腐蚀性较大的工况,进行选用滤料设计选用及试验分析。设计中选用了梯度过滤材料和国产耐高温纤维。结果表明,选用滤料在250℃高温环境下的强度保持率均保持在100%以上,但尺寸稳定性上低于另外两种对比试验的玻纤滤料:在酸性腐蚀环境下的强度保持率都明显高于其他两种滤料;在氧化环境中经纬向的强度保持率均保持在90%以上;过滤性能方面,该选用复合滤料在清洁状态下阻力低于对比的两种滤料,并且在低风速环境下设计滤料在颗粒物捕集效率上高于对比的两种滤料。
The performance of the filter material is an important factor for long-term stable operation of bag dedusting system, so the study of filter material structure characteristics is of great significance. In thermal power plants boiler dust removal, for example, the filtration technology gradually transforms from the electric to bag-type dust collector, which puts forwards higher requirements on the high temperature filter material of filtering efficiency, service life, etc. So the technology of filter material research is very necessary.
     This thesis focuses on the following elements:
     (1) Experiments were taken to study the high-temperature characteristics of various filter materials respectively, from the analysis of the thermal stability and flame retardance angle, especially for further use of PSA kinetics analysis conducted heat. Experimental results showed that the thermal stability, high temperature stability PSA fiber filter is better than PMIA, PI fiber filter; basalt yarns and high temperature processing of the mechanical properties of the composite filter is superior to glass fiber yarn and media. High temperature on the surface of the fiber structure of filter media has a certain degree of damage, fiber breakage occurs, charring, peeling phenomenon, which is an important cause of lower fiber mechanical stability, high temperature mechanical filter failure. Thermal degradation kinetics analysis conducted polysulfonamide get:When using different heating rates, with increasing heating rate, initial PSA fiber temperature and thermal decomposition temperature of the maximum degradation rate were increased; using Kissinger method than using Flynn-Wall-Ozawa and Friedman methods obtained the activation energy is high, and get polysulfonamide thermal degradation kinetics.
     (2) Important factors such as high temperature and chemical factor affecting the reliability of the bag filter run were tested and analysed. The antitemperature experiments showed that PSA had better high temperature stability than PMIA and PI fiber media; basalt yarn and fabric had better high temperature stability than glass yarn and fabric. The chemical experiments showed that PPS had the best acid and alkali resistant; the acid resistant of PI was better than PSA and PMIA; the acid resistant of PSA and PMIA were close and the after had better alkali resiatant; the alkali resiatant of BAS/PSA and GLA/PSA were close and the former had better acid resiatant. The fabric had the same trend with the fibers after they were net together.
     The fiber surface morphology and molecular structure change in high temperature or chemical environment, which were important reasons leading to media failure.
     (3) In order to verify the performanceof gradient structure of filter material filter and reveal the rarionality of existing fiber fineness and thickness, tests of the filtration efficiency of the dust filter bag of different types of fabric structure were experimented. The effect of the fiber fineness, specific surface area, mass per unit area to the filtration efficiency were analysed, and also compares the filtration efficiency of different filters type under setting different filtration velocity and dust load. The results showed that in both clean and dust state, the gradient filter material filter with the surface of ultra-fine fiber on the surface made the classification efficiency is higher, which can be close to the effect of filter material classification efficiency. To the particle size which is greater than1.0microns particle filtering efficiency is close to100%, which is obviously better than the deep filtration material classification efficiency. The results showed that the use high specific surface area fiber (eg. superfine fiber) can increase the filtration efficiency and the filtration efficiency increased with the mass per unit area (thickness) and there exist an optimnum thickness.
     (4) At the same time, the dimension analysis theory was used to filter efficiency of filter material theory model and based on the theory of dimension analysis filter efficiency of filter material dimensionless expression, this paper put forward the filter efficiency of filter material qualitative determination dimensionless quantity, filling ratio and the particle diameter and the relative measure of fiber diameter.Through the analysis of fiber fineness affecting the performance of filter media, the new structure filter-gradient filter found support points in theory. The superfine fiber layer used in the fabric increase the filtration efficiency at the same time still can reduce the dosage of fiber effectively.
