用户名: 密码: 验证码:
聚丙烯腈基复合纳米材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展和进步,许多性能及应用优异的的纳米材料已经被制备出来,并成为了当今社会中不可缺少的材料。在纳米材料的制备方法中,静电纺丝法作为一种简单易控、高效低耗的新兴技术倍受科学家的青睐。然而,随着人类生产生活的发展,单一结构纳米材料已经远远不能满足需要。无机/有机复合纳米材料由于其在电子学、医学、催化、环保等领域的广泛应用,成为了纳米材料领域的热点。然而对于上述应用而言,无机粒子的粒径分布及材料的机械性能对其应用起到至关重要的影响。
     在本论文的第二章中,我们采用高压静电纺丝法制备了不同形貌的PAN纳米纤维材料,观察了纺丝原液浓度升高过程中,纳米材料从纳米球到纳米纤维的过渡过程。在静电纺丝得到形貌均一,直径分布均匀的PAN纳米纤维的基础上对PAN纳米纤维膜进行化学改性,引入具有螯合金属离子能力的偕胺肟基团,最后制得了Ag/PAN, Pd/PAN复合纳米纤维膜。讨论了粒子与聚丙烯腈纳米纤维的作用方式,并通过测试证明了通过先改性后鳌合的方法能够得到表面负载均匀分散纳米粒子的无机/有机纳米材料,与传统简单掺杂纺丝的制备方法相比,避免了粒子聚集和包裹在纤维内的可能,为更好的提高应用性质打下了坚实基础。最后,分别研究了两种复合纳米纤维膜在催化亚甲基蓝褪色及Heck反应中的应用。结果表明Ag/PAN复合纳米纤维膜在7 min内即可完成亚甲基蓝的催化反应;表面负载Pd纳米粒子的聚丙烯腈复合纳米纤维作为催化剂对Heck芳基化反应的催化能力很高,反应后复合纤维膜仍然能够保持形态的完整,可以直接从反应液中分离、回收,重复使用五次后,得到反式3-苯基丙烯酸甲酯的产率为70.60%。
     在论文的第三章,我们将静电纺丝技术与化学改性、气固反应等方法相结合,制备出了三种附着不同无机硫化物的有机纳米复合纤维膜(CuS, PbS,Ag2S),详尽的研究了气固反应合成CuS, PbS, Ag2S纳米粒子的生长情况以及无机粒子在纳米纤维上的分布情况。并研究了三种无机/有机纳米纤维膜在可见光区范围内对亚甲基蓝的光催化降解作用,发现,三种复合膜均可以在120 mmin内将亚甲基蓝完全降解。
     论文第四章旨在制备一种同时具有吸附及可见光催化性质的纳米复合材料。通过将静电纺丝技术与化学改性、高温碳化、简单掺杂等方法相结合得到了ZnO-SnO2/β-CD/PAN-co-AA纳米纤维膜。这种材料可以在吸附染料的同时将其降解,提高了可见光催化降解的效率。通过对反应体系中亚甲基蓝含量的测量发现,与单纯的ZnO-SnO2纳米粒子相比,ZnO-SnO2/β-CD/PAN-co-AA纳米复合材料对亚甲基蓝有更好的吸附和催化效果,可以在60 min内将其完全降解,环糊精的吸附作用在可见光催化工程中起到非常重要的作用。
     在论文的第五章,我们对传统的单喷头静电纺丝技术进行改性,开发了多喷头独立电场静电纺丝法,将微米纤维引入到纳米纤维薄膜中,通过调节注射泵流速来控制膜中两种类型纤维的质量比。本章考察了不同微米纤维添加质量对整个纤维膜机械性能的影响。结果发现纤维膜的机械性能随膜中微米纤维数量的增加而增加,当微米纤维膜与纳米纤维膜的质量比为3:1时,微-纳米纤维膜的拉伸强度是单一纳米纤维膜4.50倍,在此基础之上,进一步提高纤维的取向,可使拉伸强度再提高7.96倍。另外,我们还通过双喷头电纺丝法构筑了具有机械性能增强的pH微-纳米复合变色纤维膜,与单一的纳米变色纤维相比,复合变色纤维膜膜的变色性质基本没有受到影响,而微米纤维的添加使膜的拉伸强度由1.30MPa显著提高到6.90 MPa。这种多喷头静电纺丝技术克服了单一喷头纺丝产率低的缺点,为今后的大规模生产提供了可能。
With the development and advancement of nanotechnology, nano-material became indispensable in the present society because of the unique property and application compared to traditional material. Among preparation methods, electrospinning as a newly developed technique has attracted greet attention from researchers. However, with the development of electrospinning technique and society, simplex nanofiber cannot meet the need of reality. Inorganic/organic nanocomposites which have wild applications in electronics, medicine, catalyze, environmental protection etc., are the hotspot in material research. But excellent property often requires a uniform size and homogeneous distribution throughout a suitable substrate. So control over agglomeration is a key point in the preparation of particles.