     (5) Evaluation of high-temperature fiber fabric filter performance and structural forms was established by using fuzzy gray theory. The results showed that:four kinds of high-temperature performance merits of the order of fiber:polyimide fiber (PI), polyphenylene sulfide fiber (PPS), PSA fiber (PSA), aramid fiber (PMIA), and in which the performance evaluation of polyphenylene sulfide and polysulfonamide was close, better than PMIA. Advantages and disadvantages of the three forms of media construct order:gradient filter, membrane filter media, deep filter, the filter is designed so when the priority selection gradient structure. Application of gray correlation evaluation reduces the subjectivity of evaluation and blindness, to ensure the accuracy and reliability and practicality of a larger evaluation results, the evaluation results are shown in quantized form, so that different forms of high temperature resistant fibers and different types of structures comparable the method adopted to facilitate the evaluation and on the filter material selection and design.
     (6) Consider the condition of coal fired power plant boiler using coal mixing burning blast furnace gas and flue gas temperature is close to200℃, the applicability of the filter material was tested. The results showed that the breaking strength retention rate was100%in250℃, but the high temperature dimensional stability was worse than the comparive glass fabrics; the acid resistance was better than the other two; the strength retention rate was above90%in the oxidation condition; filtration efficiency to5.0μm particles were above99.99%under low airflow. In a word, the choosen media has application for the sepecial conditon.
引文
[1]王励前.我国燃煤电厂除尘现状及提高细尘捕集效率的措施.中国工程院工程科技论坛(第十四场).北京,2001.
    [2]张殿印.除尘技术手册[M].北京:冶金工业出版社,2002.
    [3]赵维臣.燃煤锅炉除尘器“电改袋”的改造及应用[J].华北电力技术,2006,8:35-38
    [4]张秀琨,郑刚.电袋复合除尘器研究与应用[J].能源复合除尘器研究与应用,2007,(3):74-76
    [5]金国森.除尘设备[M].北京:化学工业工业出版社,2002.
    [6]陈隆枢,肖容绪.袋式除尘器在我国的发展状况及发展趋势[C].全国袋式过滤技术研讨会论文集.2001,4武汉.
    [7]陈明绍,吴光兴,张大中,等.除尘技术的基础理论与应用[M].北京:中国建筑工业出社,1981.
    [8]桑亮,孙体昌,杨景玲,等.袋式除尘器的发展及其在高温条件下的应用[J].安徽化工,2006,140(2):61-63.
    [9]宋七棣.燃煤锅炉成功应用袋式除尘器的艰难历程[J].中国环保产业,2002,11:44-47.
    [10]刘书平.我国用于袋式除尘器的过滤材料[J].产业用纺织品,2007,196(1):1-4.
    [11]孙一坚,沈恒根.工业通风(第四版)[M].北京:中国建筑工业出版社,2010:87.
    [12]张卫东,苏海佳,高坚.袋式除尘器及其滤料的发展[J].化工进展,2003,22(4):380-384.
    [13]Ping Hao. Advanced in Baghouse Filtration Using New Innovative Nonwoven Fabrics. The 2nd China International Filtration Conference[C]. Shanghai:2002, 74-93.
    [14]Carlos M, Romo-Kroger. A qualitative study of atmospheric aerosols and particles deposited on flat membrane surfaces by microscopy and other techniques[J]. Powder Technology,2006, (161):235-241.
    [15]Qufu Wei, Xueliang Xiao, Dayin Hou, et al. Characterization of nonwoven material functionalized by sputter coating of copper[J]. Surface & Coatings Technology,2008,202:2535-2539.
    [16]严长勇.燃煤电厂锅炉烟气净化用除尘过滤材料的试验研究[D].上海:东华大学,2006.
    [17]肖宝恒,叶毅科,裴爱芳.燃煤电厂袋式除尘器滤料的研究[J].电力环境保 护,2004,20(4):28-29,42.
    [18]Kuwabara, S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers [J]. J. Phys. Soc.Japan,1959,14(4):527-532.
    [19]Stechkina, I.B., Fuchs, N.A.. Study on fibrous aerosol filters I. Calculation of diffusional deposition of aerosol in fibrous filters [J]. Ann. Occup. Hyg.,1966, 9:59-64.
    [20]Orest Lastow, Albert Podgoriki. Single-fiber collection efficiency[M]. Boca Roton:Lewis publishers,1997.
    [21]Langmuir I. The Collected Works[M]. Atmospheric Phenomena, Vol.10. Pergamon Press, Oxford,1961.
    [22]吉川暲.空気调和 卫生工学会论文集[M].1978,52(4):47-55.
    [23]I.B. Stechkina, A.A. Kirsch, N.A. Fuchs. Studies on fibrous aerosol filters-Ⅳ.Calculation of aerosol deposition in model filters in the range of maximum penetration[J]. Ann.Occup.Hyg,1969,12:1-8.
    [24]Davies, C.N. The separation of airborne dust and particles [M].Proc. Inst. Mech. Eng., London,1952.
    [25]H.C.Yeh, B.Y.H.Liu. Aerosol filtration by fibrous filters-Ⅰ. Theoretical.[J].Aerosol Sci.,1974,5:191-204.
    [26]Spurny, K.R. Aerosol filtration and separation-Review, presence and future.Aerosols[J]. Proc. of the 3rd Intern. Aerosol Conference, Kyoto, Sept., 1990. Vol.1, ed. S. Masuda and K. Takahashi,1990.
    [27]Cai, J. Fibrous filters with non-ideal conditions [D]. Royal Inst of Tech., Stockholm,1992.
    [28]Harrop, J. A., Stenhouse, J. I. T. The theoretical prediction of inertial impaction efficiencies in fibrous filters [J]. Chemical Engineering Science,1969,24(9): 1475-1481.
    [29]K. W. Lee, Y. H. Liu. On the minimum Efficiency and the most Penetrating Particle Size for Fibrous Filters [J]. Journal of the Air Pollution Control Association,1980,30:377-381.
    [30]Chen, C.Y. Filtration of aerosols by fibrous media[J]. Chemical Reviews, 1955,55(3):595-623.
    [31]Davies C N.空气过滤[M].北京:原子能出版社,1979:1-171.
    [32]Kvetoslav R.Spurny. Aerosol filtration science at the end of the 20th century [M].Chapter2, advance in aerosol filtration, Lewis publishers, Boca Roton, 1997.
    [33]Rosner D.E., P.Tandon, A.G. Konstanpulous local size distribution of particles deposited by internal impaction on cylindrical target in dust-loaden [J]. J.aerosol Sci.,19952,61:257-1279.
    [34]Piekaar H. W., Clarenburg L. A. Aerosol filters the tortuousity factors in fibous filters [J]. Chem. Eng. Sci.1967,22:1817-1827.
    [35]Clarenburg L. A, Piekaar H. W. Aerosol filters (Ⅰ Ⅱ) Theory of pressure drop across single component glass fibre filters [J]. Chem. Eng. Sci.1968, 23:765-781.
    [36]付海明,沈恒根.非稳态过滤捕集效率的理论计算研究[J].中国粉体技术,2003,(6):4-7.
    [37]付海明,沈恒根.纤维过滤介质捕集效率数学模型的研究[J].东华大学学报(自然科学版),2004,30(3):5-9.
    [38]朱晖,沈恒根,张威.颗粒物尺度对滤料过率性能的影响[J].暖通空调,2005,35(1):3-5.
    [39]亢燕铭,张仁建,沈恒根,等.两种流型下雾滴表面气溶胶粒子的扩散沉积[J].应用力学学报,2001,18(3):71-74.