     In the second chapter of this dissertation, electrospinning technique is employed to fabricate PAN nanocomposite film. We analyzed the effect of concentration of precursor to the morphology of nano-products, observed the process from nanoparticle to nanofiber according to the increasing of the solution concentration. Furthermore, PAN nanofiber with uniform diameter was surface modified to obtain amidoxime group, which has the ability to adsorb metal nanoparticles. Finally, Ag/PAN, Pd/PAN nanocomposite film was prepared. The combinative method between nanoparticles and PAN nanofiber has been discussed in this chapter. We find that almost all of the nanoparticles were attached on the surface through chelating effect. This method will be propitious to prevent nanoparticles from aggregation. Further more, we examined the ability of these nanocomposite films to promote the reduction reaction of methylene blue (MB) dye and Heck reaction respectively. They have excellent catalyze properties, and easy for catalyst recovery and recycle also.
     In the third chapter of this dissertation, we fabricate three kind of inorganic nanoparticles (Ag2S, CuS, PbS) on the surface of PAN nanofiber by combining electrospinning and gas-solid reaction. Investigate the formation, distribution and visible light photocatalytic activity of inorganic nanoparticles.
     The focus of the fourth chapter has been on fabrication of inorganic/organic nanofiber film with adsorption and photocatalytic degradation simultaneous. ZnO-SnO2/β-CD/PAN-co-AA nanocomopsite film is obtained via electrospinning combined with chemical modification, high temperature carbonization, simple doping and so on. It finds that adsorption has positive role for the efficiency of this photocatalyst. ZnO-SnO2/β-CD/PAN-co-AA nanocomopsite film showed much higher adsorption and catalyzes ability to elimination of MB than ZnO-SnO2 nano-heterostructure.
     In the fifth chapter of this dissertation, we improve the traditional electrospinning technique to employ a multi-nozzle electrospinning setup. Nanofiber from the one nozzle and micro-sized fiber from the other nozzle were combined homogeneously by two-nozzle electrospinning. Microfiber plays the role of support which is favorable for enhancing the mechanic performance of the film. As a result, the weak intensity problem of membrane is effectively resolved by this advanced electrospinning technique. The result shows compared with film composed by simplex nanofiber, the tensile strength of the composite fiber film contain nanofiber and microfiber simultaneity has been enhanced by a factor of 4.54. After further improve orientation of composite fiber, the tensile strength is 30.00 times that of simplex nanofiber. Furthermore, this technique has been used to prepare pH-sensitive films with enhanced mechanical property. The results show that the pH sensitive film that merely consist with PAN nanofiber or composite PAN/PA-6 fiber all exhibited remarkable color change from pale yellow to violet in a wide range of alkaline solutions and rapid response time within 100 S. But after microfibers added, the tensile strength of mat was enhanced from 1.30 MPa to 6.90 MPa prominently which is beneficial to put the mats into practice.
引文
[1]Schlecht S, Tan S T, Yosef M, Dersch R, Wendorff J H, Jia Z H, Schaper A. Toward linear arrays of quantum dots via polymer nanofibers and nanorods [J]. Chemistry of Materials,2005,17(4):809-814.
    [2]Darrell H R, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology,1996,7(3):216-223.
    [3]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J]. J. Electrostat,1995,35:151-160.
    [4]Bognitzki M, CzadoScj W, Frese T, Schaper A, Hellweg M, Steinhart M, Greiner A, Wendorff J H. Nanostructured Fibers via Electrospinning [J]. Adv. Mater, 2001,13:70-72.
    [5]Givens S R, Gardner K H, Rabolt J F, Chase D B. High-Temperature Electrospinning of Polyethylene Microfibers from Solution [J]. Macromolecules, 2007,40:608-610.
    [6]Gibson P, Schreuder G. H., Rivin D. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2001,187:469-481.
    [7]Jing Z, Xu X Y, Chen X S, Liang Q Z, Bian X C, Yang L X, Jing X B. Biodegradable electrospun fibers for drug delivery [J]. Journal of Controlled Release,2003,92(3):227-231.
    [8]Luu Y K, Kim K, Hsiao B S, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers [J]. Journal of Controlled Release,2003, 89(2):341-353.
    [9]Norris I D, Shaker M M, Ko F K, MacDiarmid A G. Electrostatic fabrication of ultrafine conducting fibers:polyaniline/polyethylene oxide blends [J]. Synthetic Metals,2000,114(2):109-114.
    [10]Ryu Y J, Kim H Y Lee K H, Park H C, Lee D R. Transport properties of electrospun nylon 6 nonwoven mats [J]. European Polymer Journal,2003, 39(9):1883-1889.
    [11]Yoshimoto H, Shin Y M, Terai H, Vacanti J P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering [J]. Biomaterials,2003,24(12):2077-2082.
    [12]Ammam M, et al. pH sensor based on the crown heteropolyanion K28Li5H7P8W48O184·92 H2O immobilized using a layer by layer assembly process [J]. Sensors and Actuators B-Chemical,2009,142(1):347-354.
    [13]Nandana B, Subhas C K. Electrospinning:A fascinating fiber fabrication technique [J]. Biotechnology Advances 2010,28:325-347.
    [14]Luo C J, Nangrejo M, Edirisinghe M. A novel method of selecting solvents for polymer electrospinning [J]. Polymer 2010,51:1654-1662.
    [15]Elosua C, Bariain C, Matias I R, Arregui F J, Luquin A, Vergara E, Laguna M. Indicator immobilization on Fabry-Perot nanocavities towards development of fiber optic sensors [J]. Sensors and Actuators B-Chemical,2008, 130(1):158-163.
    [16]Liu H Q, Hsieh Y L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate [J]. Journal of Polymer Science Part B-Polymer Physics,2002, 40(18):2119-2129.
    [17]Fernandes E G R, Vieira N C S, Queiroz A A A, Guimaraes F E G, Zucolotto V. Immobilization of Poly(propylene imine) Dendrimer/Nickel Phtalocyanine as Nanostructured Multilayer Films To Be Used as Gate Membranes for SEGFET pH Sensors [J]. Journal of Physical Chemistry C,2010,114(14):6478-6483.
    [18]Lee K H, Kim H Y, Ryu Y J, Kim K W, Choi S W. Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends [J]. Journal of Polymer Science Part B-Polymer Physics,2003,41(11):1256-1262.
    [19]Parra S, Nadtotechcnko V, Albers P, Kiwi J. Discoloration of Azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on nafion via Fenton-like processes [J]. Journal of Physical Chemistry B,2004, 108(14):4439-4448.
    [20]Lin J. Recent development and applications of optical and fiber-optic pH sensors [J]. Trac-Trends in Analytical Chemistry,2000,19(9):541-552.
    [21]Liu Z H, Luo F L, Chen T L. Polymeric pH indicators immobilized PVA membranes for optical sensors of high basicity based on a kinetic process [J]. Analytica Chimica Acta,2004,519(2):147-153.
    [22]Cha D I, Kim H Y, Lee K H, Ryu Y J, Lee D R. The study on the weaving and their mechanical behavors of electrospun filaments [J]. Quality Textiles for Quality Life,2004, 1(4):923-925.
    [23]Li Z Z, Niu C G, Zeng G M, Liu Y G, Gao P F, Huang G H, Mao Y A. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene [J]. Sensors and Actuators B-Chemical,2006,114(1):308-315.
    [24]Mohammad R, Ahmad M, Daud J M. Development of Optical pH Sensor Based on Curcumin Reagent Immobilized in Sol-gel/Chitosan Melamine Hybrid Matrices [J]. Sains Malaysiana,2009,38(3):413-418.
    [25]Casper C L, et al. Controlling surface morphology of electrospun polystyrene fibers:Effect of humidity and molecular weight in the electrospinning process [J]. Macromolecules,2004,37(2):573-578.
    [26]Wang C, Chien H S, Yan K W, Hung C L, Hung K L, Tsai S J, Jhang H J. Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers [J]. Polymer,2009,50:6100-6110.
    [27]Gu S Y, Wang Z M, Ren J, Zhan C Y. Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing [J]. Materials Science and Engineering C,2009,29:1822-1828.
    [28]Staneva D, Betcheva R. Synthesis and functional properties of new optical pH sensor based on benzo[de]anthracen-7-one immobilized on the viscose [J]. Dyes and Pigments,2007,74(1):148-153.
    [29]Wolfbeis O S, Weidgans B M. Fiber optic chemical sensors and biosensors:A view back [J]. Optical Chemical Sensors,2006,224:17-44.
    [30]Ding Z W, Salim A, Ziaie B. Selective Nanofiber Deposition through Field-Enhanced Electrospinning [J]. Langmuir,2009,25(17):9648-9652.
    [31]Ji J Y, Sui Q Yu Y H, Liu Y X, Lin Y H, Du Z J, Ryu S, Yang X P. Significant Improvement of Mechanical Properties Observed in Highly Aligned Carbon-Nanotube-Reinforced Nanofibers [J]. J. Phys. Chem. C,2009,113:4779-4785.
    [32]Liang X F, Li Y X, Peng W, Bai J, Zhang C Q, Yang Q B. Efficient method for fabrication of fluorescein derivative/PDAC composite nanofibers and characteristics of their photoluminescent properties [J]. European Polymer Journal,2008,44:3156-3162.
    [33]Yarin A L, Zussman E. Upward needleless electrospinning of multiple nanofibers [J]. Polymer,2004,45(9):2977-2980.