    [40]尹晓霞,沈恒根.纤维性粉尘去除理论探讨[J].建筑热能通风空调,2001,19(6):25-27.
    [41]苏小红,付海明.浅析袋式除尘器孔隙率与过滤特性之间的关系[J].建筑热能通风空调,2006,25(2):100-103.
    [42]Rosner D. E., P. Tandon, A. G. Konstanpulous. Loal size distribution of particles deposited by internal impaction on cylindrical target in dust-loaden [J]. J. Aerosol Sci.1995,61:257-279.
    [43]A. Schmidt-ott. New approaches to study characterization of ultrafine agglomerates[J]. Aerosol Sci.,1988,19(5):553-563.
    [44]D. Thomas, P. Penicot, P. Contal, et al. Clogging of fibrous filters by solid aerosol particles experimental and modeling study[J]. Chemical Engineering Science,2001,56:3549-3561.
    [45]W. Hoflinger, Ch. Stocklmayer, A. Hackl. Modal calculation of the compression behavior of dust filter cake[J]. Filtration and Separation,1994, (12):807-811.
    [46]Ch. Stocklmayer, W. Holflinger. Simulation of the regeneration of dust filters[J]. Methematics and Computers in Simulation,1998,46:601-609.
    [47]Eberhard Schmidt. Theoretical investigations into the compression of dust cakes deposited on filter media[J]. Filtration and Separation,1997, (5):365-368.
    [48]S. Jagannathan, H. Vahedi Tafreshi, B. Pourdeyhimi. A realistic approach for modeling permeability of fibrous media:3-D imaging couplied with CFD simulation [J]. Chemical Engineering Science,2008,63:244-252.
    [49]Chao Zhu, Chao-Hsin Lin, Chun Shun Cheung. Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers[J]. Power Technology, 2000,112:149-162.
    [50]Han I. Siyyam, M. H. Hamdan. Analysis of particulate behavior in porous media[J]. Applied Mathematics and Mechanics,2008,29(4):511-516.
    [51]C. R. N. Silva, V. S. Negrini, M. L. Aguiar etal. Influence of gas velocity on cake formation and detachment[J]. Power Technolpgy,1999,101:165-172.
    [52]Chikao Kanaoka, Sotoji Hiragi. Pressure drop of air filter with dust load[J]. J. Aerosol Sci.1990,21:127-137.
    [53]Wang, Q., Maze, B., Tafreshi, H. V., et al. A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media. Chemical Engineering Science,2006,61:4871-4883.
    [54]Wang, Q., Maze, B., Tafreshi, H. V., et al. Simulating through-plane permeability of fibrous materials with different fiber lengths. Model. Simul. Mater. Sci. Eng. 2007,15:855-868.
    [55]Hosseini, S. A., Tafreshi, H. V.3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technology,2010,201:153-160.
    [56]付海明.袋式除尘设备用表面过滤材料净化性能的模拟与实验研究[D].上海:东华大学,2006.
    [57]钱付平,王海刚,陈光.表面覆膜多层复合纤维滤料过滤性能的数值研究[J].环境科学学报,2010,30(12):2392-2398.
    [58]Zhou Bin, Tronville, P., Rivers, R., et al. Numerical study of pressure drop for a new fibrous media model. Journal of Southeast University(English Edition), 2010,26(2):311-315.
    [59]Miguel,A.F. Effect of air humidity on the evolution of permeability and perfoemance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles[J]. Journal of Aerosol Science,2003,34(6):783-799.
    [60]许钟麟.空气洁净技术原理(第三版)[M].北京:科学出版社,2003.
    [61]王晗,郑高峰,孙道恒.电纺不同直径纳米纤维薄膜的空气过滤性能[J].功能材料与器件学报,2008,14(1):153-157.
    [62]Alan C. Handermann.应用于高温气体过滤的Basofil过滤材料[J].产业用纺织品,2001,19(5):10-15.
    [63]严长勇,沈恒根.常规滤料与覆膜滤料的性能测试与对比[J].中国纺织产业,2005,(10):15-17.
    [64]严长勇,沈恒根.袋式除尘用过滤材料的性能测试与对比[J].工业安全与环保,2006,32(1):3-5.
    [65]杜柳柳,沈恒根.高温烟气除尘滤料过滤性能测试检测及对比分析[J].工业安全与环保,2008,34(2):4-7.
    [66]王迎辉,沈恒根.驻极体过滤材料过滤性能的测试[J].产业用纺织品,2007,25(11):15-19.
    [67]赵宁宁,柳静献.PTFE滤料滤尘性能的实验研究[J].科学咨询,2009,(7):49.
    [68]范晓玲.新型环保用耐高温复合滤料的研究[D].天津:天津工业大学,2002.
    [69]范晓玲,郭秉臣.新型耐高温滤料用纤维[J].北京纺织,2001,(8):40-46.
    [70]H.Griesser,陈颖译.P84聚酰亚胺纤维在非织造业中的应用[J].产业用纺织品,2000(3):40-42.
    [71]王新威,胡祖明,刘兆峰.芳香族耐高温纤维及主要品种[J].材料导报,2007,21(5):53-58.
    [72]李熙,靳双林.PPS纤维及其在袋式除尘领域的应用[J].产业用纺织品,2007,25(4):1-4.
    [73]张浩,马海燕,胡祖明,等.聚苯硫醚纤维的热分析及热处理研究[J].合成纤维,2007(4):25-28,32.
    [74]叶健青,张玉华,任加荣,等.芳砜纶的热稳定性分析[J].东华大学学报(自然科学版),2005,31(2):13-16.
    [75]任加荣,王锦,俞镇慌.芳砜纶纤维热处理力学性能分析[J].国际纺织导报,2007,(11):27-34.
    [76]张丽,李亚滨,刘建中.芳砜纶纤维耐热性能研究[J].天津工业大学学报,2006,25(6):17-19.
    [77]张丽.芳砜纶纤维的性能研究[D].天津:天津工业大学,2004.
    [78]倪如青,陈蕾,刘兆峰,等.芳砜纶纺丝溶液的流变性能研究[J].合成纤维,2005,(6):5-9.
    [79]梁磊,梁玉舫,李瑾.玄武岩纤维物化性能的研究[J].玻璃纤维,2006,(1):15-19.
    [80]李新娥.玄武岩纤维在高温烟气过滤上应用之优势[J].产业用纺织品,2008,26(4):46-48.
    [81]吕海荣,杨彩云,韩大伟.复合材料用玄武岩增强纤维的性能研究[J].材料工程,2009,增刊(2):89-92,96.
    [82]Militky, J., Kovacic, V. r., Rubnerova, J.. Influence of thermal treatment on tensile failure of basalt fibers[J]. Engineering Fracture Mechanics,2002,69: 1025-1033.
    [83]Czigany, T., Marosi, G., Macskasi, L., et al. Development of basalt fiber reinforced polymer composite engineering material[J]. Bazaltszal-erositesu polimer kompozit szerkezeti anyag kifejlesztese,2003,40:139-144.
    [84]T, C.. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites:Mechanical properties and acoustic emission study[J]. Composites Science and Technology,2006,66:3210-3220.
    [85]Deak, T., Czigany, T.. Investigation of basalt fiber reinforced polyamide composites[J].2008,589:7-12.
    [86]Manikandan, V., Winowlin Jappes, J. T., Suresh Kumar, S. M., et al. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites[J]. Composites:Part B,2012, (43): 812-818.
    [87]贺湘兵,于斌,韩建,等.酸碱条件对聚苯硫醚纤维力学性能的影响[J].浙江理工大学学报,2001,28(2):178-181.
    [88]包林初.PPS(RYTON)针刺滤料的研制和应用[J].产业用纺织品,2002,20(1):18-22.
    [89]张亮.垃圾焚烧炉烟气净化用袋式除尘滤料的试验研究[D].上海:东华大学,2007.