    [34]Varesano A, Carletto R A, Mazzuchetti G.. Experimental investigations on the multi-jet electrospinning process [J]. Journal of Materials Processing Technology, 2009,209(11):5178-5185.
    [35]Theron S A, Zussman E, Yarin A L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions [J]. Polymer,2004, 45(6):2017-2030.
    [36]Theron S A, Yarin A L, Zussman E, Kroll E. Multiple jets in electrospinning: experiment and modeling [J]. Polymer,2005,46(9):2889-2899.
    [37]Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning [J]. Polymer,2004.45(6):1895-1902.
    [38]Tomaszewski W, Szadkowski M. Investigation of electrospinning with the use of a multi-jet electrospinning head [J]. Fibres & Textiles in Eastern Europe,2005, 13(4):22-26.
    [39]Kim G., Cho Y S, Kim W D. Stability analysis for multi jets electrospinning process modified with a cylindrical electrode [J]. European Polymer Journal, 2006,42(9):2031-2038.
    [40]Yang B D, Yoon K H, Chung K W. Dispersion effect of nanoparticles on the conjugated polymer-inorganic nanocomposites [J]. Materials Chemistry and Physics,2004,83(2):334-339.
    [41]Lee D K, Kang Y S, Lee C S, Stroeve P. Structure and characterization of nanocomposite Langmuir-Blodgett films of poly(maleic monoester)/Fe3O4 nanoparticle complexes [J]. Journal of Physical Chemistry B,2002, 106(29):7267-7271.
    [42]Matthew M, Vali H, Adi E. Spherical Assemblies of Semiconductor Nanoparticles in Water-Soluble Block Copolymer Aggregates [J]. Chem. Mater., 1998,10 (4):1021-1028.
    [43]Qi L M, Colfen H, Antonietti M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers [J]. Nano Letters,2001, 1(2):61-65.
    [44]Zhao H Y, Douglas E P, Harrison B S, Schanze K S. Preparation of CdS nanoparticles in salt-induced block copolymer micelles [J]. Langmuir,2001, 17(26):8428-8433.
    [45]Zaporojtchenko V, Strunskus T, Erichsen J, Faupel F. Embedding of noble metal nanoclusters into polymers as a potential probe of the surface glass transition [J]. Macromolecules,2001,34(5):1125-1127.
    [46]Kumar R V, Koltypin Y, Cohen Y S, Cohen Y, Aurbach D, Palchik O. Felner I, Gedanken A. Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation [J]. Journal of Materials Chemistry, 2000,10(5):1125-1129.
    [47]Zhu Y J, Qian Y T, Li X J, Zhang M W. y-Radiation synthesis and characterization of polyacrylamide-silver nanocomposites [J]. Chemical Communications,1997,12:1081-1082.
    [48]Wang C, Li M Y, Li D, Yang Q B, Hong Y. Preparation and stability of the nanochains consisting of copper nanoparticles and pva nanofiber [J]. International Journal of Nanoscience,2002,1:471-476.
    [49]Yang Q B, Li D M, Hong Y L, Li Z Y, Wang C, Qiu S L, Wei Y. Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning [J]. Synthetic Metals,2003,137(1-3):973-974.
    [50]Bai J, Li Y X, Li M Y, Wang S G, Zhang C Q, Yang Q B. Electrospinning method for the preparation of silver chloride nanoparticles in PVP nanofiber [J]. Applied Surface Science,2008,254(15):4520-4523.
    [51]Liz-Marzan, et al. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles [J]. Langmuir,2006.22(1):32-41.
    [52]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298:2176-2179.
    [53]Chen J, Saeki F, Wiley B J, Cang H, Cobb M J, Li Z Y, Au L, Zhang H, Kimmey M B, Li X D, Xia Y. Gold nanocages:Bioconjugation and their potential use as optical imaging contrast agents [J]. Nano Letters,2005, 5(3):473-477.
    [54]Roucoux A, Schulz J, Patin H. Reduced transition metal colloids:A novel family of reusable catalysts [J]. Chemical Reviews,2002,102(10):3757-3778.
    [55]Patel A C, Li S X, Wang C, Zhang W J, Wei Y. Electrospinning of porous silica nano fibers containing silver nanoparticles for catalytic applications [J]. Chemistry of Materials,2007,19(6):1231-1238.
    [56]Borras A, Barranco A, Gonzalez-Elipe A R. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces [J]. Langmuir,2008,24(15):8021-8026.
    [57]Mathias B, Merryl W. Donald B, David J S, Robin W. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system [J]. J. Chem. Soc., Chem. Commun.1994,7:801-802.
    [58]Mustafa M D, Mehmet A G, Yusuf Z. Menceloglu Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid) PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity [J]. Macromolecules 2004,37:1787-1792.
    [59]Zhang Z Y, Shao C L, Li X H, Zhang L, Xue H M, Wang C H, Liu Y C, Electrospun Nanofibers of ZnO-SnO2 Heterojunction with High Photocatalytic Activity [J]. J. Phys. Chem. C,2010,114:7920-7925.
    [60]Liu Z Y Sun D D, Guo P, Leckie J O. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method [J]. NANO LETTERS.2007.7(4):1081-1085.
    [61]Lee D J, Yim S S, Kim K S, Kim S H, Kima K B, Formation of Ru Nanotubes by Atomic Layer Deposition onto an Anodized Aluminum Oxide Template [J]. Electrochemical and Solid-State Letters,2008,11 (6):K61-K63.
    [62]Li N, Martin C R, Scrosati B. Nano-material-based Li-ion battery electrodes [J]. Journal of Power Sources,2001,97(98):240-243.
    [63]Jan K P, Paolo F. Nanostructured materials for advanced automotive de-pollution catalysts [J]. Journal of Solid State Chemistry,2003,171(1-2):19-29.
    [64]Andrey J Z, Ying J Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion [J]. Nature,2000,403:65-67.
    [65]Bowen W R, Mohammad A W, Hilal N. Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy [J]. Journal of Membrane Science,1997,126(1):91-105.
    [66]Xu Y Z, Lebrun R E. Investigation of the solute separation by charged nanofiltration membrane:effect of pH, ionic strength and solute type [J]. Journal of Membrane Science,1999,158(1-2):93-104.
    [67]Deng S B, Bai R B, Chen J P. Aminated Polyacrylonitrile Fibers for Lead and Copper Removal [J]. Langmuir,2003,19(12):5058-5064
    [68]Chang X J, Su Q Q, Liang D Y, Wei X J, Wang B T. Efficiency and application of poly(acryldinitrophenylamidrazone-dinitroacrylphenylhydrazine) chelating fiber for pre-concentrating and separating trace Au(Ⅲ), Ru(Ⅲ), In(Ⅲ), Bi(Ⅲ), Zr(Ⅳ), V(Ⅴ), Ga(Ⅲ) and Ti(Ⅳ) from solution samples [J]. Talanta,2002, 57:253-261.
    [69]Zhang T H, Shan X Q, Liu R X, Tang H X, Zhang S Z. Preconcentration of Rare Earth Elements in Seawater with Poly(acrylaminophosphonic dithiocarbamate) Chelating Fiber Prior to Determination by Inductively Coupled Plasma Mass Spectrometry [J]. Anal. Chem.,1998,70(18):3964-3968.
    [70]黄浪欢,刘应亮,TiO2改性多功能涂料的制备及性能研究[J].化学建材,2005,21(4):1-3.
    [71]陈建华,龚竹青,二氧化钛半导体光催化材料离子掺杂[M].科学出版社,2006.
    [72]Hagfeldt A,. Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem, Rev.,1995,95(1):49-68.
    [73]Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews,1995, 95(1):69-96.
    [74]Watts M J, Cooper A T. Photocatalysis of 4-chlorophenol mediated by TiO2 fixed to concrete surfaces [J]. Solar Energy,2008,82(3):206-211.
    [75]Senanayake S D, Idriss H. Photocatalysis and the origin of life:Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces [J]. Proceedings of the National Academy of Sciences of the United States of America,2006, 103(5):1194-1198.
    [76]Sawunyama P, Fujishima A, Hashimoto K. Photocatalysis on TiO2 surfaces investigated by atomic force microscopy:Photodegradation of partial and full monolayers of stearic acid on TiO2(110) [J]. Langmuir,1999,15(10):3551-3556.
    [77]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull Environ Contam Toxicol,1976,16(6):697-701.
    [78]Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S. Structural and optical properties of electrospun TiO2 nanofibers [J]. Chemistry of Materials,2007, 19(26):6536-6542.
    [79]Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers [J]. Acs Applied Materials & Interfaces,2009,1 (5):1140-1143.
    [80]Kim J, Hwang D W, Kim H G, Bae S W, Lee J S, Li W, Oh S H. Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts [J]. Topics in Catalysis,2005, 35(3-4):295-303.
    [81]Sato S, Nakamura R. Abe S, Visible-light sensitization of TiO2 photocatalysts by wet-method N doping [J]. Applied Catalysis a-General,2005,284(1-2):131-137.
    [82]Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Feng X Y. Sensitization of photocatalytic activity of S-or N-doped TiO2 particles by adsorbing Fe3+ cations [J]. Applied Catalysis a-General,2006.302:62-68.
    [83]Choi W Y, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem.,1994,98(51):13669-13679.
    [84]Li D Z, Huang H J, Chen X, Chen Z X, Li W J, Ye D, Fu X Z. New synthesis of excellent visible-light TiO2-xNx photocatalyst using a very simple method [J]. Journal of Solid State Chemistry,2007,180(9):2630-2634.