    [90]庄玉玲.PPS滤料在S02气体作用下的耐腐蚀性研究[J].安全与环境学报,2008,8(1):51-55.
    [91]庄玉玲.氧气对PPS滤料性能的影响试验研究[J].安全与环境工程,2010,17(2):113-118.
    [92]柳静献,郭彦波,毛宁,等.臭氧对锅炉烟气用PPS滤料性能影响的实验研究[J]. 业安全与环保,2010,36(10):1-3.
    [93]柳静献,张海燕,常德强,等.N02对烟气除尘用聚苯硫醚滤料机械性能的影响[J].东北大学学报(自然科学版),2010,31(7):1030-1034.
    [94]柳静献,毛宁,常德强,等.温度对PPS针刺毡滤料的影响研究[C].2008(沈阳)国际安全科学与技术学术研讨会,中国辽宁沈阳,2008:317-321.
    [95]Tanthapanichakoon, W., Furuuchi, M., Nitta, K.-H., et al. Degradation of semi-crystalline PPS bag-filter materials by NO and O2 at high temperature[J]. Polymer Degradation and Stability,2006,91:1637-1644.
    [96]Tanthapanichakoon, W., Furuuchi, M., Nitta, K.-H., et al. Degradation of bag-filter non-woven fabrics by nitric oxide at high temperatures[J]. Advanced Powder Technology,2007,18:349-354.
    [97]Tanthapanichakoon, W., Hata, M., Nitta, K.-h., et al. Mechanical degradation of filter polymer materials:Polyphenylene sulfide[J]. Polymer Degradation and Stability,2006,91:2614-2621.
    [98]Lund, M. D., Yue, Y.-Z.. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers[J]. Journal of Non-Crystalline Solids,2008,354:1151-1154.
    [99]Sim J., Park C., Moon D.Y. Characteristics of basalt fiber as a strengthening material for concrete structure[J]. Composites Part B Engineering,2005, (36): 504-512.
    [100]Scheffler, C., Forster, T., Mader, E., et al. Aging of alkali-resistant glass and basalt fibers in alkaline solutions:Evaluation of the failure stress by Weibull distribution function[J]. Journal of Non-Crystalline Solids,2009,355: 2588-2595.
    [101]Wei, B., Cao, H., Song, S.. Environmental resistance and mechanical performance of basalt and glass fibers[J]. Materials Science and Engineering A, 2010,527:4708-4715.
    [102]Wei, B., Cao, H., Song, S.. Tensile behavior contrast of basalt and glass fibers after chemical treatment[J]. Materials & Design,2010,31:4244-4250.
    [103]Wei, B., Cao, H., Song, S.. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater[J]. Corrosion Science,2011,53:426-431.
    [104]Wei, B., Cao, H., Song, S.. Surface modification and characterization of basalt fibers with hybrid sizings[J]. Composites Part A:Applied Science and Manufacturing,2011,42:22-29.
    [105]Derombise, G., Vouyovitch Van Schoors, L., Davies, P.. Degradation of Technora aramid fibres in alkaline and neutral environments[J]. Polymer Degradation and Stability,2009,94:1615-1620.
    [106]Huang, G.. Tensile behaviour of some high performance filaments after sulphuric acid treatment[J]. Materials & Design,2008,29:1671-1674.
    [107]Huang, G.. Tensile behaviours of some high performance filaments after NaOH treatment[J]. Materials & Design,2008,29:1893-1896.
    [108]朱月群,杨建平,殷庆永,等.芳砜纶阻燃纱线设计[J].纺织科技进展,2008,(6):27-30.
    [109]王付秋,汪晓峰,朱苏康.芳砜纶纤维成纱毛羽及其主要影响因素[J].山东纺织科技,2005,46(4):1-5.
    [110]宋鹏飞.玄武岩纤维及其针织物尺寸性能的研究[D].山东:青岛大学,2008.
    [111]黄根来,孙志杰,王明超,等.玄武岩纤维及其复合材料基本力学性能实验研究[J].玻璃钢/复合材料,2006,(1):24-27.
    [112]高鹏锟,胡微微,赵党峰,等.聚丙烯、玄武岩纤维和耐碱玻璃纤维耐碱性能对比分析[J].天津纺织科技,2011,(193):19-21,24.
    [113]王明超,张佐光,孙志杰,等.连续玄武岩纤维及其复合材料耐腐蚀特性[J].北京航空航天大学学报,2006,32(10):1255-1258.
    [114]霍文静,张佐光,王明超,等.复合材料用玄武岩纤维耐酸碱性实验研究[J].复合材料学报,2007,24(6):77-82.
    [115]王明超,张佐光,孙志杰,等.玄武岩纤维丝束强度的Weibull和Gauss分布统计分析[J].复合材料学报,2008,25(3):105-109.
    [116]梁凤静,杨彩云.玄武岩纤维织物耐酸碱性试验研究[J].产业用纺织品,2010,(4):21-23.
    [117]王萍,吴海波,靳向煜.玄武岩纤维过滤材料的研究[J].非织造布,2010,18(3):19-22,42.
    [118]王萍,魏煜,吴海波,等.玄武岩纤维过滤材料水刺工艺研究[J].非织造布,2010,18(4):10-13.
    [119]冯建民,吴海波.玄武岩纤维复合针刺过滤材料耐酸碱性能对比研究[J].非织造布,2011,19(2):15-17.
    [120]任加荣,王锦,俞镇慌.芳砜纶高温烟气除尘过滤应用性能的试验研究[J].产业用纺织品,2008,(5):6-9.
    [121]王锦,任加荣,俞镇慌.芳砜纶针刺非织造布在高温条件下的性能研究[J].合成纤维,2008,(1):39-41.
    [122]王锦.芳砜纶针刺非织造材料的耐高温性能研究[D].上海:东华大学,2007.
    [123]侯伟丽.工业炉窑高温烟气除尘用芳砜纶纤维滤料的性能研究[D].上海:东华大学,2009.
    [124]姜启刚,陈旭炜,李毓陵,等.芳砜织物的撕破性能研究[J].产业用纺织品,2007,25(2):25-28.
    [125]元新艳,沈恒根,王振华.芳砜纶过滤材料在高温烟气净化中的稳定性分析[J].产业用纺织品,2010,(7):27-30.
    [126]方沛,朱苏康.芳砜纶织物的拒水拒油整理[J].东华大学学报(自然科学版),2007,33(2):153-157.
    [127]俞镇慌,申涛,任加荣,等.芳砜纶针刺非织造布耐酸性能研究[J].产业用纺织品,2009,(2):10-14.
    [128]巩新松,俞镇慌.芳砜纶纤维针刺法非织造布高温处理后耐氧化性能研究[J].非织造布,2009,17(5):7-9,20.
    [129]Yuan, X., Shen, H., Wang, Z., et al. The mechanical properties of PSA fibers after corrosion[C]. In 2010 International Conference on Advances in Materials and Manufacturing Processes, ICAMMP 2010,2010, Trans Tech Publications: Shenzhen, China,2011,146-147:221-224.
    [130]元新艳,沈恒根,王振华,等.芳砜纶纤维在酸性条件下的失效特性[J].东华大学学报(自然科学版),2011,37(3):282-285,292.
    [131]Yuan, X., Shen, H., Wang, Z. Experimental study on the properties of modified PSA fiber after corrosion[C]. In 2011 International Conference on Environmental Biotechnology and Materials Engineering, EBME 2011,2011, Trans Tech Publications:Harbin, China,2011,183-185:1631-1634.
    [132]Lutz Bergmann. The catalytic filter bag-a new solution for dioxin/furane removal from Japanese incinerators[J]. The 4th hina International Filteration Conference,2006,1-6.
    [133]钟澍,徐玉党.直通式脉冲阀性能试验研究[J].制冷与空调,2006,(2):24-27.