    [85]Yin S, Aita Y, Komatsu M, Wang J S, Tang Q, Sato T. Synthesis of excellent visible-light responsive TiO2-xNy photocatalyst by a homogeneous precipitation-solvothermal process [J]. Journal of Materials Chemistry,2005, 15(6):674-682.
    [86]Lin C H, Chao J H, Liu C H, Chang J C, Wang F C. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H-2 [J]. Langmuir,2008,24(17):9907-9915.
    [87]Yang Y Z, Chang C H, Idriss H. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M= Pd, Pt or Rh) [J]. Applied Catalysis B-Environmental,2006,67(3-4):217-222.
    [88]Belapurkar A D, Kamble V S, Dey G R. Photo-oxidation of ethylene in gas phase and methanol and formic acid in liquid phase on synthesized TiO2 and Au/TiO2 catalysts [J]. Materials Chemistry and Physics,2010,123(2-3):801-805.
    [89]Schiavello M. Some working principles of heterogeneous photocatalysis by semiconductors [J]. Electrochimica Acta,1993,38(1):11-14.
    [90]Dindar B, Siddik L. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight [J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,140(3):263-268
    [91]Carlos A K, Gouvea F W, Moraes S G., Duran N, Nagata N, Patricio P Z, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution Chemosphere [J],2000,40(4):433-440.
    [92]Jing D W, Guo L J. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure [J]. Journal of Physical Chemistry B,2006,110(23):11139-11145.
    [93]Wang Z J, Li Z Y, Zhang H N, Wang C. Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers [J]. Catalysis Communications,2009, 11(4):257-260.
    [94]Xia H L, Zhuang H S, Zhang T, Xiao D C. Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2 [J]. Materials Letters,2008,62(6-7):1126-1128.
    [95]Wang H H, Baek S, Lee J, Lim S. High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts [J]. Chemical Engineering Journal,2009, 146(3):355-361.
    [96]Kale B B, Baeg J O, Lee S M, Chang H J, Moon S J, Lee C W. CdIn2S4 nanotubes and "marigold" nanostructures:A visible-like photocatalyst [J]. Advanced Functional Materials,2006,16(10):1349-1354.
    [97]Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7 (R=Y, rare earth):Effect on band structure and photocatalytic properties [J]. Journal of Physical Chemistry B,2002,106(3):517-520.
    [98]Luo J H, Maggard P A. Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3 [J]. Advanced Materials,2006,18(4):514-517.
    [99]Cheng T C, Yao K S, Yeh N, Chang C I, Hsu H C, Chien Y T, Chang C Y. Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens [J]. Surface & Coatings Technology,2009,204:1141-1144.
    [100]Chang F W, Ou T C, Selva Roselin L, Chen W S, Lai S C, Wu H M. Production of hydrogen by partial oxidation of methanol over bimetallic Au-Cu/TiO2-Fe2O3 catalysts [J]. Journal of Molecular Catalysis A:Chemical, 2009,313:55-64.
    [102]Vinodgopal K, Bedja I, Kamat P V. Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye [J]. chemistry of materials,1996,8(8):2180-2187.
    [103]Gonzalez-Garcia, M.B, Fernandez-Sanchez C, Costa-Garcia A. Colloidal gold as an electrochemical label of streptavidin-biotin interaction [J]. Biosensors & Bioelectronics,2000,15(5-6):315-321.
    [104]Liu M C, Li P, Cheng Y X, Xian Y Z, Zhang C L, Jin L T. Determination of thiol compounds in rat striatum microdialysate by HPLC with a nanosized CoHCF-modified electrode [J]. Analytical and Bioanalytical Chemistry,2004, 380(5-6):742-750.
    [105]Wan Q, Zhang F F, Liu M C, Zhu Z Q, Xian Y Z, Jin L T. Simultaneous monitoring of glucose, lactate, L-glutamate and hypoxanthine levels in rat striatum by a flow-injection enzyme electrode array system with in vivo microdialysis sampling [J]. Journal of Electroanalytical Chemistry,2005, 575(1):1-7.
    [106]Zhang F F, Wan Q, Li C X, Wang X L, Zhu Z Q, Xiang Y Z, Jin L T, Yamamoto K. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles [J]. Analytical and Bioanalytical Chemistry,2004, 380(4):637-642.
    [107]Kong J, Chapline M G., Dai H J. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Advanced Materials,2001,13(18):1384-1386.
    [108]Zheng, N.F. and G.D. Stucky, A general synthetic strategy for oxide-supported metal nanoparticle catalysts [J]. Journal of the American Chemical Society,2006. 128(44):14278-14280.
    [109]Stoeva S I, Huo F W, Lee J S, Mirkin C A. Three-layer composite magnetic nanoparticle probes for DNA [J]. Journal of the American Chemical Society, 2005,127(44):15362-15363.