    [134]高晖,郭烈锦.除尘器袋室结构改进及内部气固两相流动特征分析[J].西安交通大学学报,2000,34(5),50-54.
    [135]GB/T14337-2008,化学纤维短纤维拉伸性能试验方法[S].
    [136]GB/T 7690.3-2001,增强材料纱线试验方法第3部分:玻璃纤维断裂强力 和断裂伸长的测定[S].
    [137]GB/T3923.1-1997,纺织品织物拉伸性能第1部分:断裂强力和断裂伸长率的测定条样法[S].
    [138]GB/T 5454-1997,纺织品燃烧性能试验-氧指数法[S].
    [139]任家荣,王锦,俞镇慌.芳砜纶纤维热处理力学性能分析[J].国际纺织导报,2007,(11):27-33.
    [140]王萍.玄武岩纤维复合过滤材料水刺工艺及性能研究[D].上海:东华大学,2011.
    [141]王锦,任家荣,俞镇慌.芳砜纶针刺毡非织造布在高温条件下的性能研究[J].合成纤维,2008,(1):39-41.
    [142]林木良.热分析方法在确定化合物组成研究上的应用[J].广州化工,2001,29(1):32-34.
    [143]张兴英,程钰,赵金波.高分子化学[M].北京:中国轻工业出版社,2000:285.
    [144]S V Rodil, A M Alonso, J M D Tascon. Studies on Pyrolysis of Nomex Polyaramid Fibers[J]. J Analyt Appli Pyroly,2001,58-59:105-115.
    [145]S V Rodil, J I Paredes, A M Alonso, et al. Atomatic Force Microscopy and Infrared Spetroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers[J]. Chem Mater.,2001,13:4297-4304.
    [146]董纪震,孙桐,古大治,等.合成纤维生产工艺学[M].北京:纺织工业出版社,1981.
    [147]胡荣祖,史启祯.热分析动力学(第二版)[M].北京:科学出版社,2008.
    [148]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [149]阳明盛,罗长童.最优化原理、方法及求解软件[M].北京:科学出版社,2006:54-62.
    [150]LI X G, HUANG M R, GUAN G H, et al. Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene terephthalate) by single heating ratemethods [J]. Polymer International,1998,46:289-297.
    [151]张莉,隋坤艳,杨明,等.聚萘二甲酸乙二酯的热降解动力学:Ⅰ:非等温热降解动力学[J].高分子材料科学与工程,2009,25(2):109-112.
    [152]李利君,蒲宗耀,李凤,等.聚苯硫醚纤维的热降解动力学[J].纺织学报,2010(12), Vol.31, No.12:4-8.
    [153]冯计民.红外光谱在微量物证分析中的应用[M].北京:化学工业出版社,2010.
    [154]江森,刘全,辛曲珍.余热锅炉的酸露点温度计算[J].黑龙江电力,2002,24(4):298-299.
    [155]梁珍,沈恒根,侯伟丽,等.芳砜纶滤料用于袋式除尘的性能测试与分析 [J].产业用纺织品,2009,230(11):17-20.
    [156]张书圣,温永红,丁彩凤,等译.有机化学手册[M].北京:化学工业出版社,2006:547-586.
    [157]洪山海.光谱分析在有机化学中的应用[M].北京:科学出版社,1980:44-45.
    [158]李刚,刘婷,陈彦模,等.聚苯硫醚纤维的研究及发展[J].合成技术及应用,2005,20(3):30-33.
    [159]王善元,张茹光.纤维增强复合材料[M].上海:中国纺织大学出版社,1989.
    [160]谈庆明.量纲分析[M].安徽:中国科学技术大学出版社,2005.
    [161]肖新平,毛树华.灰预测与决策方法[M].北京:科学出版社,2013.
    [162]邓聚龙.灰色系统理论[M].武汉:华中理工大学出版社,1989.
    [163]常建娥,蒋太立.层次分析法确定权重的研究[J].武汉理工大学学报,2007,29(1):153-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700