    [110]Kim J, Lee J E, Lee J, Jang Y, Kim S W, An K, Yu H H, Hyeon T. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J]. Angewandte Chemie-International Edition,2006,45(29):4789-4793.
    [111]Mandal S, Roy D, Chaudhari R V, Sastry M. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite:Excellent catalysts for hydrogenation and heck reactions [J]. Chemistry of Materials,2004,16(19):3714-3724.
    [112]Wiley B, Sun Y G, Chen J Y, Cang H, Li Z Y, Li X D, Xia Y N. Shape-controlled synthesis of silver and gold nanostructures [J]. Mrs Bulletin,2005,30(5):356-361.
    [113]Monnier J R, Medlin J W, Barteau M A. Use of oxygen-18 to determine kinetics of butadiene epoxidation over Cs-promoted, Ag catalysts [J]. Journal of Catalysis,2001,203(2):362-368.
    [114]Onda A, et al. A new chemical process for catalytic conversion Of D-glucose into lactic acid and gluconic acid [J]. Applied Catalysis a-General,2008, 343(1-2):49-54.
    [115]Butenko A N, Savenkov A S. Modified silver catalyst for oxidative conversion of methanol to formaldehyde [J]. Russian Journal of Applied Chemistry,2000, 73(11):1942-1945.
    [116]Rojas O J, Ernstsson M, Neuman R D, Claesson P M. Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica [J]. Langmuir, 2002,18(5):1604-1612.
    [117]Zhang X, Bai R. Deposition/adsorption of colloids to surface-modified granules:Effect of surface interactions [J]. Langmuir,2002,18(9):3459-3465.
    [118]Wang Y Z, Li Y X, Yang S T, Zhang G L, An D M, Wang C, Yang Q B, Chen X S, Jing X B, Wei Y. A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning [J].Nanotechnology,2006,17(13):3304-3307.
    [119]Kundu S, Mandal M, Ghosh S K, Pal T. Photochemical deposition of SERS active silver nanoparticles on silica gel and their application as catalysts for the reduction of aromatic nitro compounds [J]. Journal of Colloid and Interface Science,2004,272(1):134-144.
    [120]Pradhan N, Pal A, Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2002,196(2-3):247-257.
    [121]Literature data on the XRD patterns for Ag:Swanson [J]. T. Natl. Bur. Stand.(U. S.) Circ.1953.539:1-23.
    [122]Bonamali P, Maheshwar S. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process [J]. Materials Chemistry and Physics, 2002,76(1):82-87
    [123]Meyer M, Mialocq J C, Perly B. Photoinduced intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye:picosecond and nanosecond laser spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance studies [J]. J. Phys. Chem.,1990,94 (1):98-104.
    [124]Tennakone K, Bandara J, Bandaranayake P K M, Kumara G R A, Konno A. Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2 [J]. Japanese Journal of Applied Physics Part 2-Letters, 2001,40(7B):L732-L734.
    [125]Tennakone K, Perera V P S, Kottegoda I R M, De Silva L A A, Kumara G R R A, Konno A. Dye-sensitized solid-state photovoltaic cells:Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor [J]. Journal of Electronic Materials,2001, 30(8):992-996.
    [126]Jing L Q, Wang B Q, Xin B F, Li S D, Shi K Y, Cai W M. Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd [J]. Journal of Solid State Chemistry,2004,177(11):4221-4227.
    [127]Wang R H, Xin J H, Yang Y, Liu H F, Xu L M, Hu J H. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites [J]. Applied Surface Science,2004,227(1-4):312-317.
    [128]Cun W, Wang X M, Xu B Q, Zhao J C, Mai B X, Peng P, Sheng G Y, Fu H M. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation [J]. Journal of Photochemistry and Photobiology a-Chemistry,2004,168(1-2):47-52.
    [129]Ostermann R, Li D, Yin Y D, McCann J T, Xia Y N. V2O5 nanorods on TiO2 nanofibers:A new class of hierarchical nanostructures enabled by electrospinning and calcination [J]. Nano Letters,2006,6(6):1297-1302.
    [130]Hattori A, Tokihisa Y, Tada H, Tohge N, Ito S, Hongo K, Shiratsuchi R, Nogami G. Patterning effect of a sol-gel TiO2 overlayer on the photocatalytic activity of a TiO2/SnO2 bilayer-type photocatalyst [J]. Journal of Sol-Gel Science and Technology,2001,22(1-2):53-61.
    [131]Hattori A, Tokihisa Y, Tada H, Ito S. Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst [J]. Journal of the Electrochemical Society,2000,147(6):2279-2283.
    [132]Tada H, et al. A patterned-TiO2/SnO2 bilayer type photocatalyst [J]. Journal of Physical Chemistry B,2000,104(19):4585-4587.
    [133]Marci G, Augugliaro V, Lopez-Munoz M J, Martin C, Palmisano L, Rives V, Schiavello M, Tilley R J D, Venezia A M. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime [J]. Journal of Physical Chemistry B,2001,105(5):1033-1040.
    [134]Liu R L, Huang Y X, Xiao A H, Liu H Q. Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers [J]. Journal of Alloys and Compounds,2010,503(1):103-110.
    [135]Zhang Z Y, Shao C L, Li X H, Zhang L, Xue H M, Wang C H, Liu Y C. Electrospun Nanofibers of ZnO-SnO2 Heterojunction with High Photocatalytic Activity [J]. Journal of Physical Chemistry C,2010,114(17):7920-7925.
    [136]Dorraji M S S, Aber S, Hosseini M G, Raghibi-Boroujeni M, Ahadzadeh I. Preparation of ZnO, Zn Fe3O4 and ZnO-SnO2 nanocrystals and investigation of their photocatalytic activity [J]. International Journal of Nanotechnology,2009, 6(10-11):984-996.
    [137]Zhang M L, Sheng G Y, Fu J M, An T C, Wang X M, Hu X H. Novel preparation of nanosized ZnO-SnO2 with high photocatalytic activity by homogeneous co-precipitation method [J]. Materials Letters,2005, 59(28):3641-3644.
    [138]Wang C, Wang P, Xu B Q. Photocatalytic degradation of p-nitroaniline over ZnO-SnO2 nanocomposite oxide photocatalyst [J]. Chinese Journal of Catalysis, 2004,25(12):967-972.
    [139]Zhang M L, An T C, Hu X H, Wang C, Sheng G Y, Fu J M. Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide [J]. Applied Catalysis a-General,2004,260(2):215-222.
    [140]Wang C, Zhao J C, Wang X M, Mai B X, Sheng G Y, Peng P, Fu J M. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts [J]. Applied Catalysis B-Environmental,2002,39(3):269-279.
    [141]Ducoroy L, Bacquet M, Martel B, Morcellet M. Removal of heavy metals from aqueous media by cation exchange nonwoven PET coated with b-cyclodextrin-polycarboxylic moieties [J]. Reactive & Functional Polymers,2008,68:594-600.
    [142]Pande S, et al. Synthesis of Normal and Inverted Gold Silver Core Shell Architectures in a-Cyclodextrin and Their Applications in SERS [J]. J. Phys. Chem. C,2007,111:10806-10813.
    [143]Hu J, Shao D D, Chen C L, Sheng G D, Li J X, Wang X K, Nagatsu M. Plasma-Induced Grafting of Cyclodextrin onto Multiwall Carbon Nanotube/Iron Oxides for Adsorbent Application [J]. J. Phys. Chem. B,2010,114:6779-6785.
    [144]Dermody D L, Peez R F, Bergbreiter D E, Crooks R M. Chemically Grafted Polymeric Filters for Chemical Sensors:Hyperbranched Poly(acrylic acid) Films Incorporating a-Cyclodextrin Receptors and Amine-Functionalized Filter Layers [J]. Langmuir,1999,15:885 890.
    [145]Turel M, Cajlakovic M, Austin E, Dakin J P, Uray G, Lobnik A. Direct UV-LED lifetime pH sensor based on a semi-permeable sol-gel membrane immobilized luminescent Eu3+ chelate complex [J]. Sensors and Actuators B-Chemical,2008,131(1):247-253.
    [146]Zhang L H, Li Z W, Chang R X, Chen Y, Zhang W Q. Synthesis and characterization of novel phenolphthalein immobilized halochromic fiber [J]. Reactive & Functional Polymers,2009,69(4):234-239.
    [147]Liu Z H, Liu J F, Chen T L, Phenol red immobilized PVA membrane for an optical pH sensor with two determination ranges and long-term stability [J]. Sensors and Actuators B-Chemical, 2005,107(1):311-316.
    [148]Cho J K, Wong L S, Dean T W, Ichihara O, Muller C, Bradley M. pH Indicating resins [J]. Chemical Communications,2004,13:1470-1471.
    [149]Wong L S, Birembaut F, Brocklesby W S, Frey J G, Bradley M. Resin bead micro-UV-Visible absorption spectroscopy [J]. Analytical Chemistry,2005, 77(7):2247-2251.
    [150]Pham Q P, Sharma U, Mikos A G. Electrospinning of polymeric nanofibers for tissue engineering applications:A review [J]. Tissue Engineering,2006, 12(5):1197-1211.
    [151]Thostenson E T, Chou T W. Aligned multi-walled carbon nanotube-reinforced composites:processing and mechanical characterization [J]. J. Phys. D:Appl. Phys,2000,35:L77-L80.
    [152]Kongkhlang T, Tashiro K H J, Kotaki M, Chirachancha S. Electrospinning as a New Technique To Control the Crystal Morphology and Molecular Orientation of Polyoxymethylene Nanofibers [J]. J. AM. CHEM. SOC.,2008, 130:15460-15466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700